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As the Internet of Things continues to expand in the coming years, the need for services that span multiple IoT application domains
will continue to increase in order to realize the efficiency gains promised by the IoT. Today, however, service developers looking
to add value on top of existing IoT systems are faced with very heterogeneous devices and systems. These systems implement
a wide variety of network connectivity options, protocols (proprietary or standards-based), and communication methods all of
which are unknown to a service developer that is new to the IoT. Even within one IoT standard, a device typically has multiple
options for communicating with others. In order to alleviate service developers from these concerns, this paper presents a cloud-
based platform for integrating heterogeneous constrained IoT devices and communication models into services. Our evaluation
shows that the impact of our approach on the operation of constrained devices is minimal while providing a tangible benefit in
service integration of low-resource IoT devices. A proof of concept demonstrates the latter by means of a control and management
dashboard for constrained devices that was implemented on top of the presented platform. The results of our work enable service

developers to more easily implement and deploy services that span a wide variety of IoT application domains.

1. Introduction

In the coming years more and more everyday objects are
expected to be interconnected to the Internet, which will lead
to a vast expansion of the Internet as we know it today. White
papers released by Ericsson [1] and Cisco [2] estimate that
the Internet will grow tenfold in the near future, with up to
50 billion connected devices by 2020. A considerable amount
of these new Internet citizens will be so-called constrained
devices. These are small, embedded, and low-cost devices that
are purposefully designed for executing specific tasks such as
monitoring the physical environment. For performing their
tasks, they are often fitted with a microcontroller, sensors,
actuators, a wireless transceiver, and an energy source. Due
to their low cost, these devices are constrained in terms of
processing power, communication capabilities, and energy
budget. The widespread deployment and use of such con-
strained devices across a range of application domains (e.g.,
smart city, building control, logistics, and transportation)
are expected to generate significant efficiency gains as well

as driving new business, the combined effect of which is
estimated to create 14.4 trillion USD in net value in the next
decade [3].

Due to the IoT spanning such a wide range of application
domains, there is a diversity of devices, protocols, network
connectivity methods, and resulting application models on
the market today. Within these IoT solutions some are legacy
systems that rely on proprietary technology (sometimes
suitably referred to as the Intranet of Things [4]), while
others adopt more open IoT standards such as MQTT (5]
and the IETF protocol stack for (constrained) IoT devices
[6]. This diversity often results in the vertical silos seen today
and hinders development of value-added services that use
these low-resource IoT devices [7]. For example, in [8] the
authors state that the logistics sector should move away from
proprietary, stand-alone solutions that are not connected to
the rest of the IoT to new platforms that combine various
existing hardware and software solutions for end-to-end
integrity control of supply chains. But even within one
(standardized) protocol suite there are a number of different



communication and application design strategies available
which are often tightly tied to the underlying use-case. For
example, in logistics, separate communication strategies are
necessary for battery-powered tracker devices (which are
typically only intermittently connected to the Internet) and
trackers with an abundant energy source (which can afford
network connectivity for longer periods of time). Forcing
IoT users (e.g., service developers and constrained devices)
to support these different types of diversity is unfeasible
as they typically lack the proper resources (e.g., know-how,
time, and processing resources) to handle the specifics of the
underlying constrained devices and networks. The goal of
this work is to hide this wide range of diverse technologies,
protocols, and applications models from IoT users.

As the demand for low-resource IoT devices is expected
to rise, this problem is only expected to worsen in the future.
Thus, it will become necessary to improve the integration of
a wide variety of constrained devices in the IoT. Cloud com-
puting is a suitable method, due to its availability, elasticity
(improving scalability), and low-cost of computing resources
[9]. Such a cloud-based software system is interesting because
it can support different types of low-resource IoT devices
by means of an adaptation layer and offer a uniform device
abstraction that hides the diversity in devices, protocols, net-
work connectivity methods, and application models from IoT
users. By offering well-known interfaces via open standards
protocols (RESTful and CoAP in this work) for this device
abstraction, the later becomes significantly easier to integrate
than the underlying constrained devices. The resulting design
greatly improves integration of and service development
for constrained IoT devices, while burdening neither the
constrained IoT devices nor the service developers.

Our contributions in this paper are as follows. First
we design, implement, and evaluate a cloud-based software
architecture that enables the integration of heterogeneous
low-resource devices in the Internet and more importantly
into services. By offering a uniform CoAP interface on
top of a virtual device abstraction, our approach is able to
support highly heterogeneous devices as well as providing
interoperability with legacy IoT devices that were built using
proprietary technology. Secondly, we illustrate the feasibility
of our developed architecture with a real-life deployment
consisting out of constrained devices that embrace open stan-
dards and one representative example of a proprietary low-
resource IoT device. The proof-of-concept demonstrates that
the developed architecture supports a number of different
communication models.

The remainder of this paper is structured as follows.
First, a case study is presented in the following section
to highlight some of the issues faced when developing
applications on top of two industrial IoT systems. Section 3
details the research questions addressed by this paper. The
next section introduces supporting technologies and other
pieces of background information used in the remainder of
this paper. Section 5 presents our approach for integrating
heterogeneity devices in the constrained Internet of Things.
Our proposed solution is evaluated in Section 6 in a wireless
sensor network setup and via a real-life proof of concept.
Section 7 presents the literature related to our work. Finally,
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FiGUre 1: Isolated vertical platforms hinder cross-vendor service
delivery.

the paper is concluded with possible topics for future work
and our conclusions in Section 8.

2. Case Study: Logistics and Transport

The case study presented here considers harbor cranes and
freight containers owned by different parties. The harbor
cranes are tasked with (un)loading containers from cargo
ships. Both the cranes and the containers are equipped with
a GPS-enabled tracking device, each of which belongs to a
different entity (i.e., vendors A and B). The trackers from
vendors A and B each report to their separate back-end
systems, where the vendor’s customers can follow up on the
status of their cranes or container’s (contents) via a vendor-
specific web portal (see Figure 1). The trackers are connected
to the Internet via a GPRS connection.

Due to the container’s mobility its tracker is battery-
powered, whereas the crane’s tracker is powered via the
crane’s alternator. Subsequently, the container’s tracker is in
sleep mode most of the time to conserve energy. In order to
conserve the limited energy of the container’s tracker even
further, vendor B wants to update the location of its container
by using the location information supplied by the crane when
the container is picked up. This way the container’s tracker
avoids acquiring a GPS and a GPRS signal and transmitting
its position, thus reducing its energy expenditure. However,
both vendors only offer a web portal to their customers and
there are no other interfaces for retrieving data from the
trackers. Thus, vendors are forced to either rely on expensive
and error-prone human intervention to interface between
both systems or try and build on top of interfaces designed
for user interaction.

Situations such as these are common in today’s Internet
of Things, with its abundance of isolated vertical platforms
(e.g., in building management systems as per [10]). The costs
of deploying and maintaining all the individual systems in
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such verticals should not be underestimated as the reusability
of components between verticals is typically low. As vendors
start to expand their products into other IoT application
domains (each with its own heterogeneous set of properties)
and as IoT applications start to span across multiple domains
(where everything will interact more and more with each
other), this approach of building purpose-specific vertical
silos will rapidly become inefficient and expensive.

3. Problem Statement and Research Goals

Before the problem statement is formulated, a number of
examples of heterogeneity are presented here to illustrate
the problems addressed by this work. Due to the wide
range of environments where the IoT is considered to be
employed [11], a number of different network connectivity
technologies will be used depending on the specific use-
case. For some applications, devices will be on a tight
energy budget (e.g., battery-powered or energy harvesting
devices) which might mean conserving energy by sleeping
and remaining unreachable for long periods of times. In
other applications mobility, remoteness or financial cost
might lead to devices with an intermittently connected link
to the Internet. And in other cases still, devices might be
mains-powered and have a near always-on connection to the
Internet. Furthermore, some low-resource devices might not
be able to support certain transport protocols (e.g., TCP)
and might have to follow a different approach (e.g., UDP or
SMS). While in all these cases devices are accessible via a
communications link, the properties and behaviour of this
link are not always fully comprehended by service developers.
Consider as an example a smart freight shipping container. As
these containers are transported (often over long journeys),
their Internet connectivity will vary: for example, there will
be times when they are unreachable and when they are
reachable, their Internet end point will change frequently due
to their mobility.

Another cause of heterogeneity is the application com-
munication model chosen by low-resource IoT devices. Note
that this choice is often influenced by the available network
connectivity as discussed in the previous paragraph. Some
devices might rely on a “pull model,” where the service is
expected to initiate all interactions to and from the devices.
Other devices, due to network constraints, might employ a
“push” approach where devices periodically send data to a
data store and sleep for the majority of the time. In this case,
push data is often aggregated in order to increase the com-
munication efficiency. In other cases, devices might employ
a mix of push and pull; for example, critical events and
monitoring data are sent immediately (e.g., for generating
alerts), noncritical measurements are aggregated and pushed
together, and configuration and management of the devices
take place via a pull model (i.e., a management service might
send configuration data to the IoT device directly).

Another fundamental cause of diversity is whether the
[oT device employs proprietary or one of the many standards-
compliant application protocols and data formats available
today. While proprietary purpose-built technology will in

some cases outperform standards-compliant technology, it
also has a number of downsides, of which the most important
for the discussion here is that they are difficult to integrate
for third parties. Furthermore, proprietary protocols often
lead to higher development and maintenance costs and
are less future-proof than open standards. For our smart
freight container example, this is also what we see on
today’s market [8]. There are a number of players that offer
tracking services for freight containers, but their systems are
using private communication networks and in-house data
standards and typically only offer high-level access to data
(e.g., via a web-based dashboard for tracking). This greatly
impedes other players to integrate smart containers into
their products. However, even when relying on standards-
compliant technology, there are many different standards
available today. Most of these are popular in specific domains,
such as BACnet in building automation, ZigBee in home
automation, and SEP2.0 in smart metering. Thus, services
that want to encompass multiple application domains are
forced to interface with a mix of proprietary and domain-
specific standards, technologies, and data formats.

A final source of heterogeneity that is addressed by this
work, which is related to the diversity of application protocols
and data formats, is the wide variety of supporting services
for interacting with constrained devices. Every technology
comes with its own mechanisms for device and data source
discovery, its own security concepts and methods (if available
at all), its own notification service, and so forth. As a result
there is little reuse between these technologies, which fur-
ther impedes cross-technology integrations. Moving to open
standards will allow using standard-compliant approaches for
such supporting services and will provide uniform mecha-
nisms for these services to third party service developers.
While the list of heterogeneity presented here is not meant
to be exhaustive it does present a clear overview of the types
of heterogeneity that this paper considers. A comprehensive
overview of the different types of heterogeneity commonly
found in wireless sensor networks is presented in [12].

Parties looking to offer new services in this mix of
connectivity, application models, standards, and protocols
will quickly find themselves forced to integrate a multitude
of different technologies. Given the previous paragraphs and
their conceptual representation in Figure 2, it becomes clear
that supporting all these different types of heterogeneity
cannot be expected from service developers. Furthermore,
constrained devices are unable to adapt to the different ser-
vice providers due to their low resources. These devices will
typically implement one of many instances of heterogeneous
technologies presented here, depending on availability of
resources, communication, energy, and application require-
ments. While cloud-based platforms are a good match for
complementing constrained low-resource devices [9], a gap
analysis of existing IoT platforms [13] shows that support for
heterogeneous and constrained devices in such platforms is
still lacking. One of the problems identified by Mineraud et
al. [13] is that most IoT platforms assume constrained devices
to support HTTP, which, given the heterogeneous nature of
these devices, is definitely not always the case.
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FIGURE 2: Problem statement: as each domain of the IoT comes with its own set of IoT devices, protocols, standards, data formats, and
connectivity options, service providers are forced to integrate a multitude of different technologies when developing cross-domain services.

In this paper our goal is to tackle the heterogeneity
presented here by focusing on a standards-compatible cloud-
based software system that can integrate with a multitude
of different technologies and protocols with a focus on
low-resource IoT devices. Our research aims to answer the
following questions:

(i) How can standards-based IoT technology be com-
bined with cloud computing to handle the diversity
of underlying low-resource IoT devices?

(ii) How can such a cloud computing approach present a
uniform interface to third party developers given the
different sources of heterogeneity?

(iii) What types of diversity in protocols and communica-
tion models can such a cloud-based approach handle?

(iv) What is the impact of this fusion of cloud and 10T on
the communication with low-resource IoT devices?
Can this communication be made more efficient?

(v) How can we further exploit the power of cloud

computing to support interactions from third parties
with IoT devices?

4. Background: Embedded
Web Services via CoAP

The diverse environments in which IoT devices have to
operate have led to a mix of proprietary and standard-
based protocols and different application models that are
deployed in today’s Internet of Things. While there are a

number of standards relevant for the Internet of Things
[14], this paper will build on the standardization as per the
IETF protocol stack for constrained devices [6, 15] and more
specifically on the embedded RESTful approach followed by
the Constrained Application Protocol (CoAP) [16,17]. CoAP
was chosen because it is a lightweight but powerful protocol
that is an ideal candidate for integrating constrained devices
into the cloud.

CoAP is a specialized web transfer protocol for use with
constrained devices and networks. In CoAP, every physical
object (i.e., thing) hosts multiple resources that represent
data gathered from sensors or actions available to actuators.
Every resource is accessible via a unique uniform resource
identifier (URI) and can be interacted with via the GET,
PUT, POST, and DELETE REST methods. CoAP can be
considered as a highly optimized version of HTTP/1.1 for
use in the low-resource embedded domain. Main differences
with HTTP include the use of connectionless UDP, support
for multicast-based group communication, built-in discovery
support, simplified header parsing, and a publish/subscribe
extension [18]. Daniel et al. present a detailed comparison
between CoAP, HTTP, and SPDY in [19].

A typical CoAP exchange is shown in Figure 3. The
CoAP RFC specifies the well-known/core resource as the
entry point for resource discovery. In this example the CoAP
server responds that it hosts a temperature and light intensity
resource. The server then responds to the client’s temperature
resource request. CoAP requests and responses can be sent
in Confirmable (CON) and Nonconfirmable (NON) CoAP
messages. As the name suggests CON messages expect
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FIGURE 3: A typical request/response exchange between a CoAP
client and server.

the receiver to acknowledge the reception of the message via
an acknowledgement (ACK). Most of the time, the response
to the client’s request is piggy-backed on top of this ACK.

As mentioned, CoAP provides a publish/subscribe exten-
sion in the form of the CoAP Observe mechanism [18].
When a client is observing a resource, the server promises
to send new representations of the resource to the client
following a best-effort strategy. This frees the client from
having to explicitly poll the resource for changes. As observe
notifications are regular CoAP responses with the observe
option set, they can be sent as CON and NON messages.

In the CoAP ecosystem there are a number of other
works relevant to our discussion here. A CoRE Resource
Directory [20] facilitates the discovery of CoAP devices and
resources in cases where direct discovery is not practical
due to sleeping nodes, disperse networks, or networks where
multicast is inefficient. To this end, a resource directory
hosts descriptions of resources that are available on other
CoAP servers. Clients can perform lookups within a resource
directory via the web interface specified in the IETF Internet
draft.

A second relevant CoAP mechanism is that of a CoRE
Mirror Server [21]. Such a server mirrors the resources of
a constrained devices, thereby enabling these devices to go
into sleep mode and to disconnect their network link in order
to save resources. Reference [21] defines the web interfaces
for registering resources, sending resource updates, querying
for mirrored resources, and retrieving updates of mirrored
resources. A mirror server can also be extended to mirror
resources on behalf of mobile devices, which frequently
change their Internet endpoint due to their mobility. An
example of a mirror server is shown in Figure 4.

Sleeping endpoints (bottom of the figure) start by regis-
tering their to-be mirrored resources with the mirror server
via a POST request (not shown in the figure). From then on,
sleeping endpoints (bottom of the figure) operate as CoAP
clients. They update their resources on the mirror server
via CoAP PUT requests and can query the mirror server
for updates to their resources via a CoAP POST request.

Clients
Read

and
Q write
D
Qs

GET ms/0/t \ /
= Mirror SEP

resources

).

N

PUT ms/0/t I

> @

Sleeping endpoints

Update
" and

—
sleep

FIGURE 4: CoAP mirror server: clients and sleeping endpoints can
communicate in an asynchronous fashion.

Cloud Virtual
l IPv6 :’ 7\7/'17)7 - i devices
Client o 1 o
E Heterogeneous
devices

FIGURE 5: Virtual devices in the cloud represent their real heteroge-
neous counterparts.

After a sleeping endpoint has retrieved a list of changed
resources (via the POST request), it can choose to process
the changes by retrieving every updated resource via a CoAP
GET request. The “Client Operation” interface of the mirror
server enables clients (top of the figure) to retrieve and change
the mirrored resources. Note that clients must know and
implement this Client Operation interface.

5. Cloud Platform for Supporting
Heterogeneous Devices and
Communication Models

A high-level overview of our approach is presented in
Figure 5. Low-resource IoT devices with various forms
of heterogeneity are shown at the bottom. These employ
diverse hardware, protocols, and communication models.
For each of these devices, our cloud-based platform hosts
a virtual counterpart that is made available as a dedicated
IPv6 endpoint (i.e., the virtual device). Clients interact only
with the virtual device and the cloud takes care of mapping
these interactions to the particular constrained device. In our
approach the dedicated IPv6 endpoint hosts both a CoAP and
a DTLS server and therefor all interactions between a client
and a virtual device run over CoAP.

In effect, our approach follows the Sensor as a Service
(SenaaS$) paradigm where clients interact with a virtual cloud-
based counterpart of a real-life sensor or device. The main
benefit of SenaaS is that a virtual device has significantly more
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FIGURE 6: The access and abstraction layers of the design enable uniform access to heterogeneous constrained IoT devices.

resources at its disposal than its constrained counterpart
and is therefore not hindered by the constraints common to
low-resource devices. For example, a virtual device is always
available whereas a constrained device might be asleep or
temporarily unreachable (e.g., due to mobility). Furthermore,
by deploying our platform in the cloud it can support on-
demand dimensioning of computing resources when the load
on the platform fluctuates. This allows scaling efficiently as
the size of the deployment grows and avoids under- and
overdimensioning computing capacity. Finally, maintaining
the platform’s computing infrastructure is outsourced to a
specialized external party in this case.

The use of CoAP leads to a lightweight solution where
a virtual device can be used by both conventional services
as well as by the low-resource devices themselves. The
straightforward mapping between CoAP and HTTP has the
benefit that virtual devices can easily be integrated into
existing RESTful web services. CoAP also provides built-
in support for response caching. The result is a resource-
oriented architecture that facilitates the integration of con-
strained devices into third-party services and applications.

To realize this architecture, we have split our cloud-based
platform into two layers. The first layer offers a uniform
interface to the underlying constrained devices by means of

virtual devices. The second layer handles the heterogeneity in
constrained devices and applications models. Both of these
layers are presented in the following two subsections.

5.1 The Access Layer: Providing Access to Heterogeneous
Devices and Communication Models. The access layer is
closest to the constrained devices and is responsible for
communication to and from these heterogeneous devices. In
some cases the access layer also stores the data provided by
the constrained devices. As can be seen from Figure 6, access
is provided to constrained devices that employ a number
of heterogeneous communication models. At the heart of
this layer is the access mapper component; this module
maps the uniform representation from the abstraction layer
to the particular implementation of the constrained device
and vice versa. To this end, the access mapper translates
requests for CoAP resources hosted by the device abstraction
to device-specific actions. In the next few paragraphs we will
discuss specific instances of this mapping for the different
communication models that are shown at the bottom of
Figure 6.

The first communication model is that of the mirror
server model that was already introduced in Section 4.
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For constrained devices hosted on mirror servers, the access
layer translates requests for virtual devices to requests des-
tined to the corresponding mirror server. It does this by
taking the URI path of the incoming request and adding it
to the mirror server URI handle of the device. For example,
a request for coap://[2001:6a8:1d80:600::21]/s/t on the virtual
device is translated to coap://ms.example.com/ms/4/st on the
mirror server. Requesting the .well-known/core discovery
resource will trigger a request to the device’s handler resource
on the mirror server (i.e., ms/X). For .well-known/core
responses, the access mapper will remove all occurrences of
the device’s mirror server URI-path handle in the response
from the mirror server (otherwise clients would see the s/t
resource as ms/4/s/t). Note that the mirror server itself can
be running alongside the cloud platform but that it can also
be hosted externally (e.g., on-site for reduced latency).

In the direct configuration and data access model, the
constrained device hosts a plain CoAP server. In this case, the
access mapper operates as a standard CoAP reverse proxy [16]
where requests for the virtual device are mapped to the CoAP
server on the constrained device. The constrained device can
be a mobile device, where its IP endpoint changes as the
device’s location changes. Also, a constrained device might be
behind NAT and/or a stateful firewall. In both cases, access to
the device is typically restricted to those parties with whom
the device maintains active communication. In case of NAT,
the transport layer mapping at the NAT box is expected to be
volatile as well. To this end the access layer allows updating
the mapping of a device via the “/registerendpoint” CoAP
resource. This way the IP endpoint of a device is kept up
to date and any state in intermediaries is kept alive. One
optimization supported by our reverse proxy is combining
multiple CoAP Observe relationships into one relationship.
If N clients are observing the same resource on the virtual
device, then the mapper will maintain only one observe
relationship with the constrained device. Consequently the
constrained device has to send only one notification instead
of N notifications per resource change, thereby reducing its
load and energy consumption.

Communication models three and four are hybrid models
where data (i.e., originating from the device) and configu-
ration changes (i.e., destined to the device) are handled via
different methods. Both models differ from the mirror server
model in that they push data for multiple resources in a
single request as opposed to pushing data for a single resource
per request (as is the case in the mirror server model). The
push aggregation module in the access layer is responsible for
splitting the incoming aggregated data into multiple requests
(i.e., one per resource) to the mirror server. This can lead
to considerable energy savings for the constrained device
as the total number of requests is reduced. The difference
between these two models is the method they use for
configuration changes. One model allows hosting a CoAP
server that enables direct configuration changes, whereas the
other model relies on a mirror server for configuration.

For the proprietary communication model there are a
number of different mapping strategies available, the exact
choice of which will be highly dependent on the proprietary
technology that is being mapped. There are however two

straightforward ways to provide a mapping to constrained
devices that are operating inside a vertical. In the first
method the constrained devices in a vertical are represented
as CoAP clients, while in the second they are represented
as CoAP servers. In both cases the vertical defines its own
set of resources that provide a suitable RESTful interface for
interacting with the proprietary constrained device. In case
of the CoAP client option, the vertical can register its devices
on a mirror server and all data and configuration changes are
handled via the mirror server. The evaluation section presents
an example of this approach for a container tracking vertical.
In the CoAP server case, the vertical can sometimes act as a
cross-protocol proxy.

The final component is the access layer resource directory
where mirror servers and direct access CoOAP servers register
themselves so that they can be discovered by the abstrac-
tion manager. The abstraction layer uses this information
to instantiate the CoAP server abstractions (i.e., one per
constrained device) and the corresponding access mapper
instances. The next subsection looks at how this is realized
in the abstraction layer.

5.2. The Abstraction Layer: A Homogeneous Restful Interface
for Constrained Devices. The abstraction layer is responsi-
ble for providing a homogeneous interface to devices that
implement the different communication models mentioned
in the previous paragraphs. Furthermore, it also allows
extending this device abstraction with new functionality.
Finally, the layer provides proxy services to IPv4 and HTTP
for broadening the interfacing possibilities with the device
abstraction. The layer is part of the virtual domain, where also
the device abstractions reside.

In terms of the device abstraction, we chose to represent
every constrained device as a virtual device that implements a
CoAP server with one or more resources. This virtual device
is hosted as a dedicated IPv6 endpoint by allocating an IPv6
address from an IPv6 subnet that is routed to the cloud.
While this abstraction is hosted at the network layer, our
abstraction layer will only process CoAP (and DTLS) traffic
for virtual devices; other types of traffic are not processed.
One benefit of using a network-layer abstraction is that
multiple IPv6 subnets and IPv6 routing can be used for
distributing device abstractions over a number of different
cloud systems in order to improve scalability. The result
is that every constrained device is made available as an
open standards-compliant (virtual) CoAP server regardless
of the underlying communication model and protocols of the
device. To this end, the L2 resource directory contains web
links to all virtual devices and their resources.

On top of the server abstraction is a block that enables
extending the functionality provided by the server abstrac-
tion on both the transport layer and the application layer
(i.e., on the level of CoAP resources). The “CoAP resource
adapters” module allows a managing party to instantiate
chains of plugin-like functional blocks that extend the server
abstraction in a desired way. This concept has been presented
in previous work [22] and has been shown to significantly
reduce the communication overhead of DTLS in IP-based
wireless sensor networks [23]. In this work we reuse the



concept of adapter chains for realizing the security model of
our platform as explained in the next paragraph. It is also used
to implement a cache for CoAP responses, which is running
on top of memcached.

In terms of the security model, the cloud platform is
considered as a trusted entity by constrained devices. Policies
are defined in the cloud platform to delegate (parts of) this
trust to clients. Clients of a virtual device are authenticated
by the credentials they provide during the DTLS handshake.
Currently the platform supports preshared keys (useful for
constrained clients), raw public keys, and standard X.509
certificates issued by a party trusted by the policy (see later).
The server abstraction is authenticated to the client via
the same types of credentials. The resource adapters block
provides a DTLS adapter type for authenticating clients and
handling the DTLS protocol, as per [23]. It also provides an
adapter type that handles authorization. This is accomplished
by allowing administrators to define policies based on the
credentials of the user, the destination of the request, and
the desired operation (i.e., CoAP method and targeted CoAP
resource). The authorization adapter processes the output of
the DTLS adapter (i.e., plain text CoAP requests) and drops
all requests that do not adhere to the defined policy.

The final two components enable access to the IPv6 CoAP
server abstraction from HTTP clients and from IPv4-only
CoAP clients. As mentioned CoAP is designed to interface
easily with HTTP, so mapping HTTP and CoAP messages
is a straightforward process for the HTTP/CoAP proxy.
Furthermore, our device abstraction enables us to host a
HTTP server using the IPv6 address of the virtual device.
Therefor, the URI-mapping mechanism is very simple (i.e.,
change the scheme from http to coap) and the URI-mapping
issues raised by [24] are not applicable in this case. Finally, our
proof of concept deployment learned that not all clients have
IPv6 Internet access. More specifically, GPRS-based Internet
access is often restricted to the IPv4 Internet. To address
this issue, the platform provides an IPv4/IPv6 forward CoAP
proxy where the target (IPv6) CoAP URI is encoded in a
“Proxy-URI” CoAP option [16].

5.3. Machine-to-Machine Communications. An important
application for IoT platforms is machine-to-machine
communications. One common issue in M2M is device
management, that is, tracking and configuring devices that
are deployed in the field. In 2014, the Open Mobile Alliance
(OMA) has defined a set of standards for device management
in M2M: Lightweight M2M (http://openmobilealliance.org/
about-oma/work-program/m2m-enablers/). LWM2M has
adopted CoAP and its RESTful mechanisms as the protocol
of choice for interfacing with devices. They also mandate
the use of DTLS for security and a resource directory for
discovery of devices. While the platform presented here does
not implement the standardized OMA interfaces (i.e., CoAP
resources) for bootstrapping, management, and services,
adding them would be straightforward as both our platform
and LWM2M share the same building blocks.

One typical characteristic of M2M systems is the use of
SMS services for communications, as opposed to IP-based
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communications. The CoAP protocol was designed with a
range of low-power and lossy network types in mind [25]
and an adaptation of CoAP to SMS transport is presented
n [26]. Thus, the same application protocol can be used
for interfacing with both SMS and IP-based constrained
devices. Furthermore, the design of our platform can easily
be extended with SMS functionality in both the abstraction
and the access layers. Virtual devices could be allocated a
unique mobile number, which would make them accessible to
machines that are restricted to SMS communications. Finally,
adding an SMS gateway in the access layer would allow virtual
devices to map to SMS-only constrained devices.

6. Evaluation

We have evaluated our platform via three methods, two of
which provide a quantitative evaluation about specific aspects
of the platform while the third is a qualitative evaluation in
the form of a proof of concept.

The setup for the quantitative evaluations is shown in
Figure 7. The client is a Raspberry Pi model B connected
natively to the IPv6 Internet via a commercial Belgian ISP.
The cloud platform is running on a virtual machine hosted
at our University’s Data Center, where Internet peering is
provided by Belnet. Belnet is a Belgian Internet provider
for educational institutions, research centers, scientific insti-
tutes, and government services. The wireless sensor network
consists of three Zolertia Z1 nodes, which are equipped
with TTs 16 bit msp430 microcontrollers (8 KB RAM and
128 KB ROM) and a CC2420 802.15.4 radio. According to
IETF terminology, these devices fall under the “Class 1”
category [27]. These are devices that are constrained in code
space and processing capabilities, in that they cannot easily
communicate with other Internet nodes employing a full
protocol stack such as using HT'TP, TLS, and related security
protocols and XML-based data representations. However,
they have enough power to use a protocol stack specifically
designed for constrained nodes (such as CoAP over UDP)
and participate in meaningful interactions without the help
of a gateway node.

All Zolertia nodes are running the IETF stack for con-
strained devices available in contiki. The two sensor nodes
on the right of the figure are battery-powered and employ
the ContikiMAC MAC and Radio Duty Cycling protocol. The
channel check frequency of ContikiMAC was lowered to 4 Hz
to conserve energy. Routing inside the 6LoWPAN network is
enabled by the RPL routing protocol. One Zolertia node is
configured with the direct access model (pull) and one with
the mirror server model (push). The third sensor node acts
as a 6LoWPAN and RPL border router and is connected to a
Raspberry Pi model 2. This Raspberry Pi is connected to the
IPv6 Internet via a SixXS.net tunnel (on the Belgian Easynet
PoP). The 2001:6f8:202:85cc::/64 subnet is routed over this
tunnel and distributed inside the 6LoWPAN network.

6.1. Virtual Device Abstraction: Scalability and Latency.
While routing all traffic to the cloud-based virtual device has
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FIGURE 7: Two Raspberry Pi’s and an 802.15.4 wireless sensor network operating 6LoOWPAN from the evaluation setup for our cloud platform.

many benefits (the most important being availability of com-
puting resources), it may also introduce some undesirable
downsides. One obvious issue is that of scalability. As the
number of IoT devices continues to increase in the coming
years, the volume and velocity of IoT traffic are expected to
grow exponentially [28]. However, this issue can be addressed
by relying on the flexibility provided by our network layer
abstraction in terms of allocating IPv6 addresses to virtual
devices and in terms of configuring routing tables to dis-
tribute traffic to the machines running our cloud platform.
Via dynamic routing tables we can move virtual devices from
machines that experience a high load to newly allocated
computing resources. The reverse mechanism allows scaling
down when the load decreases, thus realizing the resource
elasticity common to cloud computing. However, this is still
future work.

Another potential problem is latency; that is, how does
routing traffic via the virtual device abstraction impact
latency between a client and a constrained device? In a
lot of cases our approach can actually provide latency
improvements by, for example, serving content from a cache.
However, not all requests can be satisfied from the cache;
activating an actuator is a prime example of this. What is
the impact on latency in this case? In order to quantify
this impact, we have conducted response time measurements
using the setup from Figure 7. Confirmable CoAP POST
requests that toggle a LED on the Zolertia sensor node were
sent for measuring the round trip time (RTT) from client to
constrained device. Only the always-on node (with RDC) was
used in this experiment. Over 8000 CoAP requests were sent
sequentially for the following two configurations:

(1) Cloud: the client sends the POST request to the virtual
device in the cloud, where it is translated to a POST
request to the corresponding constrained device. The
response follows the reverse path.

(2) End-to-end: the client sends the POST request to the
constrained device directly (not shown in Figure 7).

A CDF of the response times is shown in Figure 8. We
can see that the differences between the two configurations
are small and negligible for most use-cases. This is because

1.0
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©)]
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T T T T T T T T T
0 2000 4000 6000 8000 10000
CON CoAP POST response time (ms)
—— Cloud
—— End-to-end

FIGURE 8: Cumulative distribution function of response times for
confirmable CoAP POST requests.

most of the response time is spent on sending the request
over the last wireless hop from the border router to the sensor
node (due to the RDC). For the end-to-end configuration, the
average RTT between the client and the 6LoOWPAN router
was only 29.8 ms (with a standard deviation o of 5.6 ms).
For the cloud configuration, the average RTT between client
and cloud was 22.5ms (0 = 5.1 ms) and between cloud and
6LoWPAN router was 17.3 ms (0 = 1.5ms). For the end-to-
end configuration the minimum CoAP POST RTT measured
was 74.7 ms; for the cloud configuration it was 89.7 ms, that
is, a difference of 15.0 ms. However, considering the fact that
for the cloud configuration more than 90% of the measured
response times were longer than 482.0 ms (and 99.9% were
longer than 100 ms), we can see that the impact of the lossy
802.15.4 network in combination with radio duty cycling on
latency is much higher than hosting our virtual device in the
cloud.
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6.2. Communication Models: Push versus Pull. In this subsec-
tion the mirror server and direct access communication mod-
els, introduced in the previous section, are compared in terms
of energy consumption. For these experiments the setup from
Figure 7 is also used. There are two configurations for each of
the models: one where the data communication period is 10
seconds and one where this period is 30 seconds. In all exper-
iments the Raspberry Pi CoAP client observes a temperature
resource on the virtual CoAP server. The abstraction of the
sleeping device is hosted at 2001:6a8:1d80:600::22, whereas
2001:6a8:1d80:600::24 corresponds to the direct access device.
When the sleeping device is not engaged in an active CoAP
exchange it switches its radio into sleep mode until its next
transmission; otherwise it employs RDC. The always-on
device continuously employs RDC.

When the CoAP client observes the temperature resource
on the virtual device, the cloud platform will observe the
corresponding resource on either the mirror server or the
constrained device itself. The sleeping device is configured
to update the mirror server every 10 or 30 seconds via
CoAP PUT requests (push model). Every twentieth PUT
request is a confirmable CoAP message, whereas the other
requests are nonconfirmable messages with the CoAP No-
Response option. Responses are suppressed because the client
would not be awake to receive them; see https://tools.ietf.org/
html/draft-tcs-coap-no-response-option-10 for further infor-
mation. The always-on device is configured to update its
resource every 10 or 30 seconds and to send one confirmable
notification for every twenty notifications (pull model).
The other nineteen notifications are sent as nonconfirmable
messages. Note that this is the default behaviour for CoAP
Observe in Contiki’s Erbium. The resulting four configura-
tions are named PUSH10, PUSH30, PULLI0, and PULL30,
respectively. Every time the client receives a notification it
estimates the energy consumption of the constrained device
for transmitting the data that triggered the notification from
Energest data that is retrieved from the constrained device
[29]. Energest values are read from a serial connection with
the constrained node that is running over a TCP connection
to a serial forwarder that is attached to the UARTO line of the
sensor node. More than 400 measurements were collected per
configuration.

The box plots of total energy usage in Figure 9 show that
in general the push model consumes less energy than the
pull model for this experimental setup. This is due to the fact
that for the push model the radio can be kept in sleep mode
for longer periods of time per transmission. The stacked bar
plot confirms this for the “median energy usage” case, where
it is clear that the energy spent in the reception category
for the pull models is significantly higher than in the push
models. Note that the PUSH30 data points are significantly
higher than the PUSHIO data points. If we compare the
median cases, then we can see that while the median radio
energy expenditures are similar (the same amount of data is
being sent in both cases) the CPU and IRQ categories are
not. This is because the microcontroller has to process more
timer interrupts per data transmission as the time between
transmissions is three times longer. Finally, also note that
the two distributions of measurements for the 30-second
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FIGURE 9: Left: stacked bar plot of median energy usage per category.
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FIGURE 10: Sum of packets received and transmitted for different
communication models.

configurations are clearly skewed towards higher energy
expenditures (i.e., larger errors bars with larger variation at
higher values). This difference is caused by the fact that the
total number of sent RPL messages for refreshing upwards
and downwards routes increases as the data transmission
interval increases. Thus for larger intervals the fraction of
energy expenditure data points that include RPL message
transmissions will be higher and therefor the box plots will
be skewed towards higher values.

Figure 10 shows the sum of packets received and trans-
mitted by the constrained node per data transmission period.
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FIGURE 11: Proof of concept: components and setup.

The median for all configurations is one, which is explained
by the fact that nineteen out of twenty data messages are
NON messages with no response. Here we can also see that
the RPL messages skew the box plots for the PUSH30 and
PULL30 scenarios towards the top. Note that the effect of
retransmissions of CON messages is hard to see in this plot
as they only make up five percent of the data points.

6.3. Proof of Concept: Real World Deployment. In the context
of a national project (https://www.iminds.be/en/projects/
2014/03/03/comacod), a proof of concept was developed that
demonstrates the feasibility of the platform presented in
this paper. The project involved three industrial parties that
develop monitoring solutions for waste bins, construction
cranes, and freight containers. Each of these partners has

developed their own vertical system, where customers access
monitoring data via a web portal that is hosted inside the
vertical. The goal of the proof of concept was to show that our
platform enables third parties to collect data and configure
constrained devices spanning multiple application domains
while maintaining the same levels of performance (i.e., code
size, energy expenditure, and life time) and service of the
constrained devices as offered by the existing (proprietary)
solutions. Figure 11 shows the different components in the
proof of concept. At the bottom there are four different types
of constrained devices, each fulfilling a monitoring task for a
specific use-case.

The waste bin trackers consist of a 32-bit ARM Cortex-
M3 microchip (Silicon Labs EFM32) and an Analog Devices
ADF7021-N narrow-band transceiver that operates at
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169 MHz. These trackers run on contiki, implement the
IETF stack for constrained devices, and form a wireless
sensor network via RPL in nonstoring mode. The trackers
are sleeping devices and employ the mirror server model
to send periodical status information (waste bin tray events
and battery status) to a mirror server that is running on the
6LoWPAN router (i.e., the on-site mirror server in Figure 11).
The 6LoWPAN router is connected to the private network
of the company via a VPN tunnel over the public Internet.
By also connecting to this private network from the access
layer and offering a virtual device for every waste bin tracker
registered on the on-site mirror server, the cloud platform
has enabled applications to integrate the waste bins as normal
CoAP servers. This is a great improvement over the database
with web API integration option which was the only choice
offered by the company in the past.

The container tracker is composed of a msp430f5437
microcontroller, a CC2520 802.15.4 transceiver, and a Telit
HE910 HSPA+ modem with built-in GPS. Containers form
an 802.15.4 network that is used for intercontainer com-
munication towards a data sink that transmits the data to
a back-end system using its HSPA modem. The containers
run TinyOS and use a proprietary data format over TCP for
communicating with the back-end. In this case, it was not
considered viable to change the proprietary stack running on
the devices as the development effort was deemed too high.
Instead, the container tracker back-end system implements
a mapping from the proprietary technology to embedded
web services by means of a CoAP mirror server. For every
tracker, the back-end system registered an endpoint on the
mirror server with the corresponding resources for location,
container mode, temperature, and humidity. Whenever the
back-end receives data from the container trackers, the
resources of the corresponding tracker on the mirror server
are updated. Whenever the container trackers wake up, the
back-end checks the mirror server for changes (e.g., the
container’s mode resource has changed), retrieves all updates
for the mirrored resources, and translates these updates to
corresponding actions in the proprietary technology. Because
of the virtual device abstraction, all trackers are hosted as
CoAP servers.

The crane tracker is a powerful embedded Linux device
that is running an ARM9 CPU with 128 MB of ROM and
64 MiB RAM. The trackers incorporate a GPS and GPRS chip
and used to establish a VPN tunnel with the back-end. In
this private network, a tracker remained reachable at a fixed
IP address even when its public IP address changed on the
cellular network and when it was behind NAT. Data was
exchanged using a proprietary format over TCP. There was
no real integration possible as the company only offered a
web portal for its customers for following up on their cranes.
For this use-case, the proprietary technology was dropped
and the tracker implements a mobile CoAP server instead.
Using our cloud platform, the VPN connection was no longer
necessary as the virtual device in the cloud can offer a fixed
IPv6 endpoint for the tracker. Whenever the tracker’s GPRS
IPv4 address changes, it updates the mapping in the access
layer via a CoAP POST request to the cloud system. In order
to traverse any firewall and NAT systems between the tracker
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and the cloud, the cloud’s access layer uses a UDP source
address that is equal to the destination UDP address that
was used by the tracker for updating its mapping. As in the
previous case, there was no viable integration strategy for
third parties (only a web portal was available). By using our
cloud platform, trackers are offered as virtual CoAP servers
and made discoverable via the resource directory. Figure 12
shows the tracker updating its access layer mapping as well
as the message exchange triggered by a CoAP request to
the /gps/full resource of the corresponding virtual device.
The two packets marked in black show that our system uses
the destination UDP address of the registration to contact the
tracker afterwards.

The final class of devices consists of Zolertia Z1 nodes that
were used as the main testing platform and were deployed as
per Figure 7. These devices periodically collect temperature
and humidity data using the aggregated push and mirror
server communication models.

To illustrate that our cloud platform facilitates integration
of constrained devices in the Internet, the project also
implemented a control and management dashboard for the
different devices from the previous paragraphs. This dash-
board is hosted on server infrastructure owned by one of the
project partners. HTTP is used for communication from the
dashboard to the different types of constrained devices via the
corresponding virtual devices and the HTTP/CoAP proxy.
The dashboard discovers the available devices and their
resources via the resource directory hosted in the abstraction
layer of the platform. Figure 14 shows the interface offered to
a user to inspect the list of available devices and resources.
Resource attributes (such as type and being readable and
writable) are determined from the CoAP resource type that
is available at discovery. For every resource, the user can
choose to view collected data, retrieve a fresh representation,
or update the resource. Figure 13 shows the collected data
for the /s/w resource of the waste bin tracker hosted at the
coap://[2001:6a8:1d80:600::4] virtual device. Data includes
switch events (i.e., waste bin lid events) and battery status.

Finally, the case study from Section 2 where the crane
tracker updates the location of the container tracker when
it picks up a container was realized. One problem here
was the IPv4-only Internet access provided by the crane’s
GPRS modem. Here the CoAP IPv4/IPv6 forward proxy
was used for updating the location resource on the virtual
device of the container tracker. Another problem was that of
local discovery; that is, how does the crane tracker discover
the virtual device corresponding to the container it picked
up? Here a number of solutions were formulated: using
RFID communication for communicating the virtual device’s
address or searching the platform’s L2 resource directory
using the container’s endpoint identifier (communicated via
RFID or optically via a barcode). However, at the end a solu-
tion for this local discovery problem was not implemented in
this proof of concept.

7. Related Work

While cloud computing and the Internet of Things come
from different backgrounds, recent developments show that
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they are increasingly being adopted together. The cloud and
IoT can complement one another in a number of interesting
ways, as will become clear from the works presented in the
following paragraphs.

The work of Guinard et al. was one of the first to propose
a resource-oriented architecture for the Internet of Things
[30, 31]. By implementing RESTful resources on things, the
interfaces of things have become similar to those found on the
World Wide Web and therefor this is referred to as the “Web
of Things.” When these resources are integrated into larger
services, the result becomes a service-oriented architecture
which is a well-known concept that is often realized on top
of cloud computing infrastructure.

Historically, one of the first research domains where
cloud computing and IoT have been combined was wireless
sensors networks. In [32] a Sensor-Cloud infrastructure is
introduced, where physical sensors are virtualized as virtual
sensors on cloud computing. Motivation for doing so include
the limited resources and capabilities of physical sensors
and the ease of use and management of virtual sensors.
A comprehensive work on WSN and cloud is the survey
[32] by Yuriyama and Kushida. The authors argue that the
combination of Cloud and WSN enables remote access and
allows annotating sensors with XML in the cloud. The use of
XML encourages the interchangeability of different types of
sensors and allows describing services offered by sensors (e.g.,
via the Web Service Description Language). Here also the use
of web services is presented to enable different applications to

talk to one another. The resulting WSN is coined as a service-
oriented sensor network.

In recent years, a sizeable amount of research has been
performed on the combination of cloud computing and
the IoT. This has resulted in numerous papers as well as
cloud-based IoT platforms. In [9] Botta et al. introduce
the CloudIoT paradigm which is the integration of cloud
and IoT. The paper is a good introduction to the topic as
it lists the motivation, applications, related work, research
challenges, open issues, and platforms for the CloudloT
paradigm. The listed motivations for CloudIoT include
the abundance of resources (e.g., storage, computational,
and network resources) of the cloud as well as significant
improvements in scalability, interoperability, and security.
One identified research challenge is the integration of huge
amounts of highly heterogeneous things into the cloud, which
overlaps with our research objectives from Section 3.

Another work focuses on moving application logic from
the firmware to the cloud. In [33] Kovatsch et al. introduce
the Thin Server Model, where devices in the role of a server
do not host any application logic. Instead, devices expose
their elementary functionality via RESTful services and any
application logic of devices runs on application servers
(possibly in the cloud). The resulting IoT infrastructure is said
to be agnostic of any applications. Our work adopts some of
these ideas (e.g., thin devices and extradevice applications);
however we also address the issue that not all devices can
be modeled using the Thin Server Model. Some (legacy)
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FIGURE 14: Control and management dashboard: the user is presented with a list of devices and resources. The user can access data collected
from resources, retrieve a new resource representation, or update a resource.

devices implement proprietary technology or implement a
client-based communication model (e.g., sleeping devices).
The work presented here also looks at how these devices can
be integrated into the Internet and be made available to such
“application servers.”

Works by Alam et al. [34] and Zaslavsky et al. [28]
propose the Sensing and Sensor as a Service ideas. Senaa$S
exposes functional aspects of sensors as services by hiding
technical details of the sensor from the user. By specifying
and delivering sensor functionalities and capabilities as ser-
vices, one can exploit all the existing service standards for
interacting with sensors. Similar to our work, [34] defines
an “IoT Virtualization Framework” where IoT devices are
virtualized and offer virtual services. However, in our work
the virtualization takes place at the device level (i.e., with
every device having a virtual counterpart that is hosted at a
specific IPv6 address) whereas the virtualization in [34] takes
place on the service layer. Furthermore, the technology used
in both approaches is different: our work focuses on the IETF
stack for constrained devices whereas the work of Alam et al.
focuses on the standards developed by the Open Geospatial
Consortium (i.e., Sensor Web Enablement or SWE). One
important difference is that our approach enables virtual
devices to be used by constrained devices. This is typically not
the case for the more verbose SWE standards.

In [10], Lietal. present a cloud-based Platform as a service
solution (PaaS) for delivering IoT services. Like our work,
the authors make the observation that today IoT services
are typically delivered as physically isolated vertical solutions
where all system components are customized and tightly
coupled for each use-case. The authors propose moving
to “virtual verticals” that are built on top of a common
cloud infrastructure according to the presented IoT PaaS
architecture. By building on top of the functionality already
provided by the platform, IoT solution providers can deliver
their services more efficiently and can continuously extend
their product. Our work is similar to the IoT PaaS concept,
but it is focused on solving the specific problem of integrating
heterogeneous constrained devices into the IoT. Furthermore
we argue that the IoT should move away from all verticals

(both virtual and physical) in order to realize applications that
span multiple domains and IoT product manufacturers.

In Cloud4Sens [35] two strategies for managing sensing
resources in the cloud and providing them as a services
are discussed and a cloud framework that handles these
two strategies is presented. In the data-centric model, the
cloud offers data to its clients as a service without knowing
how the data is measured and processed. In the second
model, the device is at center and clients can access data via
devices and customize one or more virtual devices. To this
end the architecture includes an SWE abstraction layer that
enables a number of different thing deployments to interface
with the cloud. The framework also includes a Software as
a Service component (SaaS) for offering data to interested
clients and an Infrastructure as a Service (IaaS) component
that enables clients to interact with virtual devices. Our
solution can be seen as an alternative to the IaaS component
that is geared towards supporting heterogeneous devices and
that is designed to allow constrained devices to interact
with other virtual devices. Through the resource adapters,
our approach also allows enhancing virtual devices with
additional functionality.

Next to the works presented above, there are also many
IoT platforms—both commercial and academic—available
today. The gap-analysis presented in [13] considers over 30 of
such platforms. One identified shortcoming is the integration
of sensor technologies without the use of gateways. Problems
include the lack of standards and heterogeneous interaction
models. Both are addressed by our work by relying on CoAP
and showing how heterogeneous devices (with different com-
munication models) can be integrated. Other shortcomings
include data ownership and data fusion and sharing; while
these topics are not addressed by our platform itself they were
part of the control and management dashboard in the proof
of concept in Section 6.3. In the future we will look at how
these can be integrated as part of the platform.

In [36] a system architecture for IoT cloud services based
on CoAP named Californium is presented. The architecture
consists of three stages (network, protocol, and logic) that
form a processing pipeline where each stage has its own
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separate thread pool. The result is a highly scalable architec-
ture as proven by a comparison with state of art alternatives
from both the CoAP and HTTP server domain. Even though
the focus of the work is different than ours (scalability
versus integration and heterogeneity), it is mentioned here to
demonstrate that CoAP is a suitable protocol for (scalable)
IoT cloud services.

CloudThings [37] is a service platform that allows users
to run IoT application on cloud hardware. It includes tools
for application development and for operational management
and deployment. The platform uses 6LoWPAN and CoAP
for communication with things and RESTful web services for
integration with the cloud. The platform offers web services
for data subscription and discovery. However, these are only
accessible over HT'TP which limits their use for constrained
devices that wish to discover things via the platform. Also,
the evaluation is very limited and considers only HTTP for
communication between the cloud and things.

8. Conclusion

We have shown that our cloud-based platform facilitates the
integration of constrained IoT devices into other services
without significantly impacting service and device operation.
Experiments show that our platform supports a number of
different communication models that are abstracted away
from services by interfacing with a virtual CoAP server
abstraction. Furthermore, the proof of concept demonstrates
that the platform supports heterogeneous hardware plat-
forms, communication models, and proprietary protocols.
The developed control and management dashboard show that
our platform can easily integrate constrained devices into
third party services.

Future work will focus on what is currently missing in
the platform. By offering Data as a Service (Daa$) services,
others can access (historical) data without being forced to
capture this data when it is made available via the virtual
device abstraction. This will also require a data ownership
mechanism, as data will be offered separate from the device
abstraction. Another weak point of the platform is device-
to-device interaction between local devices. In case of real-
time applications, mechanisms to allow direct access between
devices (e.g., by redirecting devices to the device itself) might
be necessary. However, due to the heterogeneity of the devices
involved, we expect this to be a tall order. Finally, improving
and quantifying the scalability of our platform (e.g., via
dynamic routing tables as mentioned in Section 6.1) will also
be considered in the future.
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