Hindawi Publishing Corporation

International Journal of Distributed Sensor Networks
Volume 2015, Article ID 652041, 13 pages
http://dx.doi.org/10.1155/2015/652041

Research Article

Hindawi

Real-Time Performance Evaluation for Flooding and Recursive
Time Synchronization Protocols over Arduino and XBee

Tarek R. Sheltami,! Danish Sattar,' Elhadi M. Shakshuki,> and Ashraf S. Mahmoud!

'Department of Computer Engineering, KEUPM, Dhahran 31261, Saudi Arabia
2Jodrey School of Computer Science, Acadia University, Wolfville, NS, Canada B4P 2R6

Correspondence should be addressed to Tarek R. Sheltami; tarek@kfupm.edu.sa

Received 15 May 2015; Accepted 13 July 2015

Academic Editor: Athanasios Vasilakos

Copyright © 2015 Tarek R. Sheltami et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Time synchronization is a crucial part of distributed systems. It is often required for data reliability and coordination in wireless
sensor networks (WSNs). Wireless sensor networks have three major goals: time synchronization, low bandwidth operation,
and energy efficiency. Different time synchronization algorithms are aimed at achieving these objectives using various methods.
This paper presents performance evaluation of two state-of-the-art time synchronization protocols, namely, Flooding Time
Synchronization Protocol and Recursive Time Synchronization Protocol. To achieve time synchronization in wireless sensor
networks, these two protocols make use of broadcast and peer-to-peer mechanisms. Flooding Time Synchronization Protocol uses
the former mechanism, while Recursive Time Synchronization Protocol uses the latter mechanism. To perform the performance
evaluation, three performance metrics are used including synchronization message count per cycle, bandwidth, and convergence
time. Arduino is used as a micro-controller and XBee as transceiver to verify these metrics by utilizing different topologies.

1. Introduction

In recent years, significant advances in technology have
emerged following the creation of low-cost sensors for
processing and communicating data [1]. Wireless sensor
networks (WSNs) are a type of distributed networks wherein
sensors are launched to monitor real-time occurrences. Sen-
sor nodes can be deployed into various types of environments
and can be static or mobile. Once deployed, they begin the
process of discovering an entire network for communicating
the data collected individually [2]. There are numerous
applications of WSNs that ranges from medical [3, 4], envi-
ronmental [5, 6], military [7], industrial, civilian, vehicular
[8], microclimate studies [9, 10], and water pollutant mon-
itoring [11], to urban hazard avoidance [12], interplanetary
communication [13-15], sensor web probing [16], navigation
[17], and home networks (18, 19].

Although conventional sensing architecture is not appro-
priate for these applications, they work well in unobstructed
environments such as sky observations via weather radars
[20]. They consist of a few sensors that are high-powered and

of long-range. In order for these sensors to communicate,
they need a clear line-of-sight. However, these are not
effective in harsh, disordered, and complicated environments,
where visual contact is limited. Many short-range sensors
decrease the clutter effect. This pattern of sensors similarly
develops a signal-to-noise ratio, which is vital to sensing
phenomenon. However, it is not practical to utilize wired
sensors in large areas, because they involve appropriate
infrastructure. Manual observation is also labor and time
intensive. Hence, using conventional sensing architecture is
considered insensible for these types of applications.
Utilizing time synchronization in WSNs renders it vital;
however, it is not easy to solve. Prerequisites for applications
vary in precision, energy, lifetime, and availability. A case
in point concerns global queries that necessitate global time
and local collaboration that usually needs synchronization
between at least two or more neighbors. Some sensor tasks
might operate in an hourly or daily time scale, while
acoustic applications operate at a microsecond’s level and
oftentimes require precision. Meanwhile, triggers may simply
need momentary synchronization, even as data logging

or debugging needs a time scale that is always constant.
User communication needs coordinated universal time or
other external time scales, while for the entire in-network
appraisals need relative time only. Nodes also differ, because
some are equipped with large batteries to enable them to run
continuously and others are limited in their capacity. Limited
in power nodes require to intermittently wake up to do single
sensor readings, communicate, and then go back to sleep
mode.

It is challenging to design a time synchronization that ful-
fills many requirements, especially for sensor networks. Apart
from the aforementioned prerequisites, they also exhibit
energy efficiency and automatic adjustment to scalability
and dynamics. For example, limited energy [21] disrupts
the rules established by the conventional algorithms of time
synchronization. When the CPU is inactive, it only uses a
small amount of energy, and the same applies to random
transmissions that have minimum impact.

In this paper, real-time performance evaluation of two
time synchronization protocols is presented, namely, Flood-
ing Time Synchronization Protocol (FTSP) and Recursive
Time Synchronization Protocol (RTSP). Both of them are
tested in real-time environment using four different topolo-
gies, including bus, grid, mesh, and tree. Average messages
per synchronization cycle, bandwidth, and convergence time
are used as metrics for performance evaluation. FTSP is much
simpler protocol as compared to RTSP, but RTSP can achieve
better time synchronization at edge nodes in contrast to FTSP.
The motivation for selecting these protocols is that FTSP is
the benchmark of synchronization protocols. On the other
hand, RTSP is a novel synchronization protocol developed
by our research group. Our goal is to compare these two
protocols in real-time.

Section 2 provides the related work. Section 3 discusses
the hardware setup and limitations. Section 4 describes the
implementation details. Section 5 presents and discusses the
achieved results. Finally, Section 6 provides the conclusion
and the proposed future work.

2. Related Work

Several protocols are proposed to synchronize physical clocks
in computer and sensor networks [22-24]. Some of them
are probabilistic clock synchronization [22], the network
time protocol [25], optimal clock synchronization [26], slow-
flooding time synchronization [27], a maximum value-based
times synchronization [28], and distributed time synchro-
nization protocol [29]. Following are the common character-
istics of these protocols: (1) message exchange which involves
the utilization of user datagram protocol, (2) the presence
of one or more servers, (3) the timing information exchange
among clients, (4) set-up approaches in case of error recovery
during processing and transmission, and (5) using a client
algorithm and master server information to update the clock.
Some differences are also noted, such as whether the network
is internally or externally synchronized with a clock, that is,
whether a master server is used as the intermediary of client
clocks or as the only clock.

International Journal of Distributed Sensor Networks

The Reference Broadcast Synchronization (RBS) protocol
uses wireless medium as its broadcast mechanism [30], as its
name suggests. RBS uses wireless communication medium
to receive broadcasted data simultaneously. To paraphrase,
a group of receivers can receive the same data with only a
little difference in delay. This message can be utilized for clock
synchronization. Thus, each receiver logs the time stamp at
which the message is received and compares it against its
local clock and then updates its local clock accordingly. All
receivers within the proximity of the transmitter can synchro-
nize with high accuracy. RBS uses multiple synchronization
messages to calculate both skew and offset of the local clock
relative to one another. RBS exploits another concept called
time critical path. Time critical path is defined as the path
of the message that contributes to nondeterministic errors
in the protocol. Some additional features are (1) no clock
correction: once clocks are synchronized, that is, skew and
offset are calculated, nodes local clocks are not synchronized
with global clock, (2) post facto synchronization: RBS con-
serves high level of energy, because it is synchronizing clocks
when the event of interest occurs, so nodes switch to power
saving mode at other times when there is no event of interest,
and (3) multihop communication: RBS uses an intermediate
node to synchronize two nodes that are situated at different
ends; otherwise, it will lose accuracy due to delay in broadcast
message reception. RBS has several advantages; for example,
skew and clock offset are calculated independent of one
another. Post facto synchronization conserves energy on the
expense of clock updates, and multihop communication is
supported and it can maintain both clocks (relative and
absolute). On other hand, RBS has some drawbacks such as
the fact that it is not suitable for point-to-point network com-
munications and it requires O (1n*) operations for message
exchange in a single hop network of # nodes. Moreover, the
convergence time is high. Moreover, if the reference node
requires synchronization then a large number of messages
will be exchanged, thus resulting in energy inefficiency.

Until recently, Flooding Time Synchronization Protocol
(FTSP) [31] is the most widely used protocol for time synchro-
nization among nodes. It employees broadcast mechanism
to achieve synchronization objective. The reference node
broadcasts the message containing timing information. Any
nodes in its broadcast radius (RF coverage area) will listen
to the message and update their local clocks accordingly.
Reference node is elected dynamically and it broadcasts its
timing information in predefined time interval. FTSP forms
an ad hoc tree structure instead of fixed spanning tree. To
eliminate the effect of random delays, medium access control
layer time stamping is used at both ends. These time stamps
are embedded into each message at the end of the start
frame delimiter (SFD) byte, but this happens after correcting
error and normalization of time stamp. Least square linear
regression is used to estimate offset and skew of timestamps.
After nodes local clock is synchronized with the global clock,
it starts broadcasting timing information in the network. This
way, the whole network is covered [32].

The Recursive Time Synchronization Protocol (RTSP)
presented in [33, 34] supports multiple topologies, that is, flat,
mesh, star, and cluster topology. Any node in the network can

International Journal of Distributed Sensor Networks

send time synchronization request. The request is forwarded
in a recursive multihop manner to the reference node. The
reply is sent via reverse path by the reference node. A node
is elected dynamically and according to this node timing
information, the network is synchronized. This node is also
called root node or any synchronized intermediate node.
Each node along the reverse path will compensate for time
drift, that is, propagation delay. It also uses medium access
control layer time stamping at both ends. These time stamps
are embedded at the end of start frame delimiter (SFD) byte.
There exist several algorithms that are proposed in RTSP like
selection of reference node, cluster-heads, and working under
different topologies [24, 29].

The following provides a brief description of RTSP proto-
col using an example. RTSP message consists of message type
(enquiry/election (ERN), request (REQ), or reply (REP)),
message 1D, original source ID, intermediate source ID and
destination ID. Let us assume that the request is sent from
source T, and received at destination T, the reply is sent at
T, and the reply is received at the destination node T, and
reference time T,,. The time drift is calculated and adjusted at
each node along the reply path, using the following formula:

d= (T, - Ty) + (T, _Ts))’

2)

T,=T,+d,

where d is the time drift. This time drift compensates for the
propagation delay. When the message reaches edge nodes,
reference time becomes the same as on reference node [32].

3. Hardware Setup and Limitations

The hardware used for our implementation is 16 XBee RF
modules, 16 XBee Shields, 16 Arduino Mega Boards, 15 9v
Batteries, and 1 XBee Explorer. Further details can be found
in [32].

There are few limitations of above-mentioned hardware.
XBee Pro has a proprietary implementation, thus limiting
the implementation to only vendor provided functions. For
instance, network or MAC layer cannot have custom func-
tions/protocols implementation. Another very important
problem with XBee Pro module is that it implements devices
as a software application-programming interface (API), that
is, for coordinator, router, and end device. We have a built-
in API that can be loaded into the device. If these devices
truly implemented Zigbee then we should be able to make
the aforementioned network topologies easily, but this is not
the case. Zigbee dictates the following: if two devices are
configured as end devices then there should not be a direct
communication between them, but that is not the case; even
if the devices are configured as end devices, they are still
able to communicate with each other that complicate things
further. There are also some implementation issues when
using Arduino and XBee. If several packets are coming, XBee
might be able to receive all messages and transfer them to
Arduino, but, due to complex programming at application
layer, Arduino might not be ready to receive packets all

the time. It might be busy in processing previous packet.
Arduino can transfer six packets every second to XBee, but
XBee cannot handle the packets at that speed. Therefore,
to make it compatible with each other, we have to find an
appropriate packet transfer rate between Arduino and XBee.
This also puts an extra overhead in the implementation.
XBee allows maximum packet size of 72 bytes, but it is not
possible in our case to use all 72 bytes, because it cannot
exchange 72-byte packet at the rate we are transmitting in our
experiments. To utilize maximum packet size, there should be
some delay between sending two packets. Packet size must
be 50 bytes or less for efficient working of network. One
very crucial problem relating to energy is that routers and
coordinators cannot go to sleep, and their role cannot be
changed dynamically. Thus, they require a constant energy
source. Accordingly, energy efficiency aspect of both proto-
cols cannot be analyzed using current hardware. Arduino also
makes it hard to calculate energy utilization, because it does
not provide functionality to calculate energy consumption.
Another limitation of Arduino is that we cannot dynamically
reply to the incoming message. We can read the network
address from incoming packet, but, to reply dynamically,
all the network address must be predefined in the software
program [32].

4. Implementation

This section provides implementation details. Both protocols
are simplified due to several reasons. One of the reasons is
hardware limitation explained previously. Another reason is
that some sections of the FTSP and RTSP algorithms are
not relevant in current context, for example, energy com-
pensation mechanism. We use time resolution in seconds,
because it is not possible with the current hardware to use
s resolution for experimentation.

Due to hardware limitations, FT'SP and RTSP algorithms
are implemented at the application layer. All traffic came to
application layer for processing. We could not utilize built-in
functionality of lower layers, to simplify our implementation.
For example, we had to implement duplicate message check-
ing mechanism at the application layer rather than at the
MAC layer, that already provides the functionality. This little
function adds complexity and overhead at the application
layer. There are also some implementation issues when using
Arduino and XBee. If many packets are coming, XBee might
be able to receive all messages and transfer them to Arduino.
However, due to programming complexity at the application
layer, Arduino might not be ready to receive packets all the
time. It might be busy in processing previous packet. This
also adds an extra overhead in implementation. Moreover,
packet if we manually add delay in implementation at the
application layer, Arduino. For example, if we specify at the
application layer that a node should wait for 500 milliseconds
between broadcasting two messages, this delay affects the
rest of the node’s functionality as well, for example, receiving
a message and processing other instructions. To elaborate,
a node is stuck at delay instruction, waiting for it to fin-
ish and the rest of the node’s functionality is also halted.

Almost identical code is embedded in all the nodes; therefore,
it affects the whole network functionality.

Another technical issue with the implementation is
nodes’ power. All the nodes are powered up manually, which
creates differences in the initial clock. Some clocks are ahead
of others; this can lead to false root node selection, for
example, if there are two nodes assigned IDs of 5 and 10. If
we power up node 10 before node 5, then node 10 gets ahead
start; therefore there is a high chance it becomes a false root
node. With two nodes, it is possible to solve it easily. However,
itis not easy to handle such situation manually when there are
several nodes. Additionally, human error also contributes to
this issue.

To avoid these technical issues and errors, the last node
that powered up, immediately, broadcasts a reset message and
other nodes reset their local clocks to zero state accordingly.
Then, the process of root selection and time synchronization
begins, thus eliminating any human errors.

Two types of messages are present in the network; (1)
system messages (2) application messages. System messages
are those that are used by XBee to communicate, such as
routing messages or Ad hoc On-Demand Distance Vector
(AODV) messages [35]. AODV is a broadcasting protocol
used by XBee for routing. Therefore, it creates a broadcast
path whenever it requires; however, these messages are
hidden from the user. Users cannot interfere with these
messages or modify them in anyway. The MAC layer checks
for duplicate messages, but only for system messages not
for application messages. On the other hand, application
messages are being filtered at the application layer.

Metrics used for performance evaluation are message
count, bandwidth, and convergence time. Total number of
messages (incoming and outgoing) per synchronization cycle
required for clock synchronization by each node is called
message count. Any message received at the application
layer is counted in message count metric. All protocols are
implemented at the application layer and therefore duplicate
messages come to application layer. Although duplicate mes-
sages are not processed with the exception to discarding, they
are counted into message count metric. Second metric is the
bandwidth. It is similar to message count because we multiply
message size with message count; however, it is separated
from message count. This is because, in some topologies,
message count is low for one protocol, but bandwidth is
high due to large message size. Thus, we need to distinguish
between message count and bandwidth. Last metric for
evaluation is the convergence time. It is the time required
by an individual node for synchronization with root node.
The reason for selecting these three specific metrics for per-
formance evaluation is that bandwidth and convergence time
are an important part of any computer networks. However, it
especially holds true for wireless sensor network. Bandwidth
consumption directly translates to the power consumption,
which is a precious commodity in WSNs. Due to hardware
limitations, we cannot compute bandwidth or power con-
sumption directly, therefore we selected message count as our
first metric that can be translated into bandwidth (message
count X message size). Convergence time will measure,

International Journal of Distributed Sensor Networks

how quickly a node can resynchronize at the beginning or
after a change in the network.

We implemented four topologies, that is, bus, grid, mesh,
and tree. It was possible to implement all topologies using
Zigbee; however, we experienced difficulties with XBee.
Therefore, we formed these topologies manually. In other
words, nodes were arranged into the required shape of
the topology. As an example, for tree topology, nodes are
arranged in a tree-like structure. The next section provides
a detailed implementation of each topology.

4.1. Flooding Time Synchronization Protocol. Flooding Time
Synchronization Protocol (FTSP) is simple and elegant proto-
col. It uses simple broadcasting mechanism for root selection
and time synchronization. According to the work presented
in [31], each Mica2 motes clock drift is 40 us. To compensate
for this drift, they implemented a clock drift mechanism. In
our FTSP implementation, some simplifications are consid-
ered. There is no clock drift mechanism, because Arduino
clock is accurate for approximately 70 minutes. Our exper-
iments run for only 2.5 minutes, so there is no need for clock
drift management. Because FTSP is a simple protocol, there is
further simplification required. The following explains FT'SP
implementation with an example that includes root selection,
root failure, and time synchronization.

Messages structure of the implemented FTSP is similar
to that of FTSP messages. We implemented, a “nodelD,”
“timestamp,” and “messageID.” One assumption that we made
is that the network is connected. To ensure its validity, we wait
for a fixed amount of time before broadcasting any message.
In our implementation, the root node is a function of both
time and nodeID. The node that has the smallest nodeID
becomes the root node. In case of FTSP, there is no peer-to-
peer communication; therefore, nodeIDs are assigned either
dynamically or statically. After nodes are assigned nodeIDs,
each node waits for predefined amount of time equal to its
nodeID. The node that has the smallest ID number starts
broadcasting timing information first; thus, becoming the
root node. When root node broadcasts first synchronization
message, it contains root nodelD, timestamp, and a unique
messagelD. Root node also adds this message to its message
table for future duplicate message checking. All nodes in its
radio range hear this broadcast message. Those nodes update
their timing information, add this message to their message
table, and rebroadcast the message without making changes.
Message table contains all three parameters of the message.
This message propagates to the end of the network. But, each
node hears the message multiple times. If we do not discard
the duplicate messages, these messages remain in the network
until the end. To avoid infinite message loop, each node
checks its message table whenever it hears a message. If the
message exists, it increments the message count and discards
the message.

In case of root node failure, if the nodes do not receive
any messages within time T, they clear their root node. In
other words, they reset everything and the same process is
repeated. There is a minor chance of having two root nodes
in the network, which is negligible. As it is mentioned pre-
viously, this is a simple broadcasting protocol with a simple

International Journal of Distributed Sensor Networks

message structure and reliable time synchronization method.
However, the following issue does exist with this approach. As
messages travel further away from the root node, there is no
compensation for propagation delay, therefore edge nodes are
not perfectly synchronized with the root node. To deal with
this issue, RTSP utilizes request and reply mechanism.

4.2. Recursive Time Synchronization Protocol. Recursive
Time Synchronization Protocol (RTSP) is complex and dif-
ficult to implement protocol. Backbone of the algorithm is
request-reply mechanism for time synchronization. Request-
reply mechanism guarantees propagation delay compensa-
tion at destination node. RTSP have three types of messages,
that is, ERN, REQ, and REP. ERN messages are used for
discovery and root selection, REQ are used for time request
messages, and REP are used for reply messages. There are
several other mechanisms employed by RTSP, for example,
root selection, failure recovery, energy compensation, and
clock drift management. We have simplified these protocols
due to hardware limitations. The following provides our
implementation details for RTSP.

RTSP is implemented at the application layer as well,
and it requires peer-to-peer communication for accurate
synchronization. However, it is not possible to dynamically
determine the address of incoming message node and reply
to that address using Arduino and XBee. In our RTSP
implementation, root selection is a function of time and
nodelD. In this case, we cannot assign nodeIDs dynamically.
This is because we need to reply to each node directly rather
than via broadcast method. In addition, reply message needs
to follow the same path as of request message. Thus, each
node has a complete table of all the nodes IDs and their
corresponding network addresses.

In our case, root selection is a static process. Thus, this
eliminates some complexity but creates another problem. In
the original protocol after root selection, all nodes of the
network know the root node. However, in our case, the
process is static and nodes do not know which node is the root
node. Nodes know the root node only after their timers are
expired and the root node transmitted the message. For this
protocol to function, we need a request and a reply message.
There are several ways to solve this problem. We used a
simple approach. When each node powers up, they broadcast
a request message. Unlike FTSP there are no rebroadcasts,
because any node hears this message does the following:
(1) it checks whether it has sent a request message or not.
If not then it stores this message in a queue and sends its
own request message. Otherwise, it stores the message and
waits for a root reply. There is a duplicate message checking
before that happens. This way there are few messages in the
network. At this point, nodes wait for their timers to expire.
Whichever node’s timer expires first it starts replying to other
nodes. Each node has at least one node in the queue for clock
synchronization. A node obtains destination address from
address table and reply to that node. Destination node checks
whether it has already received a reply from some other node
or not; if the reply is already received it ignores the message.
In some situations, both nodes may receive request message

Root node

FIGURE 1: Bus topology.

from each other. In this case, recipient node never replies to
the sender node.

There are no mechanisms for energy compensation or
clock drift due to hardware limitations unlike the originally
proposed protocol. In case of node failure, it follows the same
mechanism as FTSP. If nodes do not receive a message within
a predefined period of time T, they reset all parameters and
start their timers again for root selection.

5. Results and Discussion

To compare both protocols under study, bus, grid, mesh,
and tree topologies are implemented. The metrics used for
performance evaluation are the number of messages required
by each node for one synchronization cycle, bandwidth
utilization, and convergence time. For each topology, each
experiment is repeated five times. The network is fully
connected and there exist a direct or indirect path from each
node to every other node. Root selection is a function of time
and nodeID. The node with the smallest ID is the root. In
our experiments, each node has to wait for an amount of
time equal to its nodeID. As an example, a node with ID 5
has to wait for 5 seconds before it can declare itself a root
node. NodeIDs are not random. They are assigned manually.
By using combination of time and the smallest ID for root
selection, the network is almost free of having two root nodes.
No regular update message is considered, because we are
interested in complete network synchronization rather than
updates of each protocol.

Due to real-time experimental setup, there is a chance that
following results cannot be reproduced accurately. However,
the overall behavior of both protocols should be the same
regardless of the environment, if the experimental setup and
parameters are the same.

5.1. Bus Topology. Figure 1 shows the implementation setup
for the bus topology. Nodes were aligned in a straight line
with equal distance between them. First node was selected
as a root node. Experiment duration was 150 seconds after
which all the data is sent to a collector node that is not part
of the experimental setup. Data is also stored in Electrically
Erasable Programmable Read-Only Memory (EEPROM) of
each device as a backup. Once the data is transmitted to
collector node, every node clears the cache and begins the
same process again. This process is repeated five times for
each protocol.

The protocols under study are implemented at application
layer. Therefore, any message that comes at the application
layer is added to the number of messages metric.

As mentioned earlier, for each topology experiment is
repeated five times. Average of all five experiments for each

node is also shown. Ideally, number of messages should be
linear for nodes 2-10, because they are connected with exactly
2 nodes. For example, node 3 will be connected with node
2 and node 4, but in reality this is not the case; it could
be connected with more than two nodes. There are many
factors in play. This is a wireless medium, so there could be
a collision of messages, XBee might not be in the state of
receiving messages or multiple messages arrive at the same
time. Another very important factor is the state of 9 V battery
powering Arduino Mega and XBee. Now each node has an
independent 9 V battery, so each battery would have different
power level remaining in it. If one battery has less power
remaining, it would reduce its reception and transmission
range and vice versa.

As aforementioned, we have done few simplifications
in both algorithms; one of the simplifications for RTSP is
elimination of root election, because now root selection
is a function of time and nodelD, so there is no need
for root elections. However, this creates another problem,
RTSP heavily rely on request and reply mechanism for time
synchronization, and now there is no unique message for just
root announcement instead whichever node becomes root
will reply to other nodes. To solve this problem, we just simply
broadcast request message as soon as a node power up. Now,
each node is a cluster-head, there are no echo broadcasts,
because if any other node listens to the message, it will simply
check if T am root or I am synchronized. It will reply to
the requesting node with timing information or if I am not
synchronized and I have sent a request message for time
synchronization. It will simply store the request message and
wait for its own synchronization reply than to the requesting
node. Consider the following example.

Suppose we have a fully connected network of 3 nodes
with node 5, node 10, and node 15. As soon as nodes power
up, they turn on their local clocks and send a time request
message (it will be a broadcast message). Node 5 hears request
messages from nodes 10 and 15, node 10 hears messages from
nodes 5 and 15, and node 15 hears messages from nodes 5 and
10. Thus, each node sends and receives three messages. At this
moment, nodes wait for which node’s timer expires first. This
node becomes the root and accordingly replies to the rest of
the connected nodes. In this scenario, node 5 becomes root
node and replies to nodes 10 and 15. Although nodes 10 and 15
received request message from node 5, they do not reply. This
is because they have received reply message from the same
node instead, they reply to each other. Please note that nodes
never reply to the node from where they received a reply. This
makes root node has message count of 5 and other two nodes
have message count of 6. If the network consists of only two
nodes then message count is 3. Thus, it requires at least three
messages/node for synchronizing two-node network. Hence,
this fluctuation is due to request and reply mechanism. Maybe
some nodes received more request messages as compared to
others or some nodes have replied to more nodes as compared
to other nodes. Nevertheless, in the end, this factor does not
have major effect, because the average line for five runs is
almost linear with the exception of node 1 and node 11. The
reason is that these two nodes are connected with one node
while the other nodes are connected with two or more nodes.

International Journal of Distributed Sensor Networks

Average messages

1 2 3 4 5 6 7 8 9 |10 | 11
—— FTSP|24 |34 |34 |36 (36|38 |36 |34 |36]32]26
—#- RTSP|32|62| 6 |66 |58 |58 |62 |62| 6 |68 |34

Number of nodes

FIGURE 2: Bus topology, average number of messages per node for
five experiments.

8 -
7 4
6 -
5 4
4 -
3 4

Average messages

2 4

1 2 3 4 5
—— FTSP| 3.455 3.182 3.182 3.364 3.455
—#- RTSP| 5.364 5.818 5.818 5.545 5.727

Number of experiments

FIGURE 3: Bus topology, average number of messages for each
experiment.

In Figure2 a comparison of both protocols for bus
topology has been presented. In this figure, average of five
experiments for each node has been shown. As expected
RTSP have much higher message count as compared to
FTSP, because inherently, it requires more number of mes-
sages/node to synchronize.

A comparison of both protocols for bus topology is shown
in Figure 3. In this figure, an average of five experiments for
each node is calculated. As expected, RT'SP have much higher
message count than FTSP. This is because of the inherent
nature of RTSP that requires more number of messages per
node to synchronize.

Each node’s behavior varies in each experiment and is
demonstrated in Figure 3. It is clearly shown that nodes’
behavior is almost linear over the course of five experiments
for each protocol. In addition, the variation between both
protocols is almost negligible for average messages. The
second metric for comparison is bandwidth. As current
hardware does not provide an accurate method to measure
bandwidth, we assume that their data packet size multiplied

International Journal of Distributed Sensor Networks

400 -
350
300
250 +
200 -
150 +

Bandwidth (bytes)

100
50

0

1 2 3 4 5 6 7 8 9 |10 | 11
—— FTSP |28.8 [40.8 |40.8 |43.2 |43.2 |45.6 |43.2 |40.8 (43.2 |138.4 (31.2
—— RTSP | 147 285 |276 |304 |267 |267 |285 |285 (276 |313 |156

Number of nodes

FIGURE 4: Bus topology, average bandwidth per node for five
experiments.

350 -
300

250

200

150

100 +

Average bandwidth (bytes)

N g g gt g

0
1 2 3 4 5
—— FTSP| 4146 38.184 38.184 40.368 41.46
—#- RTSP| 246.744 267.628 267.628 255.07 263.442

Number of experiments

FIGURE 5: Bus topology, average bandwidth for each experiment.

with message count equals bandwidth. Bandwidth is different
from number of messages. Meanwhile, FTSP packet consists
of 12 bytes and RTSP packet consists of 46 bytes.

We multiply average message and experiments average
messages with FTSP and RTSP packets sizes. Accordingly, we
get the average bandwidth for each node in each experiment.
These results are demonstrated in Figures 4 and 5.

The difference in bandwidth between both protocols is
more than four times. The main reason is due to the large
packet size of RTSP and it requires more number of messages
for synchronization. In RTSP, node 1 and node 11 have the
lowest bandwidth consumed, because they are edge nodes
and have much less interference as compared to the rest of
the nodes, whereas edge nodes are directly connected with at
least two nodes as compared to one node.

If we consider the general view of both metrics, FTSP
clearly performs much better than RTSP. We can also deduce
from these results that FTSP consumes much less energy
(power) as compared to RTSP. In case of FTSP, this is due
to lower bandwidth and because of transmission/reception

Average time (s)

1 2 3 4 5 6 7 8 9 |10 |11
—— FTSP| 0O 0 102]02(02(02|02]02|02]0.6 |06
—m- RTSP| 0 0 0 0 0 [02(02)04(08|04] 1

Number of nodes

FIGURE 6: Bus topology, average convergence time per node for five
experiments.

0.6 A

0.4 A

Average time (s)

-0.2

1 2 3 4 5
—— FTSP| 0.273 0.182 0.182 0.273 0.273
—#- RTSP| 0.182 0.273 0.182 0.455 0.273

Number of experiments

FIGURE 7: Bus topology, average convergence time of each experi-
ment.

energy conservation. Third metric used for performance
evaluation is the convergence time. The average convergence
time of each node over five experiments is shown in Figure 6.
As we can see, convergence time for FTSP is low as well as it is
consistent for most of the nodes. In case of RT'SP, convergence
time is zero for the initial nodes and goes up to one second
for tail nodes.

The same phenomenon happens in case of average con-
vergence time of each experiment, as shown in Figure 7. FTSP
performs better in this case as well; however, RTSP results are
also acceptable. As a result, both protocols have convergence
time less than 500 milliseconds.

The resulting milliseconds difference can be due to
various reasons. For example, when the clock resets propa-
gation delay may contribute to a difference of milliseconds.
Hardware clock of individual nodes is also a factor. In case
of convergence time, both protocols perform comparable to
each other.

5.2. Grid Topology. Grid configuration makes an interesting
topology, because the root node can have three different

FIGURE 8: Grid topology.

locations in the grid, as shown in Figure 8. Fifteen nodes are
used for grid topology in a 5 rows x 3-column configuration.
In the first configuration, root node is placed at location (1, 1),
that is, node 1. In this configuration, root node is directly
connected with two nodes, that is, node 2 and node 6. In
the second configuration, root node is placed at location
(3,1), that is, node 3 and it is directly connected to nodes
2, 4, and 8. In the last configuration, root node is placed at
location (3, 2), that is, node 8, where it was directly connected
with four nodes, that is, nodes 3, 7, 9, and 13. The most
definite change would be in the number of messages, but
more interesting would be the convergence time. That was
our assumption before experimentation; once we started the
experimentation, it became clear that the former is true,
but the latter is not. Therefore, for this topology only one
configuration result is shown, that is, configuration (1, 1). It
does not make much difference in either of the configurations
for number of messages metric. To explain, let us suppose the
root node is at location (3,2). The number of messages for
node 7, 8, and 9 can be approximately the same, because all
of the nodes are connected with four nodes from either side.
The same is true for the rest of the configurations. The only
difference can be the convergence time. When a node is in
the center, the synchronization messages can take less amount
of time. However, that may be the case for a much larger
network. The speed of communication is also fast enough that
makes our experiments distance independent.

Figure 9 shows the average messages for each node for
five experiments. We can see the behavior of the nodes
through this figure. Nodes that are directly connected to more
nodes have higher average number of messages, that is, nodes
directly connected with nodes 4, 3, and 2. The most obvious
observation is that FTSP performs better than RTSP in this
topology for very simple reason; FTSP requires less number
of messages for synchronization as compared to RTSP.

International Journal of Distributed Sensor Networks

16
14

Average messages

—_
S N R N o O N
Il Il Il Il Il Il

12|34 (5|6|7[8[9|10]|11|12(13|14]|15
—— FTSP (3.6 4.8| 4 |4.6|3.4(4.2(5.6| 6 |5.8]4.2(3.4(4.6(4.4|3.2|3.2
—- RTSP |5.6(9 (9.2(9.6(6.8/8.8[13 |13 (13| 8 |7.6(10| 9 |11 7.6

Number of nodes

FIGURE 9: Grid topology, average number of messages per node for
five experiments.

12 -
4
g 6
[
&
2
0
1 2 3 4 5
—o— FTSP 4.4 4.267 4.267 4.4 4.333
—m- RTSP 9.4 9.467 9.267 9.067 9.533

Number of experiments

FIGURE 10: Grid topology, average number of messages for each
experiment.

Both protocols behaved linearly in the average number
of messages for each experiment, as shown in Figure 10.
However, the difference in the average number of messages
between protocols is almost double. RTSP performs much
worst in this case. This behavior also suggests that RTSP does
not perform efficiently when connected to large number of
nodes. On the other hand, FTSP performs much better in this
case.

Figures 11 and 12 show the average bandwidth per node
for five experiments and the average bandwidth of each
experiment, respectively. The bandwidth behavior is similar
to the results achieved previously, because bandwidth is a
function of number of messages. However, it does show how
big the difference is between both protocols for bandwidth
consumption. Clearly, RTSP is not very economical solution
in this case. Actually, it is an expensive solution for grid
topology and it remains consistent for all experiments. There
is not any single case where we can conclude that RTSP is a
better or comparable solution for this particular topology.

International Journal of Distributed Sensor Networks

800 -
700 +
600
500
400
300 +
200 -

Average bandwidth (bytes)

100

0

1123 (45|67 (8|9 |10(11(12|13|14 (15
—o— FTSP |43 |58 |48 55|41 50 |67 |72 |70 |50 |41 |55 |53 [38 |38
—m- RTSPP581414 4231442313 405580580589 368 350 469 414 497 350

Number of nodes

FIGURE 11: Grid topology, average bandwidth per node for five
experiments.

600 -
500 ~

400

300 ~

200

Average bandwidth (bytes)

100

1 2 3 4 5
—o— FTSP 52.8 51.204 51.204 52.8 51.996
—m- RTSP| 4324 435.482 426.282 417.082 438.518

Number of experiments

FIGURE 12: Grid topology, average bandwidth for each experiment.

Figures 13 and 14 show the average convergence time of
each node and each experiment, respectively. The average
convergence time for RTSP is consistent for five experiments;
that is, it remains worst. On the other hand, FTSP consis-
tently outperforms FTSP throughout the experimentation.
The average convergence time of each experiment shows
interesting results. Convergence time starts high, but then
it starts to reduce for both protocols. This is perhaps due to
better connectivity of network for last experiments.

5.3. Mesh Topology. The third topology used for our experi-
ments is mesh topology. It is fully connected mesh topology,
where each node is directly connected with all the other
nodes. Nodes were placed in a small area, within the antenna
range of each node. Due to fully connected mesh topology,
large numbers of messages are exchanged between nodes.
This is the highest number of messages among four topologies
for both protocols. Figure 15 shows the average messages per
node for five experiments.

Average time (s)

—— FTSP| 0 (0|0 (04]/02({0|0[0|0[0]|0|0]02f0]06
—m- RTSP| 0 [0(0.2(0.4| 0 (0.2]0 |0 |0.4(0.6] 0 | 0 |0.2(0.4]0.6

Number of nodes

FIGURE 13: Grid topology, average convergence time per node for
five experiments.

Average time (s)

—— FTSP 0.2 0.133 0.133 0 0
—m- RTSP| 0.333 0.2 0.2 0.133 0.133

Number of experiments

FIGURE 14: Grid topology, average convergence time of each experi-
ment.

Average messages

—— FTSP|14 |11 (11|12 {12 (13|11 |12 |12|11|13|12|12|12|12
—- RTSP|29 |39 (38|36 (37|38 |37 |38 (35|38 |36 |36 |36 |38 |38

Number of nodes

FIGURE 15: Mesh topology, average number of messages per node for
five experiments.

10 International Journal of Distributed Sensor Networks
45 2500 -
404 L .
sl g ﬁ\- £ 2000 -
g)
P 30 4 <
g 25 | E 1500 4
% 20 4 E
g £ 1000
o 15 : : : : : : : : : : &
< o — 9 » s
10 + ST g 500 4
5 | <
0000000000000
0 0
1 2 3 4 5 1|2(3]4|5|6|7]|8|9]|10]|11[12]13]|14(15
—o— FTSP| 12.067 11.667 12,533 12.133 11.733 —o— FTSP [170(137[132(149 (144 [154(134 (149 [144[130[151 [142[142 [149[139
—m- RTSP| 37.533 36.4 36.733 36.8 35.2 —m- RTSP (133177173 (164169 [176[169 173 [161(173 |163 [166[167 [173[175

Number of experiments

FIGURE 16: Mesh topology, average number of messages for each
experiment.

The difference between both protocols is more than
threefold. RTSP requires three times more messages than
FTSP for a single synchronization cycle. On the other hand,
FTSP performs significantly better. The main reason for the
poor performance of both protocols, in comparison to other
topologies, is that they have to deal with more number of
nodes per cycle. However, in other topologies, the maximum
number of nodes that are directly connected is only four
nodes. Both protocols have linear behavior over the course
of five experiments, as can be seen in Figure 16. On average,
FTSP uses 12 and RTSP uses 36 messages/node for a single
synchronization cycle. Therefore, both protocols are not very
feasible for mesh topology.

The bandwidth situation is the worst. For RTSP band-
width consumption is always in few hundred bytes, less than
one KB. However, in this case, the number reached to 1.7 KB,
which is very significant for a single synchronization cycle.
FTSP also has low performance, here, as compared to its
performance with other topologies. Nevertheless, it is still
much better than RTSP, as it can be seen in Figures 17 and
18.

The convergence time metric is not shown for mesh
topology, because it is negligible. Almost all of the nodes have
convergence time equal to zero.

5.4. Tree Topology. The physical tree topology configurations
used for both protocols are shown in Figure 19. Node 1 is the
root node. The rest of the configurations for both protocols
are the same as described in previous sections.

Figure 20 shows a comparison between both protocols for
tree topology. Average messages/node are higher for RTSP
for nodes 1, 2, 3, and 8, but for the rest of the nodes they are
much less than FTSP. In RTSP, high message count at some
nodes is due to more connected nodes with them. Even the
total message count for FTSP is high regardless of few high
edges in RTSP, that is, 56 and 41, respectively. In tree topology,
RTSP performs much better than FTSP for a given metric of
message count.

Number of nodes

FIGURE 17: Mesh topology, average bandwidth per node for five
experiments.

2000 -
1800 -
1600
1400 -
1200 -
1000 -
800 ~
600
400
200 +

Average bandwidth (bytes)

1 2 3 4 5
—— FTSP| 144.804 140.004 150.396 145.596 140.796
—m- RTSP| 1726.518 1674.4 1689.718 1692.8 1619.2

Number of experiments

FIGURE 18: Mesh topology, average bandwidth for each experiment.

The performance of both protocols for five experiments
is almost linear. This means that FTSP is not the best-suited
protocol for this particular topology, as shown in Figure 21.

In this topology, the bandwidth parameter makes a differ-
ence. As we have seen, RTSP utilizes less number of messages
for synchronization in case of tree topology. Thus, if we rely
on message count metric then RTSP is a better choice as it
can be seen in Figures 22 and 23. Bandwidth consumption
is high for RTSP due to the packet size and those peaks at
nodes 3 and 8 are due to the connectivity with considerably
large number of nodes. The difference is better demonstrated
in Figure 23. Although FTSP performs slightly poorer, it is
still a better protocol in terms of bandwidth consumption.
RTSP is an eflicient protocol in terms of synchronization for
tree topology; however, it has inherent disadvantage when
bandwidth is considered.

For RTSP, it is very low. The convergence time is zero
for all experiments in this case. There is no delay at cluster-
heads or at the root node. If there is a delay at any cluster-
head at any point of time, this delay should appear in the
child nodes as well. This is because RTSP uses peer-to-peer

International Journal of Distributed Sensor Networks

2
©)

FIGURE 19: Tree topology.

Average messages

1 2 3 4 5 6 7 8 9 |10 |11
—— FISP| 3 |36 |56 |56 |52 54|56 |56 (5254538
—m- RTSP| 4 4 8 |22 |24 | 2 4 8 2 122 (22

Number of nodes

FIGURE 20: Tree topology, average number of messages per node for
five experiments.

communication. On the other hand, FTSP uses broadcast for
data transmission. Thus, there is no way of knowing with
absolute certainty which node is synchronized from which
node.

In case of the average convergence time of each node
over five experiments, RTSP performs better than FTSP, as
shown in Figure 24. The average convergence time for five
experiments is shown in Figure 25. RTSP starts with 182
milliseconds, but, after the second experiment, it falls to zero
for the rest of the experiment. Thus, RTSP performs better in
the convergence time as well. Recursive Time Synchroniza-
tion Protocol is designed for cluster-based topology, that is,
tree topology. Therefore, it does perform better in this case.
Whereas FTSP is designed for all topologies, thus, it performs
better in most of the cases with the exception in tree topology.

6. Conclusions and Future Work

This research presented a performance evaluation of two
state-of-the-art time synchronization protocols for wireless
sensor networks, namely, Flooding Time Synchronization
Protocol (FTSP) and Recursive Time Synchronization Pro-
tocol (RTSP). Both protocols are tested in a real-time envi-
ronment using Arduino and XBee as hardware platform.

1

w
L

IS
1

Average messages
[3S) w
1

—
!

0
1 2 3 4 5
—— FTSP| 5.182 4.909 5.182 5.091 5.091
—m- RTSP| 3.727 3.727 3.727 3.636 3.818

Number of experiments

FIGURE 21: Tree topology, average number of messages for each
experiment.

400 -
350
300
250 +
200 +
150

Bandwidth (bytes)

100 -+
50

1 2 3 4 5 6 7 8 9 |10 |11
—— FTSP| 36 |43.2 |67.2|67.2 |62.4 |64.8 |67.2 |67.2 |62.4 |64.8 |69.6
—m- RTSP|184 |184 (368 | 101 [110 | 92 | 184 |368 | 92 | 101 | 101

Number of nodes

FIGURE 22: Tree topology, average bandwidth per node for five
experiments.

300 -

N

wu

(=)
!

200 -

150 +

100 ~

Average bandwidth (bytes)

v
(=]
!

1 2 3 4 5
—— FTSP| 62.184 58.908 62.184 61.092 61.092
-m— RTSP| 171.442 171.442 171.442 167.256 175.628

Number of experiments

FIGURE 23: Tree topology, average bandwidth for each experiment.

12
bt
£
©
o0
g
z
1 2 3 4 5 6 7 8 9 |10 |11
—— FTSP| 0 0 |02({04|04)02| 0 (0404|0402
- RTSP| 0 0 0 0 (04 (02] 0 0 0 (020

Number of nodes

FIGURE 24: Tree topology, average convergence time per node for
five experiments.

0.7
0.6 4
0.5 4
0.4 4
0.3
0.2 4
0.1 4
0 -
—0.1 4
-0.2

Average time (s)

1 2 3 4 5
—— FTSP| 0.273 0.182 0.182 0.273 0.273
—m- RTSP| 0.182 0.182 0 0 0

Number of experiments

FIGURE 25: Tree Topology, Average Convergence Time of each
experiment.

The metrics used for performance evaluation are number of
messages per synchronization cycle, bandwidth, and conver-
gence time. Both FTSP and RTSP showed pros and cons.
FTSP isa broadcast protocol, and it has lower accuracy at edge
nodes, whereas RTSP is a peer-to-peer protocol with higher
accuracy at edge nodes. FTSP performed better in bus, grid,
and mesh topologies for number of messages metrics. How-
ever, RTSP has higher performance in tree topology, because
this protocol was designed for cluster-based topology, that
is, tree topology. On the contrary, RTSP has degraded per-
formance for bandwidth with all four topologies, especially
in mesh topology. RTSP has high bandwidth requirements.
The main reason for high bandwidth requirement was the
packet size of RTSP. The last metric used for performance
evaluation is convergence time. The results for convergence
time were inconclusive. Both protocols showed minor fluctu-
ations in the convergence time throughout all experiments.
The resolution for time measurement was in seconds, so
on average none of the protocols went above one second.

International Journal of Distributed Sensor Networks

The main reason for convergence time inconclusiveness
was the speed of communication and resolution of time
measurement. According to current measurements, both
protocols converged quickly. The variation in the convergence
time was due to several reasons such as hardware clock
variations, clock reset delays, wireless medium collisions, and
several other factors. We were unable to measure the energy
consumption due to hardware limitations. However, some
interpretations were made from the resulting bandwidth
where we considered the higher the bandwidth is the higher
the energy consumption is. RT'SP showed higher bandwidth
consumption throughout experimentation, so it is safe to
assume that it would require significant amount of energy
to perform time synchronization. We observed that RTSP is
an energy and bandwidth inefficient protocol as compared to
FTSP in a small-scale network. RTSP is a good theoretical
protocol, but not very practical in current experimentation
setup. Although it solved the problem of accuracy at edge
nodes, it created other problems like energy and bandwidth
inefficiency. In the end, it depends on the requirement of an
application; if it requires higher accuracy and has abundance
of bandwidth and energy (which is not the case here) then
RTSP is a better choice or if an application can tolerate slightly
less accuracy then FTSP is a better choice.

In future work, we plan to compare both protocols under
more flexible hardware. Bandwidth efficiency can be achieved
by developing a custom sleep wake mechanism. We also plan
to analyze accuracy and energy efficiency using open source
tools and flexible hardware.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

(1] J. Hill, M. Horton, R. Kling, and L. Krishnamurthy, “The
platforms enabling wireless sensor networks,” Communications
of the ACM, vol. 47, no. 6, pp. 41-46, 2004.

[2] F Bajaber and I. Awan, “Energy efficient clustering protocol to
enhance lifetime of wireless sensor network;” Journal of Ambient
Intelligence and Humanized Computing, vol. 1, no. 4, pp. 239-
248, 2010.

[3] P. Johnson and D. C. Andrews, “Remote continuous physio-
logical monitoring in the home,” Journal of Telemedicine and
Telecare, vol. 2, no. 2, pp. 107-113, 1996.

[4] D. G. Reina, S. L. Toral, F. Barrero, N. Bessis, and E. Asi-
makopoulou, “Modelling and assessing ad hoc networks in dis-
aster scenarios,” Journal of Ambient Intelligence and Humanized
Computing, vol. 4, no. 5, pp. 571-579, 2013.

[5] R. Abielmona, E. M. Petriu, and T. E. Whalen, “Distributed
intelligent sensor agent system for environment mapping,’
Journal of Ambient Intelligence and Humanized Computing, vol.
1, no. 2, pp. 95-110, 2010.

[6] R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. Main-
waring, and D. Estrin, “Habitat monitoring with sensor net-
works,” Communications of the ACM, vol. 47, no. 6, pp. 34-40,
2004.

International Journal of Distributed Sensor Networks

[7] PL-SS, Distributed Surveillance Sensor Network. ONR
SPAWAR Systems Center, San Diego, Calif, USA, September
2013, http://www.spawar.navy.mil/robots/undersea/dssn/dssn
html.

[8] Y. Zeng, K. Xiang, D. Li, and A. V. Vasilakos, “Directional
routing and scheduling for green vehicular delay tolerant
networks,” Wireless Networks, vol. 19, no. 2, pp. 161-173, 2013.

[9] A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, and
J. Zhao, “Habitat monitoring: application driver for wire-
less communications technology,” ACM SIGCOMM Computer
Communication Review, vol. 31, no. 2, supplement, pp. 20-41,
2001.

[10] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J.
Anderson, “Wireless sensor networks for habitat monitoring,”
in Proceedings of the Ist ACM International Workshop on
Wireless Sensor Networks and Applications (WSNA 02), pp. 88—
97, September 2002.

[11] J. Kim, Y. Park, and T. C. Harmon, “Real-time model parameter
estimation for analyzing transport in porous media,” Tech.
Rep., Center for Embedded Networked Sensing, University of
California, Los Angeles, Los Angeles, Calif, USA, 2003.

[12] A. A. Berlin, J. G. Chase, M. Yim, B. J. Maclean, M. Olivier,
and S. C. Jacobsen, “MEMS-based control of structural dynamic
instability;,” Journal of Intelligent Material Systems and Struc-
tures, vol. 9, no. 7, pp. 574-586, 1998.

[13] L E Akyildiz, O. B. Akan, C. Chen, J. Fang, and W. Su, “Inter-
planetary internet: state-of-the-art and research challenges,”
Computer Networks, vol. 43, no. 2, pp. 75-112, 2003.

[14] S.Burleigh, V. Cerf, R. Durst et al., “The interplanetary internet:
a communications infrastructure for Mars exploration,” in
Proceedings of the 53rd International Astronautical Congress (The
World Space Congress *02), 2002.

[15] X. Sun, Q. Yu, R. Wang et al., “Performance of DTN protocols
in space communications,” Wireless Networks, vol. 19, no. 8, pp.
2029-2047, 2013.

[16] L. Lemmerman, K. Delin, E Hadaegh et al.,, “Earth science
vision: platform technology challenges,” in Proceedings of
the International Geoscience and Remote Sensing Symposium
(IGARSS °01), vol. 1, pp. 439-443, July 2001.

[17] Q. Li, M. De Rosa, and D. Rus, “Distributed algorithms for
guiding navigation across a sensor network,” in Proceedings of
the 9th Annual International Conference on Mobile Computing
and Networking (MobiCom "03), pp. 313325, September 2003.

[18] R. Want, A. Hopper, V. Falcdo, and J. Gibbons, “The ctive badge
location system,” ACM Transactions on Information Systems,
vol. 10, no. 1, pp. 91-102, 1992.

[19] J. Werb and C. Lanzl, “Designing a positioning system for
finding things and people indoors,” IEEE Spectrum, vol. 35, no.
9, pp. 71-78,1998.

[20] J. E. Elson, Time synchronization in wireless sensor networks
[Ph.D. thesis], University of California, Los Angeles, Calif, USA,
2003.

[21] K. Han, J. Luo, Y. Liu, and A. Vasilakos, “Algorithm design for
data communications in duty-cycled wireless sensor networks:
a survey, IEEE Communications Magazine, vol. 51, no. 7, pp.
107-113, 2013.

[22] E Cristian, “Probabilistic clock synchronization,” Distributed
Computing, vol. 3, no. 3, pp. 146-158, 1989.

[23] R. Gusella and S. Zatti, “Accuracy of the clock synchronization
achieved by TEMPO in Berkeley UNIX 4.3BSD,” IEEE Transac-
tions on Software Engineering, vol. 15, no. 7, pp. 847-853, 1989.

13

[24] S.]Johannessen, “Time synchronization in alocal area network,”
IEEE Control Systems Magazine, vol. 24, no. 2, pp. 61-69, 2004.

[25] D. L. Mills, “Internet time synchronization: the network time
protocol,” IEEE Transactions on Communications, vol. 39, no. 10,
pp. 1482-1493, 1991.

[26] T. K. Srikanth and S. Toueg, “Optimal clock synchronization,”
Journal of the Association for Computing Machinery, vol. 34, no.
3, pp. 626645, 1987,

[27] K.S.Yildirim and A. Kantarci, “Time synchronization based on
slow-flooding in wireless sensor networks,” IEEE Transactions
on Parallel and Distributed Systems, vol. 25, no. 1, pp. 224-253,
2014.

[28] J. He, P. Cheng, L. Shi, J. Chen, and Y. Sun, “Time synchroniza-
tion in WSNs: a maximum-value-based consensus approach,”
IEEE Transactions on Automatic Control, vol. 59, no. 3, pp. 660—
675, 2014.

R. Solist, V. S. Borkar, and P. R. Kumar, “A new distributed time

synchronization protocol for multihop wireless networks,” in

Proceedings of the 45th IEEE Conference on Decision and Control

(CDC ’06), pp. 2734-2739, San Diego, Calif, USA, December

2006.

[30] J. Elson, L. Girod, and D. Estrin, “Fine-grained network
time synchronization using reference broadcasts,” SIGOPS—
Operating Systems Review, vol. 36, SI, pp. 147-163, 2002.

[31] M. Mardti, B. Kusy, G. Simon, and A. Lédeczi, “The flooding

time synchronization protocol,” in Proceedings of the 2nd Inter-

national Conference on Embedded Networked Sensor Systems

(SenSys 04), pp. 39-49, Boulder, Colo, USA, November 2004.

D. Sattar, T. R. Sheltami, A. S. Mahmoud, and E. M. Shakshuki,

“A comparative analysis of flooding time synchronization pro-

tocol and recursive time synchronization protocol,” in Proceed-

ings of the 11th International Conference on Advances in Mobile

Computing and Multimedia (MoMM ’13), pp. 151-155, Vienna,

Austria, December 2013.

[33] M. Akhlaqand T. R. Sheltami, “The recursive time synchroniza-
tion protocol for wireless sensor networks,” in Proceedings of
the IEEE Sensors Applications Symposium (SAS ’12), pp. 62-67,
Brescia, Italy, February 2012.

[34] M. Akhlaq and T. R. Sheltami, “RTSP: an accurate and energy-
efficient protocol for clock synchronization in WSNs,” IEEE
Transactions on Instrumentation and Measurement, vol. 62, no.
3, pp. 578-589, 2013.

[35] C. E. Perkins and E. M. Royer, “Ad-hoc on-demand distance

vector routing,” in Proceedings of the 2nd IEEE Workshop on

Mobile Computing Systems and Applications (WMCSA ’99), pp.

90-100, New Orleans, La, USA, February 1999.

S)
)

(32

International Journal of

Rotating
Machinery

International Journal of

The Scientific oA Distributed
World Journal Sensors Sensor Networks

Journal of
Control Science
and Engineering

Advances in

Civil Engineering

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Journal of
Electrical and Computer
Engineering

Journal of

Robatics

Advances in
OptoElectronics

International Journal of

Modelling &
oot (il St perospags
Observation in Engineering

e

Aoes

5//{/?

International Journal of nas and Active and Passive
Chemical Engineering Propagation Electronic Components

