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Chemokines are chemotactic regulators of immune surveillance in physiological and pathological conditions such as inflammation,
infection, and cancer. Several chemokines and cognate receptors are constitutively expressed in the central nervous system,
not only in glial and endothelial cells but also in neurons, controlling neurogenesis, neurite outgrowth, and axonal guidance
during development. In particular, the chemokine CXCLI2 and its receptors, CXCR4 and CXCR?7, form a functional network
that controls plasticity in different brain areas, influencing neurotransmission, neuromodulation, and cell migration, and
the dysregulation of this chemokinergic axis is involved in several neurodegenerative, neuroinflammatory, and malignant
diseases. CXCR4 primarily mediates the transduction of proliferative signals, while CXCR7 seems to be mainly responsible
for scavenging CXCLI2. Importantly, the multiple intracellular signalling generated by CXCLI12 interaction with its receptors
influences hypothalamic modulation of neuroendocrine functions, although a direct modulation of pituitary functioning via
autocrine/paracrine mechanisms was also reported. Both CXCLI2 and CXCR4 are constitutively overexpressed in pituitary
adenomas and their signalling induces cell survival and proliferation, as well as hormonal hypersecretion. In this review we focus on
the physiological and pathological functions of immune-related cyto- and chemokines, mainly focusing on the CXCL12/CXCR4-7
axis, and their role in pituitary tumorigenesis. Accordingly, we discuss the potential targeting of CXCR4 as novel pharmacological

approach for pituitary adenomas.

1. Background

Chemokines (CKs) are low molecular weight chemoattrac-
tant peptides, belonging to the cytokine family [1]. Differently
from interleukins, CKs act via G protein-coupled receptors
(GPCRs), controlling cell migration and trafficking through-
out the body, during immune response [2] and development
[3, 4]. CKs are also critical mediators of several physiological
mechanisms such as wound-healing and tissue homeostasis
[3, 5]; moreover, CKs are expressed in the central nervous
system (CNS) [6, 7] where they not only act as mediators
of development, intercellular communication, and inflamma-
tory processes but also function as neurotransmitters or neu-
romodulators, mainly involved in neuroendocrine regula-
tions [8]. Recently, it has been shown that CKs play a relevant
role in tumorigenesis, neoangiogenesis, tumor progression,

and metastasization [9, 10]. Evidence for autocrine/paracrine
regulatory mechanisms in different normal and cancer cell
types, driven by chemokine/receptors interaction on the same
or a nearby cell, supports the potential role of CKs in the
control of physiological or tumoral endocrine functions. In
particular, the chemokine (C-X-C motif) ligand 12 (CXCL12)
and its receptors, CXCR4 and CXCR?7, have been involved in
cancer cell proliferation, migration, and invasion [11-13].
Anterior pituitary adenomas account for approximately
15% of primary intracranial tumors. They are classified by
size (microadenoma, <10 mm or macroadenoma, >10 mm)
and on the basis of their ability to produce hormones, as
secreting or functioning tumors (about 50% of adenomas)
or as clinically nonfunctioning pituitary adenomas (NFPA)
that do not release hormones or, more often, secrete clinically
nonrelevant (i.e., gonadotropins) or nonbioactive hormones



(a-subunit of glycoproteic hormones) [14, 15]. Almost all
pituitary tumors display a benign clinical course being slow
growing and show low incidence of metastasis; however, they
are frequently associated with high morbidity and mortality
due to mass-related effects and paraneoplastic syndromes
related to hormone hypersecretion. Functioning pituitary
adenoma leads to hypersecretion of hormones that results in
classic clinical syndromes, mainly acromegaly (overproduc-
tion of GH), hyperprolactinemia (excess of PRL), and Cush-
ing’s disease (overproduction of ACTH) and, more rarely,
secondary hyperthyroidism (increased TSH secretion). These
tumors can be monohormonal or plurihormonal. NFPAs do
not secrete sufficient hormones (mainly FSH or LH) to be
detectable in the blood or to cause hormonal manifestations;
in other cases only biologically inactive «-subunit is released
and more rarely they are classified as true nonsecreting
adenomas. Importantly, all pituitary adenomas may induce
hypopituitarism and neurological symptoms (for example
compression of the optic chiasma) due to mass effect [16, 17].
Clinical relevance and recent advances in the comprehension
of their molecular pathogenesis suggest that pituitary ade-
nomas should be considered a more critical disease than a
benign endocrine pathology. Thus, a deeper evaluation of the
mechanisms at the basis of their tumorigenesis and better
prognostic markers to identify tumors with a high risk of
recurrence are most awaited to improve pituitary adenoma
clinical outcome.

This review will focus on the diverse role of CXC
chemokines and their receptors in normal pituitary cell
functions and pituitary tumor development and progression,
summarize recent progress in CXCR7 functions, and discuss
the present issues and future perspectives.

2. Chemokine Classification and
Receptor Interactions

Human CK system includes approximately 50 peptides and
22 GPCRs. CKs are classified, according to the number and
spacing of the first two cysteine residues of a conserved
cysteine motif, into four groups: (1) CXC (with a single
nonconserved amino acid residue -X- between the first
N-terminal C residues: CXCLI1-17); (2) CC (two adjacent
cysteine residues: CCL1-28); (3) XC (only one N-terminal
cysteine: XCL1-2); (4) CX3C (three nonconserved amino acid
residues separating the N-terminal C residues: CX3CL1) [18,
19].

CK receptors are typical GPCRs, all of them signaling
through heterotrimeric G proteins (Ga, and G-y subunits),
with the remarkable exception of CXCR7 which is exclusively
biased towards S-arrestin-mediated signaling [20]. Upon
ligand binding, many CK receptors may form homo- and
heterodimers that activate distinct intracellular signaling
pathways from individual receptors [21]. The classification of
CK receptors is based on the class of their ligands (e.g., CXC
ligands bind CXC receptors).

CKs may also bind a small group of so-called “atypical
chemokine receptors” (ACKRs), which are unable to initiate
downstream conventional G-protein-dependent signaling,
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resulting, from a functional point of view, in the inability to
induce directional cell migration [22]. These receptors bind
distinct and complementary range of CKs and likely control
CK networks during development and physiopathological
processes by scavenging CKs. ACKRs, including Dufty anti-
gen receptor for chemokines (DARC, ACKRI), C6 (ACKR2),
CXCR7 (ACKR3), and CCX-CKR1 (ACKR4) (for classifi-
cation and nomenclature see [23]), were proposed to serve
as decoy receptors to scavenge inflammatory CKs from the
extracellular microenvironment, inhibiting their signaling
[22]. Indeed, recent evidence supports the ability of ACKRs
to transport, internalize, and degrade CKs, leading to the
formation of CK gradients in normal and cancer tissues,
responsible for the functional modulation of their signaling.

CKs belonging to the CXC family can be further grouped
according to the presence or absence of a the tripeptide motif
Glu-Leu-Arg (ELR) preceding the CXC domain (ELR" or
ELR™), which affects receptor binding specificity and bio-
logical effects. Notably, ELR™ CXC chemokines (i.e., CXCL9,
-10 and -11) are interferon y-inducible and act as potent
angiostatic factors to impair angiogenic stimuli induced by
growth factors. Conversely, ELR" CKs (CXCL1, -2, -3, -5, -6,
-7,-8) are proangiogenic [24, 25]. CXCLI12 (previously known
as stromal cell-derived factor-1, SDF-1) is an exception to
this characterization, since it is ELR™ but mediates tumor-
promoting angiogenesis via its receptor CXCR4 [9, 24, 26].

Common features shared by all CKs are pleiotropism,
promiscuity, and redundancy, with a single CK able to bind
several receptors, whereas multiple CKs bind the same recep-
tor resulting in the same functional outcome [27].

Upon ligand binding, CK receptors undergo conforma-
tional change that activates the G« subunits sensitive to
Bordetella pertussis toxin (PTX). Their activation dissociates
the GTP-bound Ga subunit from the G-y dimer, and both
these active components trigger intracellular signals, such
as activation of phospholipase C (PLC)/inositol triphosphate
(IP3)—Ca2+/diacyl glycerol (DAG)/protein kinase C (PKC)
and inhibition of adenylyl cyclase (AC)-cAMP/protein kinase
A (PKA). Moreover, these receptors control the activity of
different kinases, including extracellular regulated kinases
(ERK1/2), c-Jun N-terminal kinase (JNK), p38, phosphatidyl
inositol 3 kinase (PI3K)-Akt, and the focal adhesion kinase
(FAK).

The distinct transductional cascades regulated by CK
receptors mainly depend on the G subfamily which they
activate: Gad inhibits AC but also activates tyrosine kinases
of the Src family, favoring signal integration; Gaq increases
PLCp activity [12], to cleave PIP2 to form DAG and IP3. In
turn, DAG activates PKC, whereas IP3 binds specific recep-
tors on the endoplasmic reticulum inducing Ca** release
from intracellular stores. Finally, Gal2 controls the activity
of the small G protein RhoA, via Rho-GEE On the other
hand, CK receptor activation of Gy subunits results in the
activation of PI3K leading, through the phosphoinositide-
dependent kinase 1 and 2 (PDKI-2), to Akt phosphorylation
and subsequent activation of its downstream signal proteins
such as glycogen synthase kinase 3 (GSK3), mammalian tar-
get of rapamycin (mTOR), and FAK, which control migration
in different types of normal and tumor cells [28].
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After stimulatory responses, the inactivation of CK recep-
tor signaling occurs after the hydrolysis of GTP to GDP
by the intrinsic GTPase activity of G subunit, followed by
its reassociation with Gf/y in an inactive complex. More-
over, receptor desensitization, internalization, and lysosomal
degradation are mediated by G protein-coupled receptor
kinases (GRKs) and arrestins [29].

3. Physiological Functions of CKs: Focus on
the CXCL12/CXCR4-R7 Axis in the CNS

CKs are constitutively secreted by leukocytes, fibroblasts,
endothelial, and epithelial cells to mediate cell activation,
trafficking, and homing [5, 30]. Beside their basal expression,
most CKs are highly induced during inflammatory or infec-
tive processes driving different phases of immune response
via a CK gradient which directs leukocyte recruitment to
the site of inflammation. Furthermore, CKs directly activate
specialized effector lymphocytes during the different steps
of immune response, for example, CXCL8 (formerly named
IL8) recruits neutrophils, basophils, and eosinophils express-
ing its receptors, CXCRI and CXCR2 [2]. Adaptive immune
responses are mediated by CKs (CXCL9-L10-L11) secreted by
macrophages activated by INF-y released by natural killer and
T helper 1 (Thl) cells that express CXCR3, the receptor for
CXCL9-L11 [31], thus amplifying leukocyte recruitment and,
finally, inflammation.

CKs also play a key role in embryogenesis, organogenesis,
angiogenesis, and germ cell migration, especially during
neural development [5]. The constitutive expression of CKs
and their receptors in adult normal brain was initially
identified in the immune-like competent cell populations
such as microglia and astrocytes. The subsequent detection
of their expression in neurons [32-34] broadened CK role
as neuromodulators/neurotransmitters in neurological pro-
cesses such as thermoregulation, pain perception, and stress
conditions, as well as in pituitary functions.

Focusing on the CXCL12/CXCR4-R7 network, it exerts a
variety of functions in CNS development as well as in mature
brain. CXCLI2 directs the migration of embryonic and adult
stem cells in the developing central and peripheral nervous
system [35, 36], controlling the formation of cerebellum, cere-
bral cortex, hippocampus, and dorsal root and sympathetic
ganglia [25, 37, 38]. Postnatally, CXCR4 expression, while
downregulated in many brain areas, persists in the hypotha-
lamus where it modulates the hypothalamic-pituitary system
and the hypothalamic-pituitary-gonadal axis, in particular,
cooperating to the regulation of neuroendocrine and repro-
ductive systems [39-41].

As far as CNS development is concerned, the pivotal role
of CXCLI12/CXCR4 emerged from studies using knockout
mice for either the ligand or the receptor. Both models
exhibited a superimposable abnormal neuron migration in
the cerebellum, dentate gyrus, and dorsal root ganglia [35,
36, 42, 43]. Furthermore, CXCL12/CXCR4 axis controls
migration and homing of Cajal-Retzius cells [44, 45], post-
mitotic neurons [46], cortical interneurons [40, 47-49], and
dopaminergic neurons [50]. CXCL12/CXCR4 regulation of

stem cell positioning and migration persists in adults, in
the neurogenic niches of brain and in the bone marrow,
where hematopoietic progenitors cells are retained by the
interaction between ligand and receptor [51] that also pro-
motes their survival and proliferation. Interestingly, a similar
homing mechanism has been demonstrated for adult neural
progenitor cells (NPCs) or neural stem cells (NSCs) [25].

CXCRY7, the second CXCLI2 receptor, has a 10-fold higher
binding affinity than CXCR4 but also binds CXCLI11 (formerly
known as IFN-inducible T cell & chemoattractant, I-TAC,),
which, in turn, interacts with CXCR3 [52]. Presently, the
function of CXCR?7 is still controversial [53]. CXCR7 does
not mediate CXCLI2-dependent cell migration [20, 52, 54]
and displays atypical signaling pathways, failing to induce
intracellular Ca®* mobilization and inhibition of cAMP
production, since this receptor does not seem to be coupled
to Gia. Based on its ability to rapidly sequester and degrade
CXCLI12 and thus to suppress CXCR4 activity, CXCR7 was
firstly proposed to be a decoy receptor [54-57]; currently, this
activity is considered only a part of the possible mechanisms
by which CXCR7 modulates cellular functions [22]. Indeed,
emerging evidence suggests that CXCR7 can promote cell
motility [58-60] and trigger intracellular signals in different
human normal and cancer cell types [61-64]. In particular,
CXCR?7 activates Akt, MAP kinase (MAPK), and JAK/STAT3
cascades, either by direct modulation, through a S-arrestin-
dependent pathway [20, 65], or after heterodimerization
with CXCR4 [59, 66-69]. Preferential signaling through G-
proteins or f-arrestin is influenced by both CXCR4-CXCR7
dimer formation and the oligomerization state of CXCLI2
[70, 71]. CXCR7 was recently shown to activate mTOR in
human renal cancer cells through the modulation of ERK1/2
and p38 activities [72], further suggesting that it is a fully
signaling receptor although independent from G proteins.
However, CXCR7 knockout mice display a lethal phenotype
due to a heart valve and vascular defects [73], a very similar
scenario observed in mice with targeted disruption of the
genes encoding CXCR4 and CXCL12 [67, 74].

In the adult rat brain, CXCR7 is expressed at high
levels in vessels, pyramidal cells, and mature dentate gyrus
granule cells, overlapping CXCLI12 expression pattern [75,
76], and a functional role for CXCR7 in the control of
neuronal migration to the subventricular and intermediate
zone was suggested [69, 77]. In rat mature neurons and blood
vessels, CXCR7 appears to be the preponderant CXCLI12
receptor, likely contributing to CXCL12-dependent neuronal
development [75]. Moreover, CXCR7 acts as scavenger on
brain microvessel endothelium [78] and it is essential for
inflammatory leukocytes to infiltrate the CNS [79]. CXCR7
is also expressed in neural tube and brain of mice embryos.
In rat cortex, CXCR?7 is localized in GABAergic neuron
precursors, and Cajal-Retzius cells and, unlike CXCR4, it has
been identified in neurons forming the cortical plate and in
the developing dentate gyrus and cerebellar external germinal
layer [75, 80].

Migrating immature cortical interneurons co-express
CXCR4 (membrane surface expression) and CXCR?7 (intra-
cellular expression, mainly endosomes) [77]. CXCR?7 rapidly



recycles from membrane to intracellular pools of interneu-
rons, and its trafficking mediates CXCLI2 endocytosis. It
is essential for the regulation of interneuron migration in
the developing cerebral cortex since its removal causes an
increase in extracellular CXCLI12 content, which favors its
binding to CXCR4 and consequently induces the endocytosis
and degradation of CXCR4. Thus, CXCR?7 regulates CXCR4
expression and likely controls CXCLI2 signaling to drive
successful migration in the developing cerebral cortex [77]. In
addition, since CXCR7/~ and CXCR4~/~ mutant mice dis-
played opposite defects in interneuron motility and position-
ing, CXCR4 and CXCR7 were proposed to have distinct roles
and signal transduction to regulate interneuron movement
[69]. This fine tuning of CXCLI12 response induced by CXCR7
occurs either directly modulating f-arrestin-mediated sig-
naling cascades or scavenging local CXCLI12 availability [81].

Deletion of one of the CXCLI2 receptors is sufficient
to generate a migration phenotype that corresponds to the
CXCLI12-deficient pathway and interfering with the CXCLI2-
scavenging activity of CXCR7 causes loss of CXCR4 function
[81]. For example, during development, CXCLI2 regulates
the migration of gonadotropin-releasing hormone (GnRH)
neurons, through CXCR4-mediated activation of the GIRK
channel [82], but this effect is modulated by CXCR7 which
controls CXCLI12 content availability acting as a scavenger
along the migratory path [83].

The relevance of CXCL12 and CXCR4-R7 system in CNS
ontogeny and functions is even more crucial in the view of
their expression in both embryonic and adult brain stem
cells, a subset of undifferentiated cells characterized by self-
renewal through asymmetric division, differentiation into
multiple lineages, and constant proliferation that in adults
acts in tissue maintenance and repair [84]. The role of
CXCLI12 and CXCR4 in stemness maintenance has gained
much attention also in the neuroendocrinology field due to
the proposed role of stem cells in pituitary plasticity [84, 85].
Both CXCLI12 and CXCR4 are expressed in different anterior
pituitary cell subtypes, as well as in nonhormonal cell types
[86-88]. The chemotactic activity of this CK could be also
relevant in folliculostellate (FS) cell, non-FS nestin* cell, and
stem cell migration [86, 89]. Therefore, understanding the
CK-dependent mechanisms associated with candidate stem
cells within pituitary might help to clarify their activity in
development or in normal mature hormone-producing and
tumor pituitary cells [84, 90, 91].

The stem cell concept applied to cancer has radically
changed the research approach to tumorigenesis and treat-
ment, since the subset of cancer cells, namely, cancer stem
cells (CSCs), seems responsible for tumor initiation, metas-
tasis, and resistance to therapy [92]. Although, at present,
all factors and signals that regulate CSCs are not com-
pletely clarified, accumulating evidence suggests a key role
of the CXCL12/CXCR4 axis in CSC maintenance and growth
[62, 93]. Moreover, interactions between CSCs and tumor
microenvironment through secreted CKs (e.g., CXCLI12)
[13], possibly occurring also in pituitary adenomas, may act
as chemoattractant to recruit fibroblasts, endothelial, mes-
enchymal, and inflammatory cells to the tumor, via CXCR4.
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4. Chemokine Functions in Normal Pituitary

Through the release of growth factors (bFGF, EGE and
VEGF), cyto/chemokines, and neuroendocrine proteins
(steroid hormones, prolactin, growth hormone, ghrelin, ery-
thropoietin, catecholamines, etc.) neuronal and neuroen-
docrine pathways regulate fundamental functions within
the CNS and its interaction with the immune system [94].
Complex autocrine/paracrine signals through neuropeptides
(e.g., EGF and VIP), neurotransmitters, cytokines (IL-1, IL-
6), and CKs occur also in pituitary regulation, differently
from the classical hypothalamic input and feedback signals
from the periphery [95-97].

EGF expression has been observed at all stages of pituitary
development and in the adult pituitary, and the EGFR path-
way contributes to pituitary physiology and tumorigenesis
[98].

IL-1p receptors were detected in pituitary cells [99],
and their activation inhibits prolactin (PRL) secretion from
dispersed rat pituitary cells through the regulation of AC and
PLC activities, and Ca** fluxes [100-103].

IL-6 and its receptors are also expressed in the pituitary
gland [104, 105] where their interaction regulates apoptosis
and proliferation of endocrine cells in vitro [106]. IL-6 is
mainly produced by the FS cells and activates a paracrine
loop on the hormone-secreting cells [107, 108] regulating
ACTH [109], PRL, LH, and GH secretion [110-112] via the
modulation of AC and PLC activities [113]. Interestingly, IL-6
exerts opposite effects on normal and adenomatous pituitary
cells: it is inhibitory for normal anterior pituitary [114] and
stimulatory for adenoma cells [107].

IL-18 was also proposed to exert paracrine effects in pig
anterior pituitary being the ligand and its receptor expressed
by different subsets of GH secreting cells [115].

Finally, interleukins’ regulation of the hypothalamic-
pituitary-adrenal axis also involves the modulation of vasoac-
tive intestinal peptide- (VIP-) secreting pituitary cells to
control, in a paracrine manner, PRL release [116].

More recently, several studies were directed on the role of
CKs in pituitary. CKs can affect pituitary hormone secretion
via the hypothalamic-pituitary axis or autocrine/paracrine
regulation. CXCLI is expressed in the posterior pituitary, in
the paraventricular nucleus (PVN) of the hypothalamus and
the median eminence [6]. In response to stressful stimuli,
this CK is released in the median eminence [117] to reach
its receptor (CXCR2) expressed in pituitary cells and induce
the release of PRL and GH and the inhibition of LH and
FSH secretion [118]. Similarly, CCL2 was identified in both
hypothalamus and pituitary [119]. The generation of trans-
genic rats (S1003-GFP rats) that express green fluorescent
protein in S100[3-positive pituitary FS cells in the anterior
pituitary [120] led to the characterization of S1003-positive
cells [86, 121] and transcripts of CXCL10 (IFN-y inducible
protein 10 kDa, IP-10) were identified in a subpopulation of
these cells. Importantly, CXCR3, the receptor for CXCLIO0,
was shown to be expressed in corticotrophs, suggesting a
possible autocrine/paracrine effect of CXCLIO, released from
FS cells, on ACTH-producing cells [122].
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CXCLI2/CXCR4 is the major regulatory axis not only
connecting the immune and nervous systems, but also play-
ing a role in neuroimmune regulation of the anterior pituitary
physiological functions [6].

CXCLI12 was detected in both rat pituitary [123] and
hypothalamus [124] and its expression in hypothalamic neu-
rons, concomitant with CXCR4 positivity at pituitary level
[124], corroborated the hypothesis that this CK could rep-
resent a hypothalamic regulatory factor of anterior pituitary
function. As a consequence, the chemokinergic regulation
of anterior pituitary cells might derive from coordinate
activity of CXCLI2 originating from both hypothalamic
neurons and systemic circulation [95]. A regionalized con-
stitutive expression of CXCL12 was reported in adult rat
brain, particularly in arginine vasopressin- (AVP-) expressing
neurons [125] where its interaction with CXCR4 leads to
modulates induced plasma AVP release in vivo [39]. The
expression pattern of this chemokine and its receptor in
the rat hypothalamo-neurohypophyseal system was further
investigated: they colocalize within AVP-expressing neurons
in both supraoptic (SON) and paraventricular (PVN) nucleus
as well as in dense core vesicles of AVP-positive nerve
terminals in the posterior pituitary, showing a similar dis-
tribution [126]. Since AVP controls body fluid homeostasis,
the interaction between CXCL12 and AVP was studied in
AVP-deficient Brattleboro rats that show low expression of
both CXCLI2 and CXCR4, correlated with AVP protein
expression level in SON, PVN, and posterior pituitary.
However, since CXCLI2 mRNA is increased, it was hypoth-
esized that CXCLI2 synthesis is present in these cells but,
being costored with AVP, a concomitant massive release of
both peptides is responsible for their low content at both
hypothalamic and posterior pituitary levels [126]. AVP and
CXCLI12 expression is dependent on water balance and is
centrally regulated, further strengthening the role of CXCLI2
in neuroendocrine functions. However, CXCL12 and CXCR4
are also coexpressed in rat pituitary cells [127] and a further
autocrine/paracrine regulation of pituitary functioning was
hypothesized. Complete colocalization between CXCR4 and
GH was reported in normal rat pituitary, suggesting that
CXCR4 is a rather specific regulator of somatotroph activity,
in rats [128]. Indeed, CXCLI12 stimulates GH transcription
and secretion in both primary rat anterior pituitary cells
and the GH-producing pituitary adenoma cell line, GH3
[128]. Interestingly, rat FS cells also express CXCR4 and
secrete CXCLI2, which acts as a potent chemoattractant for
these cells. The activation of this autocrine loop facilitates
the formation of F-actin in FS cells and the subsequent
directional extension of their cytoplasmic processes toward
other FS cells [86]. CXCLI2/CXCR4 interaction induces
invasion and interconnection of FS cells to near lobular
structures likely forming a circuit that causes or maintains
local cellular arrangement in the anterior pituitary [86].

In humans, a slightly different pattern of expression was
found in autoptic normal pituitaries. Scattered expression
of both CXCR4 and CXCLI2 within the anterior lobe was
detected by immunohistochemistry, revealing a nonhomo-
geneous positivity for both proteins throughout the tissue,
including large negative areas, others showing few positive

cells and rare zones with higher expression [129] (Figure 1).
Interestingly, in all these areas, CXCR4 expression resulted
largely higher than its ligand, although all the CXCLI12-
positive cells express CXCR4, as well. CXCR4-expressing cells
do not belong to specific secreting cell type, being present
in GH, PRL, or ACTH-secreting cells, while no expression
was observed in human FS cells. However, some CXCR4-
expressing cells do not coexpress any hormones and no
colocalization of either CXCR4 or CXCLI2 was observed in
ES cells; thus it was proposed that CXCL12/CXCR4 system
may also label undifferentiated/progenitor cells. Conversely,
the rare CXCLI12-positive cells were mainly, although not
exclusively, corticotrophs [129]. Notably, this CK-receptor
pair was undetectable in human posterior pituitary lobe
[129], contrarily to what was observed in rats. Thus, from
these data it is evident that, in normal pituitary, CXCLI2
is secreted by cell subpopulations that, cooperating with
hypothalamic factors (including CXCLI12 itself), may con-
tribute to paracrine modulation of pituitary functioning
(Figure 2). Consequently, alterations of the endocrine regula-
tory pathways due to upregulation of hypothalamic/pituitary
CXCL12/CXCR4 axis might lead to the development of
pituitary adenomas [127, 129].

The activity of CXCR7 in normal pituitary deserves
further investigation; however its expression in pituitary
adenoma tissues [130, 131] suggests possible involvement in
pituitary function regulation.

5. CXCL12/CXCR4-R7 in Cancer Development
and Progression: Autocrine/Paracrine Loops

Beside direct CXCR4-dependent activation of ERK1/2, trans-
activation of tyrosine kinase receptors is currently a relevant
mechanism in tumor cell responses. Mainly, the transacti-
vation of epidermal growth factor receptor (EGFR) family
members mediates the mitogenic activity of different CKs
in human cancer. A cross-talk between CXCL12 and EGFR
and/or HER2/neu phosphorylation was demonstrated in
breast and ovarian cancer cells through G protein-dependent
activation of kinases of the Src family [132-134]. Moreover, in
breast cancer, CXCR4 interacts with the EGFR variant, EGFR
VIII, a constitutively active mutant highly expressed in cancer
stem cells [135], to regulate invasion via p38 MAPK [136].
CXCR4 signaling is negatively regulated by protein-tyrosine
phosphatases (PTPs), such as the Src homology-containing
protein-tyrosine phosphatase 1 (SHP1) and the SH2 domain-
containing inositol 5-phosphatases (SHIP), while SHP2, con-
stitutively associated with CXCR4, potentiates CK signaling
[137, 138]. These observations are particularly relevant since
they highlight possible direct antagonisms between CXCR4
and somatostatin receptors (SSTR) that are powerful acti-
vators of PTPs [139-141]. This antagonistic activity could
acquire clinical relevance in light of the fact that SSTR
agonists are the main pharmacological tool available for the
treatment of pituitary adenomas [142, 143].

The concomitant expression of ligand-receptor pair in
the same tumor cells, responsible of autocrine/paracrine
activation, is one of the leading causes of clinical aggressive
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GH-secreting pituitary adenoma
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FIGURE 1: Overexpression of CXCR4 in human pituitary adenomas as compared to normal human adenohypophysis. Immunohistochemical
images of human GH-secreting adenoma showing the marked homogeneous positivity for CXCR4 throughout the tissue as compared to
scattered staining evidenced in normal anterior pituitary. Hematoxylin and eosin staining and GH-positivity are also depicted. (Original
magnification 40x).
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FIGURE 2: CXCLI12/CXCR4 system represents a regulatory pathway for pituitary both in physiological functions and tumorigenesis. CXCL12
originating from hypothalamic neurons or systemic circulation represents a regulatory factor of anterior pituitary function. Autocrine and
paracrine mechanisms control proliferative and secretagogue activities in normal pituitary cells expressing either CXCR4 alone or CXCR4
and CXCLI12. Overexpression of CXCR4 and its ligand induces autocrine/paracrine proliferation in pituitary tumor cells and likely contributes
to adenoma development.
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behavior in various cancer types [144, 145]. Exploiting the
coexpression of CKs and their receptors, cancer cells and
cells of the tumor microenvironment are able to modu-
late immune response, promote angiogenesis, and sustain
proliferation [146]. As previously described, this autocrine
mechanism is maximally effective for CXCR4, the most
widely expressed CK receptor in human solid and hemopoi-
etic malignancies [28]. The autocrine/paracrine loop of the
CXCLI12/CXCR4 pair has been deeply investigated in brain
tumors in both in vitro and in vivo models: CXCLI2 stim-
ulates proliferation and migration of glioblastoma cells and
xenografted tumors inducing ERK1/2 and Akt phosphoryla-
tion [147-149]. The mitogenic activity mediated by CXCLI2-
CXCR4 was also reported in meningioma, in which CXCR4
activation increased DNA synthesis through activation of
ERK1/2 in primary cultures and its expression level signifi-
cantly correlated with Ki-67 proliferation index of the original
tumor tissue [150, 151], while CXCR7 was mainly localized in
tumor endothelia [152].

Similar CXCR4 tumor-promoting effects were observed
in breast carcinoma [80], suggesting CXCL12 as possible
autocrine/paracrine growth factor [153]. Interestingly, in
breast cancer cells the synthesis and release of CXCLI12 is
under the control of 17 3-estradiol contributing to its prolifer-
ative effects and mediating, via a Src-dependent mechanism,
EGEFR transactivation [133, 154].

Furthermore, CXCLI12 is also indirectly implicated in
tumor pathogenesis, acting as chemoattractant for CXCR4-
positive cells, directing tumor cell migration [155-157] and
controlling invasive and metastatic properties of CXCR4-
expressing cancer cells to distant organs [158, 159]. The
invasive behavior of cancer cells might indirectly depend on
locally released CXCL2 that, via an autocrine mechanism,
binds to CXCR4 impairing chemotaxis towards CXCLI12-
producing target organs and metastatic spread [160]. In addi-
tion, normal cells forming tumor stroma (i.e., macrophages,
lymphocytes, fibroblasts, and endothelial cells) concur to
cancer development and progression through CXCLI2 secre-
tion. CXCLI2 concentration gradient directs cancer cell
motility in several tumors [10, 161], including aggressive solid
neoplasms (breast [153], colon [162], brain [149] ovarian [163],
prostate [161], renal cell [164] and oral squamous cell [165]
carcinomas, and melanoma [166]). Importantly, as observed
in a rat mammary adenocarcinoma cell line overexpressing
both receptors [167], CXCR4 and CXCR7 play opposing
roles in breast cancer metastasis: CXCR4 mediates cancer
cell invasion allowing cells to follow the CXCLI2 gradient
generated by metastatic targets whereas CXCR7 favors tumor
growth increasing angiogenesis but impairs cell migration
scavenging the chemokine.

6. A Network Map of Proliferative Signaling in
Pituitary Tumor Development

Raf/MEK/ERK and PI3K/Akt pathway dysregulation is a
common alteration responsible of tumor initiation and pro-
gression. While the pathways are classically activated by
growth factors, cross-talks and transactivation mechanisms

with neuropeptide-cytokine-CK/GPCRs have been increas-
ingly recognized. This cross-talk activates ERK1/2, which
is directly responsible for cell growth and differentiation,
depending on the cellular context and represents one of the
major proliferative pathways in cancer [168, 169].

The overexpression or constitutive activation of recep-
tors for growth factors, cytokines, and CKs potentiates
the activation of Ras/Raf/MEK/ERK pathway also in pitu-
itary adenoma [170]. MAPK phosphorylation is relevant
in different pituitary cell types such as AtT20 cells, where
it regulates CRH-induced POMC transcription [171], gon-
adotrophs for GnRH signaling [172], GH-secreting cells
for GHRH-dependent cyclin DI expression [169], and
GH4Cl1 somatotroph cell line in which the Gsp oncogene
impairs Ras/ERK1/2-dependent PRL gene regulation [173].
PI3K/AKT/mTOR pathway, activated by a variety of growth
factors and hormones, when dysregulated, leads to aberrant
growth of pituitary adenoma cells. Akt is overexpressed and
hyperphosphorylated in NFPA [174], in a mouse model of
TSH-oma [175], and in GH3 cells in which the inhibition of
PI3K/AKkt signaling by octreotide increases the expression of
the tumor suppressor gene Zacl [176, 177].

Similarly to cell proliferation, survival mechanisms also
sustain pituitary development and tumorigenesis: in par-
ticular the balance of pro- and antiapoptotic factors [178],
physiologically contributing to normal pituitary cell plastic-
ity, when unbalanced, favors pituitary cell transformation
[179]. For example, in pituitary adenomas, antiapoptotic
mediators, such as the bcl-2 protein family, are upregulated
[180], while Fas, a major apoptotic factor in different cell
types, activates apoptosis in both normal rat lactotrophs and
somatotrophs [181] and in pituitary adenoma cell lines [182].
Several pituitary-related genes may exert a role in apoptosis
of secretory pituitary cells, as the developmental factor PITX2
and the transcription factor Pit-1 [183, 184], although their
mechanisms are not yet fully understood.

Recent studies, however, highlighted that, when con-
sidering the complexity of regulatory pathways involved
in pituitary cell survival and proliferation, it should take
into account not only apoptosis but also senescence, an
alternative process acting during tumor-suppressive cell fate.
Importantly, senescence is gaining biological significance
also in pituitary adenomas, whose typical benign nature
could result from protective antiproliferative mechanisms.
Several transformation events (e.g., DNA damage, loss of
tumor-suppressor gene, oncogene activation, and growth
factor overexpression) induce preventive cellular senescence,
characterized by cell cycle exit and subsequent irreversible
proliferation arrest. Thus, pituitary tumors may be more
prone to activate senescence-associated pathways, maintain-
ing their benign behavior, preventing malignant transforma-
tion, and regulating their development [185]. Interestingly,
IL-6 has been shown to participate in oncogene-induced
senescence in pituitary gp130 overexpressing tumor cells [96].
Moreover, angiogenic and apoptotic processes cooperate in
determining tumor aggressiveness, and this regulation might
also be involved in the pathogenesis of pituitary transforma-
tion. The pituitary gland is highly vascularized but, unlike
other solid malignancies, conflicting results are available



on angiogenic factors associated with pituitary adenoma
progression and recurrence [186, 187]. VEGF was proposed
as pituitary proangiogenic factor and possible therapeutic
target [188], and the hypoxia-inducible factor- (HIF-) «, a key
molecule in hypoxic pathways triggering vessel formation,
was detected in pituitary tumor tissues [189, 190] and may
favor hemorrhage in pituitary macroadenomas [191].

CKs, particularly CXCLI12 signaling via CXCR4 and
CXCRY7, represent candidate mediators of the above described
intracellular pathways, determining proliferative, antiapop-
totic, and angiogenic signals, thus possibly concurring to
pituitary tumor development and aggressiveness.

7. Chemokines in Pituitary Tumorigenesis

Pituitary adenomas are common intracranial tumors of the
adenohypophysis causing serious morbidity, due to exces-
sive hormonal secretion, mass effects, and local invasion
of surrounding structures. At present, the understanding
of biological and molecular pathogenesis and mechanisms
of progression of these tumors is largely incomplete (for
review see [14, 192, 193]). Emerging evidence reports that
multiple factors might contribute to pituitary tumorigenesis,
such as frequently altered gene expression, genetic (aryl
hydrocarbon receptor interacting protein, AIP [194]; multiple
endocrine neoplasia syndrome type 1, MENI [195]; guanine
nucleotide-activating alpha subunit, GNAS, [196]), and epi-
genetic (cyclin-dependent kinase inhibitor 2A, CDKN2A, or
P16; FGFR2/melanoma associated antigen -MAGE-3 path-
way) [197] mutations, and abnormal microRNAs [198].

The improvement of this knowledge is even more helpful
taking into account the peculiar properties of pituitary ade-
nomas as compared to other malignancies: they commonly
grow slowly but with local invasive behavior and occasionally
develop into high aggressive tumors. This often prevents the
efficacy of surgical and systemic medical treatments, the latter
hampered by the lack of definite mechanisms underlying
pituitary cell transformation and potential therapeutic tar-
gets.

The role of CKs in pituitary tumor development has
been scantily investigated. However, few studies addressed
the potential role of components of this peptide family in
regulating human pituitary tumorigenesis.

CXCL8 mRNA was identified in a small percentage of
anterior pituitary adenomas [199, 200], altogether with the
expression of CXCR2 [201], the CXCL8 receptor that also
binds other CXC CKs (CXCL1, CXCL7), confirming the
potentiality of autocrine stimulation in pituitary adenomas.
Indeed, a consistent release of CXCL8 was observed in pri-
mary cultures derived from human somatotroph adenomas,
induced by stimulation with interleukin-13 and inhibited
by GH releasing hormone (GHRH) [202]. Thus, a further
assessment of the possible role of this CK in the pathogenesis
of pituitary tumors is required, likely being based on CXCL8
ability to recruit active neutrophil within the adenoma,
influencing the inflammatory response or acting as mitogen
for normal and transformed cells.

However, the majority of studies focused on the analysis
of CXCL12 and CXCR4 expression in human neoplastic
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pituitary tissues and their role in adenoma cell proliferation
(128, 129, 203-205].

CXCR4 mRNA is expressed in almost all GH-secreting
pituitary adenomas and in the great majority of NFPAs,
whilst CXCL12 was identified in about 2/3 of these tumors.
Notably, most CXCLI12-positive cells also express CXCR4
strongly suggesting an autocrine/paracrine regulation of
tumor cell proliferation [129, 205]. This hypothesis was
further confirmed measuring the in vitro basal secretion
of CXCLI2 by human pituitary adenoma primary cultures
resulting in an autocrine constitutive stimulation of DNA
synthesis [129] (Figure 2) and, indirectly, by the absence of
CXCR4 activating mutations in GH-secreting and NFPA able
to sustain adenoma cell proliferation [204]. This observation
was confirmed by a high percentage of different types of
secreting pituitary adenomas showing expression of both
CXCLI12 and CXCR4 [129, 203, 204]. Finally, the evaluation
of CXCR4 and CXCLI2 expression in invasive and non-
invasive pituitary adenoma specimens, by flow cytometry
and immunohistochemical staining, demonstrated that the
percentage of CXCR4- and CXCLI2-positive cells was sig-
nificantly higher in invasive pituitary adenomas [206]. Thus,
the correlation of CXCR4 and CXCLI2 expression levels and
tumor invasiveness was proposed to be exploited as potential
early diagnostic biomarkers, one of the major challenges in
diagnosis and treatment of invasive tumors.

Among the mechanisms that occur in pituitary tumori-
genesis, angiogenesis represents a key process for tumor
growth. Interestingly, while controversial findings on the
role of VEGF were reported [207-209], CXCLI12 has been
proposed as a better defined proangiogenic and prolifer-
ative factor in pituitary adenomas. In fact, CXCLI2 and
CXCR4 are concomitantly upregulated in hypoxic foci within
pituitary tumor tissues, and one of the main CXCLI2
effects in pituitary adenomas is to mobilize CD34- (and
CXCR4-) expressing endothelial progenitors and promote
their homing in ischemic foci activating the proangiogenic
program [203]. Moreover, in GH3 rat pituitary adenoma
cells, hypoxia-activated CXCL12-CXCR4 signaling interacts
with the endocrine pathways resulting in upregulation of
GH synthesis and secretion and cell proliferation [210].
Thus, in pathological conditions (i.e., hypoxia), on one hand,
increased CXCLI2 and CXCR4 expression and signalling may
promote neoangiogenesis by recruiting endothelial progeni-
tor cells and/or inducing proliferation of endothelial cells and,
on the other, directly favouring hormone hypersecretion and
pituitary cell proliferation.

Interestingly, GH4Cl rat pituitary adenoma cell line
expresses CXCR4 but not CXCLI2, thus it was proposed
as a suitable model to characterize the molecular pathways
regulated by this receptor in pituitary adenomas, without
the interference of the endogenously released CK [127, 211,
212]. In these cells CXCLI2 exerts a powerful secretagogue
and mitogenic activity, as well as promotes cell migration
[212]. Interestingly, these effects are induced by different and
independent intracellular mechanisms, although all of them
were PTX-dependent. GH secretion is a Ca**-dependent
event, in which increased ion concentration resulted from



International Journal of Endocrinology

IP3-mediated Ca*" release from intracellular stores. Con-
versely, GH4Cl proliferation is induced by CXCLI12 through
the activation of ERKI/2 through the “classical” MEK-
dependent pathway and via the activation of the cytosolic
Ca®*-dependent tyrosine kinase, Pyk2, that, in turn, activates
the large-conductance Ca?"-activated K* channels (BKCa)
[95, 127, 211, 212]. Similarly, CXCLI2/CXCR4 modulation of
ERK1/2 activity was reported in GH3 cells [128].

To date, the role of CXCL12/CXCR4 as potential phar-
macological target in acromegalic patients has been scantily
investigated. It was shown that a synthetic antagonist of
CXCR4, d-Arg3FCl3], is able to inhibit the growth of GH3
tumor cells and trigger apoptosis both in vitro and in
mice xenografts [213]. Similar results were obtained using
phidianidine A, an indole alkaloid isolated from the marine
opisthobranch mollusc Phidiana militaris, which reduced
GHA4Cl proliferation, migration, and ERK1/2 phosphoryla-
tion [212].

CXCR7, the second CXCLI2 receptor, was reported to
be expressed in the AtT20 mouse corticotroph pituitary
adenoma cell line [131], but the characterization of its possible
role in pituitary adenoma development or progression will
require further evaluation.

Studies on human pituitary adenoma cells derived from
postsurgical specimens are limited, mostly due to their low
proliferative activity in vitro. However, such generalized
CXCR4 and CXCLI2 overexpression in human pituitary
adenomas, as compared to normal pituitary [129], strongly
suggests that, in conditions of deregulation, this receptor
system could be a relevant factor for pituitary adenoma
development and/or progression. However, CXCLI2 effects of
on cell proliferation were directly evaluated in vitro on a small
number of primary cultures of adenoma cell derived from
GHoma, NFPA, and ACTH-secreting adenomas [129]. To
avoid interference with the CXCLI2 released from fibroblasts
a specific protocol to obtain adenoma cell cultures highly
purified [214] was used. CXCLI12 induced a statistically signif-
icant increase in DNA synthesis in the majority (65%) of the
adenoma tested. Interestingly, in few adenomas, the blockade
of CXCR4 with AMD3100, a known CXCR4 antagonist,
caused, beside the abolishment of CXCLI2-mediated increase
in cell proliferation, also a reduction of basal DNA synthesis.
Measuring CXCLI2 levels in the culture medium, it was
shown that these tumors retained in vitro a significant basal
secretion of CXCLI2 causing a constitutive, autocrine stimu-
lation of DNA synthesis [129]. Thus, these data suggest that
pituitary adenoma cells over-express CXCL12 and CXCR4 as
compared to normal tissue and that an autocrine activation
of this pathway (Figure 2), actually, occurs in vivo.

Opverall, these observations imply that CXCL12/CXCR4
axis might play an important biological role in pituitary ade-
noma as potential growth and angiogenic factor for pituitary
cells. The increased CXCR4 activation may result from either
endocrine (increased CXCL12 levels may reach pituitary
through the blood stream or being released in the portal pitu-
itary system from hypothalamus) and/or autocrine/paracrine
mechanisms (Figure 2). Importantly, the latter mechanism
seems to be active mainly in pituitary tumors rather than in

normal gland, where most of the CXCR4-expressing normal
cells do not express CXCLI12 [129].

8. Conclusions

Chemokines are key factors in CNS physiology and pathol-
ogy, being relevant mediators in cancer development. The
CXCL12/CXCR4-R7 signaling pathway plays a unique role
in the regulation of a variety of cell types, including embry-
onic and cancer cells. In particular, deregulation of this
chemokinergic system is strictly related to tumor initiation
and progression, and the balance of its activity within the
tumor microenvironment is highly complex phenomenon.

Multiple factors cooperate to pituitary tumor pathogen-
esis, but, although to date not explored in depth, a pivotal
role of CK and their receptors seems to be important.
Several mechanisms by which CXCL12/CXCR4 modulates
pituitary function and promotes adenoma cell proliferation
and their target as potential therapeutic approach have
been suggested. CXCLI2 is overexpressed in pituitary cells
where it can directly influence adenoma formation, through
autocrine mechanisms resulting in constitutive CXCR4 acti-
vation. This pathway grants pituitary cells with a proliferative
advantage that triggers clonal expansion of transformed
cells and sustains tumor cell survival. Increasing knowledge
about pituitary cell origin and development might provide
significant insights into deregulated pathways in pituitary
tumorigenesis.

Finally, CXCR4 is an easily druggable target and the
characterization of its role in pituitary adenomas could pave
the way for novel pharmacological approaches, especially
for those adenoma subtypes, (i.e., TSH and ACTH secreting
tumors, as well as NFPA) still waiting for efficacious drugs.
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