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Obesity is a worldwide health problem due to the imbalance of energy intake and energy expenditure. Irisin, a newly identified
exercise-responsive myokine, which is produced by the proteolytic cleavage of fibronectin type III domain-containing protein 5
(FNDC5), has emerged as a promising therapeutic strategy to combat obesity and obesity-related complications. Various studies in
mice have shown that irisin could respond to systematic exercise training and promote white-to-brown fat transdifferentiation, but
the role and function of irisin in humans are controversial. In this review, we systematically introduced and analyzed the factors that
may contribute to these inconsistent results. Furthermore, we also described the potential anti-inflammatory properties of irisin
under a variety of inflammatory conditions. Finally, the review discussed the existing unresolved issues and controversies about irisin,
including the transcription of the irisin precursor FNDC5 gene in humans, the cleavage site of the yet unknown proteolytic enzyme
that cleaves irisin from FNDC5, and the reliability of irisin levels measured with available detection methods.

1. Introduction

Obesity, the most common nutritional disease, has become a
priority public health problem worldwide, especially in
developed countries. Excess weight is associated with the
development of various metabolic diseases, including dia-
betes mellitus, hypertension, insulin resistance, cardiovas-
cular diseases, and increased risk of cancer, which lead to
higher rates of morbidity and mortality [1–4]. Furthermore,
adipocytes derived from overweight and obese individuals
express high levels of several key inflammatory markers as
obesity causes a chronic low-grade inflammatory state [5, 6].
Numerous studies also indicated that these inflammatory
markers are associated with an increased risk of a range of
obesity-associated diseases [7]. Although lifestyle inter-
ventions such as physical activity and changes in diet are the
primary means to reduce body weight, they have limited
effectiveness or require additional interventions for other
reasons in many individuals. +erefore, to reverse these
alarming trends of a high prevalence of obesity and its

negative impact on the quality of life, there is an urgent need
for new therapeutic strategies that will produce a sustainable
loss of body weight.

Irisin was discovered by Boström et al. in 2012 and
identified as an exercise-triggered myokine that is pre-
sumably cleaved from the extracellular portion of the fi-
bronectin type III domain-containing 5 (FNDC5) by an
unknown protease. Irisin subsequently circulates to fat tissue
where it can induce the transition of white adipose tissue
(WAT) to brown adipose tissue (BAT) and regulates energy
expenditure [8]. Studies also demonstrated that irisin is not
only a myokine but also an adipokine, with important
autocrine and paracrine functions [9]. Importantly, Luo
et al. proposed that lack of irisin was associated with a poor
browning response, glucose/lipid derangement, and de-
creased bone mass in mice [10]. +ese effects improve the
WAT metabolic profile and enhance whole-body energy
expenditure, making irisin a potential new therapeutic target
for the treatment of obesity and its complications. More
recent studies have shown that irisin also plays a potential
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role in bone metabolism [11, 12], including improving
osteoblastogenesis [13–15] and enhancing bone mass and
bone mineral density (BMD) [16, 17] in many physiological
and pathological conditions. +e relevance of irisin in
humans has also been demonstrated [18–20]. In particular,
the recent identification of the irisin receptor (integrin αV/
β5) on osteocytes certainly facilitates new investigations
between irisin and bone health [21]. However, there are
controversies and obscurities regarding physiological levels
and biological effects of irisin [22, 23]. In this review, we
discuss the regulation of FNDC5/irisin by exercise and the
potential role that irisin may play in browning WATand its
anti-inflammatory effect in mice and humans. Moreover, we
also comprehensively surveyed the current studies about
FNDC5 and unsolved issues about irisin, including its ex-
pression, molecular weight, and detection method. Addi-
tional pharmacological effects/physiological functions of
irisin in other tissues are not discussed in this review.

1.1. �e Role of Exercise. Physical exercise has been used as
an effective tool in the prevention and management of
obesity, type 2 diabetes, cardiovascular diseases, metabolic
syndrome, and its complications [24]. Most myokines are
expressed by muscle contraction and thought to mediate the
health benefits of exercise on the metabolism. Irisin is one of
these myokines, and its link with different types of physical
exercise was investigated.

It was demonstrated that exercise increases the ex-
pression of peroxisome proliferator-activated receptor-
gamma coactivator-1 alpha (PGC1α) in muscles [25], which
increase thermogenesis in brown adipose tissue by regula-
tion of mitochondrial biogenesis, and exhibited a high
production of UCP-1, the biomarker of BAT [8]. Boström
et al. reported that the activation of PGC-1αwas proposed to
stimulate the expression of its downstream target FNDC5
[8]. FNDC5 is a membrane protein expressed in the brain
and skeletal muscle, which proved to be cleaved by yet
unknown proteolytic enzyme(s) after exercises, and a new
protein (named irisin) consisting of most of the fibronectin
III domain is released [8]. +erefore, they proposed that
circulating irisin levels are increased in individuals engaged
in exercise-induced activities and progressively reduced in
those less active and sedentary [8]. Following this study,
there were many reports on the expression of FNDC5/irisin
upon exercise, which found similar results. Exposing ani-
mals to swimming exercise resulted in a significant incre-
ment in serum irisin levels and reduced body fat mass
[26–28]. Moreover, long-term exercise significantly in-
creased expression levels of PGC-1α and FNDC5 in skeletal
muscles in both high-fat diets and normal diet animals,
compared with sedentary controls [29]. In a human study, 25
healthy young (21± 1 years; 16 men, 9 women) and 28
healthy middle-aged/older adults (67± 8 years; 12 men, 16
women) were collected to elucidate the effects of endurance
training on circulating irisin levels in different age groups.
+e serum irisin level was significantly increased in the
middle-aged/older training group after the intervention
period, which was associated with a reduction in the

abdominal visceral adipose tissue area and whole-body fat
mass [30]. Similarly, Timmons et al. confirmed the increase
in muscle FNDC5 mRNA only in the case of highly active
elderly human subjects but not younger adults compared to
their sedentary counterparts [31]. A prospective and con-
trolled clinical trial also proved that low-intensity resistance
exercise significantly increased circulating irisin in elderly
subjects [32]. In addition, a study confirmed that circulating
irisin was associated with adiposity, glucose tolerance, and
insulin resistance status in a middle-aged Chinese pop-
ulation [33]. +ese results implied that the age of individuals
seems to be important for changes in circulating levels of
irisin. Another two studies investigated the effect of high-
intensity exercise on irisin secretion and showed a significant
increase in irisin concentration in individuals who under-
went high-intensity exercise compared to preexercise levels
[34, 35]. In addition to high-intensity exercise, Kim et al.
showed that resistance exercise training caused a significant
increase in circulating irisin in both mice and humans [36].
+e same results were found by Lee et al. in that both re-
sistance and endurance exercise were able to induce irisin
secretion, though the highest peak was reported following
endurance exercise [37]. Amanat et al. also demonstrated
that 12 weeks of aerobic or aerobic combined with resistance
exercise resulted in an increase in serum irisin levels [38].
However, only resistance exercise is able to promote the
expression of irisin which was also proved by other studies
[39, 40]. Further studies have shown that irisin injection can
result in exercise-mimicking effects onmetabolic parameters
related to obesity, such as the concentration of adipokines,
BMP4, insulin, and ghrelin [41].

Despite the huge data supporting the correlation between
FNDC5/irisin and exercise, a number of studies had con-
tradictory findings opposing the previous results in both
animals and humans. Brenmoehl et al. observed that the irisin
expression level was increased in skeletal muscles and serum
after one bout of treadmill exercise but without an accom-
panying change in FNDC5 mRNA levels [42]. In addition,
studies also failed to detect an association between levels of
irisin or FNDC5 and exercise in rats after exercise training
[43, 44]. In addition to animal studies, human studies also
failed to detect the correlation between PGC-1α or FNDC5/
irisin and exercise. Moreover, contradictory results were
obtained from different laboratories where the activation of
PGC-1α and FNDC5 expressions was not coupled to skeletal
muscles during exercise. Raschke et al. conducted experi-
ments to evaluate the expression of FNDC5 using an in vitro
contraction electrical pulse stimulation (EPS) model in hu-
man primary skeletal muscle cells. However, they discovered
that although PGC-1α mRNA expression was significantly
enhanced, FNDC5 mRNA expression remained unchanged.
Similar results were also obtained from two different training
cohorts. Neither 10 weeks of interval endurance training
(41± 2 years old males) nor 11 weeks of strength training in
healthy men (28± 4 years old males) resulted in increased
FNDC5 mRNA expression in skeletal muscle biopsies [45].
+is was the first study questioning the existence and im-
portance of irisin in humans. Later, Kurdiova et al. reported
that exercise-mimicking treatment with forskolin and
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ionomycin in human primary muscle cell cultures stimulated
the expression of PGC-1α but decreased the expression of
FNDC5 and irisin secretion [46]. A meta-analysis including
51 studies reported that a solid conclusion about the link
between PGC-1α activity and FNDC5 expression in response
to physical activity could not be made [47]. +erefore, the
upstream regulatory effect of PGC-1α on the FNDC5 gene
needs to be further confirmed in humans. In line with these
findings, other clinical studies also did not confirm exercise-
related irisin regulation [48–50]. Although Norheim and his
group observed a significantly increased PGC-1α and FNDC5
mRNA expression in 26 individuals (40–65 years) after 12
weeks of chronic resistance and strength exercises, circulating
levels of irisin were paradoxically reduced [51]. +is is in
agreement with Park’s studies where regular exercise was
inversely correlated with irisin levels in adult men [52]. +ese
inconsistent changes in PGC-1α, FNDC5, and circulating
irisin levels suggest that other unknown factors such as ATP
homeostasis described by Huh et al. may be involved in the
regulation of exercise-induced irisin effects [53]. In addition,
the regulation effect of exercise on irisin under abnormal
metabolic conditions was also studied and showed conflicting
results in different exercise protocols [42, 54]. +us, the
molecular mechanisms of exercise-regulated PGC-1α/
FNDC5/irisin signaling are still far from being clear.

+e current data lead us to propose that the following
factors may contribute to the inconsistent results. Until now,
the most commonly used method for detecting circulating
irisin levels was based on commercially available ELISA kits
that have questionable validation. In addition, subjects’ age,
sex, and conditioning status (such as renal failure and
hormonal conditions) may also be critical factors. As de-
scribed by Scalzo et al. when measuring changes in the
calculation of irisin and expression of the FNDC5 gene after
nine high-intensity interval training sessions over a three-
week period, opposite associations were found in women
and men [55]. However, it has also been reported that there
were no training-induced (sex-specific) changes in circu-
lating irisin levels in Type 2 Diabetes Mellitus (T2DM)
patients [56]. Moreover, the discrepancy in the results can
also be explained by the time frame considered for the
evaluation of irisin levels and the variation in the protocols
of exercise. For example, studies that tested irisin at various
times before and after exercise raised the hypothesis that
irisin levels increase for a limited period of time after ex-
ercise and do not continue to remain elevated [57]. Fur-
thermore, studies that were used for irisin determination
were based on either fresh or frozen samples. However,
Hecksteden et al. observed that irisin is prone to storage-
related degradation [48]. +erefore, time-related changes in
circulating irisin concentrations in the absence of timed-
matched controls should be interpreted with caution. Also,
other factors that are believed to regulate the plasma levels of
irisin have been identified such as cold exposure, obesity
[58], the glucose and lipid profile [59], and myostatin [60].

It is worth noting that physical exercise improves the
quality of life and reduces the incidence of several disorders
through various molecular pathways and myokines, but
FNDC5/irisin may not be the only factor involved in this

process. Many genes are activated in human skeletal muscle
by exercise training [61, 62], all of which may contribute to
improving health. +erefore, further work is necessary to
comprehensively consider the association between irisin and
exercise and its impact on human health.

1.2. Impact of Irisin on Adipose Tissue Browning

1.2.1. Types of Adipose Tissue. Adipose tissue is a highly
complex and heterogeneous tissue with many physiological
and pathological roles. WAT and BAT are two typical adi-
pose tissues derived from different lineages and having
inverse functions [63]. +e main function of WAT is to store
energy in the form of triglycerides, while BAT can dissipate
energy as heat through mitochondrial uncoupled respiration
[64, 65]. In recent years, the third type of thermogenic cell
formation from white adipocytes with the capability to
increase thermogenesis was described and termed “brite”
(brown in white) adipocytes or beige adipocytes [66–69].
+ese inducible brite adipocytes are distinct from classical
brown adipocytes but share several biochemical features
such as increased UCP1 gene expression and the ability to
dissipate energy through a thermogenic response. UCP-1
exists in the mitochondrial endomembrane and uncouples
electron transport from ATP production [70]. Arhire et al.
systematically reviewed the characteristics and thermo-
genesis of different adipose tissues [71]. +e advantage of
browning, compared to classical BAT, is that adult humans
have very little BAT with a minimal energy-wasting po-
tential, but an abundance of WAT that has the potential to
brown, which could produce a much more dramatic energy
expenditure. +erefore, the enrichment and activation of
beige adipocytes represent an attractive therapeutic strategy
to combat obesity and obesity-related complications [72].
Accumulating evidence indicates that many hormones and
cytokines can promote lipid metabolism and increase energy
expenditure through autocrine or endocrine mechanisms
[73]. Among them, irisin is the adipomyokine of great hope
for increasing energy expenditure and regulating thermo-
genesis [8]. In addition to irisin, parathyroid hormone
(PTH) is also considered an effective transcriptional me-
diator for regulating the thermogenic program in white or
brown adipocytes [74, 75]. Moreover, PTH has been shown
to have several metabolic effects that appear to oppose those
of irisin [76, 77]. In particular, the recent preclinical finding
suggests the existence of an interplay between PTH and
irisin metabolism [78]. +erefore, irisin with its potential to
induce the browning of white adipocytes and activate
metabolism has attracted much attention in this field.

1.2.2. Studies in Mice. Boström et al. reported that irisin
with its precursor FNDC5 plays a major role in browning
white adipose tissue and activation of thermogenic genes.
After primary murine subcutaneous fat-derived pre-
adipocytes were treated with 20 nM commercial FNDC5
protein during adipogenic differentiation, expressions of the
uncoupling protein UCP1 and other BAT-related genes were
increased. By contrast, FNDC5 failed to enhance brown
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marker genes in classical brown adipocytes isolated from the
interscapular depot, suggesting the depot-specific effects for
FNDC5. Also, they demonstrated the beneficial metabolic
regulation effect of irisin in vivo, as 20-week high-fat diet-
induced obesity was reduced by adenoviral-mediated
overexpression of FNDC5 in mice [8]. Wu et al. identified a
distinct pool of progenitors within WAT that can give rise to
beige cells that are similar but not identical to classical brown
fat cells. In their study, CD137-high expressing cells display a
strong browning response toward irisin and FNDC5 com-
pared to CD137-low expressing cells [67].+ese data suggest
that irisin might have subtle effects on the subpopulation of
preadipocytes isolated from the subcutaneous depot, which
highly express CD137. Later, our group demonstrated that
irisin can potentially prevent obesity and associated type 2
diabetes by stimulating the expression of WAT browning-
specific genes. Moreover, we found that the browning effect
induced by irisin was mediated by p38MAP kinase and ERK
MAP kinase signaling [79]. In addition, irisin has also been
shown to exert its browning and other essential functions
through additional pathways [80, 81].

1.2.3. Studies in Humans. Although it has been demon-
strated that irisin plays a pivotal role in inducing fat
browning and regulation of energy expenditure in animal
studies [8, 79, 82], the function of irisin in humans remains
to be elucidated. If these findings in mice could be translated
to humans, irisin could be a promising therapeutic agent for
the treatment of obesity. However, studies investigating the
function of FNDC5/irisin in humans are still rare, and it
remains controversial whether results about browning ob-
tained in murine models can be extrapolated to humans.
Raschke et al. showed evidence against a beneficial effect of
irisin in humans in that neither recombinant FNDC5 nor
irisin triggered a brite differentiation of primary human
preadipocytes isolated from the subcutaneous depot [45].
Moreover, they also demonstrated that high CD137 ex-
pression in human subcutaneous adipose tissue was not
positively correlated with the browning effect of FNDC5/
irisin, which is inconsistent with Wu’s results [67]. Lee et al.
showed that FNDC5 enhanced a BAT-like thermogenic
program in primary human adipocytes isolated from neck
biopsies and to a lesser extent subcutaneous adipocytes but
was completely absent on omental adipocytes [37]. In ad-
dition, Huh et al. investigated the potency of irisin on
preadipocyte differentiation and discovered a significant
inhibitory effect of irisin on both human and mouse pre-
adipocyte differentiation, whereas the expression of genes
and/or proteins related to browning remained unaffected
[83]. +is is in contrast to the browning effect of human
adipocytes after incubation with bone morphogenetic
protein 7 (BMP7) [45], and this factor was reported to
accelerate preadipocyte differentiation [84]. To further ex-
plore the contradictory browning effects of irisin on human
cell models, our group examined the longitudinal effects of
irisin during adipogenic differentiation on different donors.
In line with the study by Huh et al. [83], human pre-
adipocytes derived from subcutaneous adipose tissue

demonstrated a decrease in differentiation to mature adi-
pocytes after irisin treatment, whereas the expression of
genes and/or proteins related to browning (for example,
UCP1, PPARc, and PRDM16) was also decreased. By
contrast, in mature human adipocytes, irisin stimulates
browning, indicated by the upregulation of browning related
genes (UCP1, PGC-1α, and PRDM16), and this action was
mediated by activating the ERK and p38 MAPK signaling
pathways [85]. Furthermore, irisin-treated BAT from peri-
renal fat showed no further activation of p38/ERK MAPK
signaling or expression of browning-related genes was found
in this study. A large body of evidence indicates that the
accumulation of visceral white adipose tissue (vcWAT) is
more pathogenic than subcutaneous white adipose tissue
(scWAT), as the former carries a greater risk of developing
obesity, cardiovascular events, atherosclerosis, hypertension,
and other metabolic diseases [86, 87]. +erefore, to sys-
tematically examine the effects of irisin on human visceral
adipose tissue and adipocytes is critical to further under-
stand its molecular and biological functional properties.
+rough further research, our group found that irisin exerts
an inhibitory effect on lipid accumulation during vcWA-
derived preadipocyte differentiation [88]. However, in
contrast to subcutaneous adipocytes, expressions of UCP-1
and other brown-related genes were not induced in irisin-
treated differentiated mature visceral adipocytes. Notably,
irisin increased mitochondrial metabolism in all three types
(scWAT, vcWAT, and BAT) of adipose tissue-derived
primary cultured adipocytes. +is is surprising as the
thermogenic capability of brown fat is mainly mediated by
mitochondrial protein UCP-1, which uncouples the electron
transport chain from energy production, resulting in the
release of energy as heat. +e reasons why the fat depot
specificity action of irisin on UCP-1 did not translate into its
differences in mitochondrial respiration are unknown but
might involve interactions with other factors modulating the
complex mitochondrial biogenesis program.

In conclusion, these data suggested that contradictory
findings still exist in humans and mouse studies, and several
reasons may account for these controversies. First, irisin’s
browning effect on humans is only observed after the for-
mation of mature adipocytes, which may at least partly
explain the conflicting reports of irisin’s effects on human
adipocytes. It is not hard to understand that the epigenetic
change in human primary mature adipocytes involves the
dedifferentiation and redifferentiation process in vitro [89].
Moreover, the loss of other types of cells, such as endothelial
cells, multipotential mesenchymal cells, nerve cells, and
immune cells in fat tissue, and the lack of a 3D structure are
limitations of this approach. In addition to adipocytes, many
adipokines (e.g., TNFα, IL-6, or MCP-1) secreted by other
cells exist in fat tissue [90], which can also generate signals at
local and peripheral levels. It is believed that these adipo-
kines influence many metabolic pathways as well as the
differentiation of adipocytes. Second, irisin may exert dif-
ferential effects depending on the location/types of the
adipose tissue. Adipocytes derived from different progenitor
cells exhibit different gene expression patterns and may
respond differently to irisin [91]. +ird, the irisin-induced
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thermogenic gene program is mediated by signaling through
αV/β5 integrin [21], as recently reported by Kim et al.
+erefore, the expression of this receptor may differ between
various types of adipocytes, which result in different re-
sponses to irisin.

1.3. Anti-Inflammatory Effects of Irisin. Obesity causes a
chronic low-grade inflammatory state accompanied by
proinflammatory macrophage infiltration into white adipose
tissue, which is associated with the development of insulin
resistance, and increased risk of cardiovascular disease [5, 6].
Moreover, obese adipose tissue per se expresses numerous
genes which are involved in inflammatory pathways [92].
+e potential protective effect of irisin on obesity-related
diseases may be partly attributed to the anti-inflammatory
properties of irisin by activating various signaling pathways
[81]. Mazur-Bialy et al. published three important papers
studying the anti-inflammatory effects of irisin on adipo-
cytes [93] and macrophages [94, 95]. +ey initially found
that irisin markedly changes macrophage activity, improves
their ability for phagocytosis, and reduces the intensification
of processes connected with ROS production, which could
suggest its potential anti-inflammatory properties [94].
Subsequently, they confirmed that irisin exerts its potential
anti-inflammatory properties in RAW 264.7 macrophages
through the downregulation of downstream pathways of
TLR4/MyD88 [95]. Moreover, they also demonstrated for
the first time that irisin can directly attenuate the inflam-
mation process in lipopolysaccharide (LPS) activated cul-
tured adipocytes by suppressing the expression of
proinflammatory cytokines [93]. Later, the same authors
conducted a coculture system of 3T3 adipocytes and RAW
264.7 macrophages and showed that both glycosylated irisin
and nonglycosylated irisin effectively inhibit the expression
and release of inflammatory mediators, although non-
glycosylated irisin has a stronger anti-inflammatory po-
tential [96].

Macrophage infiltration in WAT is associated with
obesity causing a phenotypic switch in these cells from an
anti-inflammatory M2 to a proinflammatory M1 state [97].
Dong et al. demonstrated that irisin can reverse this process
by stimulating macrophage polarization from M1 to M2
types [60]. In addition, irisin has been shown to reduce the
expression of TNF-α, IL-6, MCP-1α, and MIP-1α, while
enhancing the expression of IL-10 in human visceral and
subcutaneous fat tissue [88]. Interestingly, recent research
found that traditional Chinese treatment electrical auricular
acupuncture (EAA) could also reduce body weight and
suppress inflammation through promoting norepinephrine
(NE) release from the adrenal gland leading to further ex-
pression of FNDC5, irisin, and UCP-1 [98]. In addition to
adipocytes and macrophages, irisin is also involved in the
anti-inflammatory effects of other tissues and organs
[99–111], as shown in Table 1.

Both animal and in vitro studies suggested the potential
anti-inflammatory effects of irisin by modulating the pro-
duction of cytokines, influencing transcription factors as
MAPK and nuclear factor-kappa B, or reducing the

production of reactive oxygen species. Nevertheless, studies
in this field are still rare, and further mechanistic studies of
the effects of irisin on inflammation are needed to provide
additional insights.

1.4. �e Discoveries, Structure, and Function of FNDC5.
FNDC5 was first discovered by two groups in a genomic
search for fibronectin type III domains in 2002 [112].
FNDC5 is a transmembrane protein including a signal
peptide, two fibronectin domains, and one hydrophobic
domain inserted in the cell membrane. A previous study
suggested that FNDC5 is located in the matrix of peroxi-
somes, because when they expressed FNDC5 with a green
fluorescent protein (GFP) fused to its N terminus, a
punctate localization to peroxisomes was found [113]. In
2012, Boström et al. questioned the studies of Ferrer-
Martinez et al. and considered that FNDC5 might be a
secreted protein and described irisin as a cleaved and se-
creted part of the transmembrane protein FNDC5 [8]. Later,
Erickson also provided some evidence to refute that FNDC5
is a peroxisomal protein [22]. In humans, three FNDC5
variants have been identified and these three FNDC5
variant genes are distributed in various human tissues in-
cluding the heart, brain, liver, skeletal muscles, pancreas,
and ovaries and have different expression levels [114].
However, the existence of other FNDC5 transcripts was also
confirmed in humans [115]. Currently, most studies pay
relatively more attention to irisin, while ignoring the im-
portant role of its precursor FNDC5 in the regulation of
energy metabolism. +e available literature clearly indicates
FNDC5 participation in maintaining the metabolic ho-
meostasis of the body under different physiological or
pathophysiological conditions, while FNDC5 dysregulation
may lead to systemic metabolism imbalance and eventually
result in the onset of metabolic disorders [116–120]. As
described by several studies, mRNA and protein levels of
FNDC5 increased in muscle tissues of obese mice induced
with a high-fat diet (HFD) or in obese/diabetic-prone
Otsuka Long Evans Tokushima Fatty rats compared with
lean/healthy controls [121–123]. Other studies also showed
that FNDC5 overexpression in obese mice induced with
HFD increases energy expenditure, attenuates hypergly-
cemia and insulin resistance, and activates lipolysis in
adipose tissues [82]. In addition to obesity-related meta-
bolic diseases, obesity-induced chronic inflammation is also
critical in the pathogenesis of insulin resistance. Xiong et al.
showed that FNDC5 prevents HFD-induced obesity, insulin
resistance, fat accumulation, and inflammation through the
downstream mediator AMPK signaling pathway [124].
Another group of researchers reported a positive correla-
tion between FNDC5 expression and anti-inflammatory
cytokine IL-10 and a negative correlation with TNF-α levels
[125]. +ese results not only imply a potential regulatory
mechanism of FNDC5 to offset a high-fat diet-induced
weight gain by increasing energy expenditure but also show
the potential to be used as a therapeutic regimen for pre-
venting inflammation and insulin resistance in obesity and
diabetes. In addition to its therapeutic targets for obesity-
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associated maladies, FNDC5 is also involved in other
metabolic diseases. Liu et al. observed that FNDC5 defi-
ciency exacerbates whereas FNDC5 overexpression pre-
vents HFD-induced hyperlipemia, hepatic lipid
accumulation, and impaired fatty acid oxidation (FAO) and
autophagy in the liver via the AMPK/mTOR pathway [126].
In addition, FNDC5 has been demonstrated to attenuate
obesity-induced cardiac hypertrophy by inactivating JAK2/
STAT3 associated-cardiac inflammation and oxidative
stress [127]. +e systematic review by Zhang et al. also
summarizes its biological functions in a variety of metabolic
diseases [128, 129].

+e activation and transcriptional regulation of FNDC5
have been poorly studied, and although some studies have
determined associations, no direct activator of FNDC5 has
been identified. Tiano et al. revealed that, compared with
wild-type mice, exercise increased serum irisin and skeletal
muscle FNDC5 and its upstream PGC-1α expression in
SMAD3-deficient mice. Moreover, through in vitro exper-
iments in myotubes, they further demonstrated that SMAD3
inhibits FNDC5 and PGC-1α expression in skeletal muscle
cells by binding to their promoters [130]. In another study, it
was reported that leptin can also reduce FNDC5 mRNA
expression in subcutaneous adipose tissue from nonobese
subjects [131]. On the other hand, studies also proved that
FNDC5 can be activated by some upstream signaling
molecules. Yang et al. observed that CREB overexpressed
C2C12 myotubes display higher FNDC5 expression and
further proved that PGC-1α/CREB interaction triggers this
effect [132].

In general, literature mining indicates that FNDC5 not
only plays a vital role in energy metabolism but also has

crucial roles in a variety of processes such as inflammation,
autophagy, and oxidative stress. +erefore, fully under-
standing the biological function and precise underlying
mechanisms of FNDC5 is of the same importance as irisin.

1.5. Existing Controversy. Following the discovery of irisin,
researchers have shown much interest because of its po-
tential use as a therapeutic agent in the treatment of met-
abolic and endocrine disorders. After many years of
research, however, the proteolytic enzyme that cleaves irisin
from FNDC5 has yet to be identified [133]. +us, further
studies are necessary to determine if there are different
secretory mechanisms in addition to proteolysis [8]. Ad-
ditionally, the putative myokine irisin has been the subject of
debate since its initial description [134, 135]. In addition to
inconsistencies regarding the regulation of FNDC5/irisin by
exercise and the effect of irisin on white fat browning, there
has been great conflict regarding its expression and detection
(Figure 1).

First, in humans, the FNDC5 gene has three variants that
are distinguished by the signal peptide and C-terminal
amino acids. Transcript 1 represents the longest transcript
and produces a truncated FNDC5 protein from an in-frame
ATG codon in exon 3, and the proposed irisin peptide lacks
the first 44 amino acids. Transcripts 2 and 3 that initiate
translation from an atypical ATA have been proved to have a
lower translational efficiency (only 1% of full-length
FNDC5) as compared to the typical ATG start codon [45].
+e usage of the downstream canonical ATG as an alter-
native start site leads to the expression of a truncated protein
containing only parts of the proposed irisin peptide.

Table 1: Summarizing the anti-inflammatory effects of irisin in various inflammation models.

Study (reference) Intervention Main findings
Adipocytes [93] 3T3-L1 cells stimulated by LPS TNF-α, IL-6, MCP-1, and NF-κB↓
Macrophages [95] RAW 264.7 cells stimulated by LPS IL-1β, TNF-α, IL-6, MCP-1, KC, HMGB1, and NF-κB↓
Adipocytes and
macrophages [96]

3T3 adipocytes and RAW 264.7 cells coculture
and stimulated by LPS IL-1β, TNFα, IL-6, MCP-1, and HMGB1↓

Peritoneal macrophages
[60]

Mouse peritoneal macrophages stimulated by
LPS

Phenotypic switching of peritoneal macrophages from
M1⟶M2

INS-1E β cells [108] INS-1E β cells stimulated by glucolipotoxic
conditions COX2, CCL2, CXCL1, and NF-κB↓

Clinical disease

Atherosclerotic [100] HFD Apolipoprotein E-deficient mice and
carotid partial ligation mouse model IL-6, MCP-1, ICAM-1, VCAM-1, and NF-κB↓

Ali [99] LPS-induced acute lung injury mouse model;
LPS-induced A549 cells IL-1β, IL-6, MCP-1, TNF-α, MAPK, and NF-κB↓

IBDs [105, 106] TNBS-induced IBD rats Gut and osteocyte proinflammatory cytokines↓; bone
formation↑, osteoclast surface↓

DSS-induced IBD rats Improved colon inflammation; bone formation rate↑,
osteoclast surface, and osteocyte proinflammatory factors↓

Hepatic steatosis [107] PA-induced AML12 cells and mouse primary
hepatocytes NF-κB, COX-2, p38 MAPK, TNF-α, IL-6, and PRMT3↓

Liver injury [111] LPS-mediated liver injury IL-6, IL-1β, TNF-α, and NF-κB↓
LPS, lipopolysaccharide; TNF-α, tumor necrosis factor α; IL-6, interleukin 6; MCP-1, monocyte chemotactic protein 1; NF-κB, nuclear factor-κB; IL-1β,
interleukin 1β; KC, keratinocyte chemoattractant; HMGB1, high mobility group box 1; COX2, cyclooxygenase-2; CCL2, chemokine (C-C motif ) ligand 2;
CXCL1, chemokine (C-X-C motif) ligand 1; ICAM-1, intercellular cell adhesion molecule-1; VCAM-1, vascular cell adhesion protein 1; ALI, acute lung
injury; MAPK, mitogen-activated protein kinase; IBDs, inflammatory bowel diseases; TNBS, 2,4,6-trinitrobenzenesulfonic acid; DSS, dextran sodium sulfate;
PA, palmitic acid; PRMT3, protein arginine methyltransferase-3.
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However, several lines of evidence stand against this claim.
As demonstrated by some studies, many eukaryotic
encoding genes start with different non-ATG codons, and all
of them produce complete and functioning proteins
[136–138]. Moreover, Jedrychowski et al. ascertained in their
initial studies that irisin circulates in its full-length form and
that its production originates from the noncanonical ATA
codon [34]. In Albrecht’s study, evidence was provided that
one or more FNDC5 transcripts exist in human skeletal
muscles, and they all are likely to be translated from a
noncanonical ATA codon [115]. To date, there is no clear
evidence of the transcription of human FNDC5 from either a
canonical or noncanonical start codon, and more studies are
necessary to determine what are the precise roles of different
forms of FNDC5.

Second, in the initial report, irisin was proposed to be
cleaved from its precursor FNDC5 and the theoretical
molecular weight was 12.7 kDa [8]. However, many studies
detected irisin with a molecular weight ranging from 20 to
26 kDa in serum or plasma of different species, which is
more likely to reflect full-length FNDC5 without its signal
peptide (glycosylation: ∼27 kDa; deglycosylation: ∼20 kDa)
[9, 37, 139, 140]. Although mass spectrometry found that
these bands contain a unique sequence of irisin, the pos-
sibility of other FNDC5 fragments cannot be ruled out [37].
Albrecht et al. found a greater transcript diversity of human
FNDC5 than the currently annotated one [115]. In Jedry-
chowski’s study, this inconsistency was attributed to in-
complete deglycosylation of irisin with PNGase F, because a
12 kDa irisin peptide could be detected in human plasma
after the removal of albumin and IgG, and deglycosylation
by using Protein Deglycosylation Mix from NEB [34].
However, in another study, the same method was used but
no human irisin was detected in plasma [141]. Actually, no
differences in the efficiency of deglycosylation of recombi-
nant irisin between PNGase F and the Protein Deglycosy-
lation Mix (NEB) were observed in Albrecht’s study [115],
and no specific bands for irisin were detected in human
serum samples incubated with either PNGase F or the
deglycosylation mix. Other explanations for the inconsistent
results in circulating irisin detection may be due to site-
directed mutation (16 kDa), irisin dimer (23.5 kDa), and
glycosylated irisin (36 kDa). +erefore, the cleavage site of

the FNDC5 by an unknown protease and the existence of
other soluble FNDC5 isoforms needs to be further studied.

+ird, a number of the studies that quantitated the level
of irisin in plasma were largely based on commercially
available antibodies or ELISA kits. However, these kits were
proved to have questionable validation, as different studies
using different kits measured irisin levels in a wide range
from picograms to micrograms per milliliter of serum or
plasma [142–147]. Moreover, the lack of specificity and
sensitivity is the main disadvantage of this method, which
compromises reliable measurements of irisin with ELISAs.
Albrecht et al. tested several polyclonal antibody-based
ELISA kits and showed that these antibodies had prominent
cross-reactions with nonirisin proteins in serum or plasma
of different species [23]. In addition, they found that an
FNDC5 signature was identified by mass spectrometry in
human serum samples, but it was not detected by com-
mercial ELISA irisin kits. +erefore, the measurement of
circulating irisin is still challenging, and the reliability of
irisin antibodies needs to be further proven.

2. Conclusions and Future Prospects

Notwithstanding the fact that the expressed form of irisin
remains unclear in humans, it has been the subject of many
studies due to its proposed therapeutic potential for the
treatment of obesity and obesity-associated maladies
through browning ofWAT. Studies also showed that irisin is
involved in mediating several other exercise-inducible
beneficial effects on health, such as improving energy
consumption, glucose utilization, and insulin resistance.
Surprisingly, a recent study demonstrated that irisin also
presented a very positive effect on the regulation of diverse
genes related to the COVID-19 outcome in the human
subcutaneous adipose tissue [148]. However, the mecha-
nisms underlying these benefits are unclear, in large mea-
sure, because some issues about irisin have yet to be solved.
Recently, Kim et al. demonstrated that irisin binds directly to
αV integrin receptors to promote osteocyte survival and
indicated that irisin induces a thermogenic program in fat
also via binding to the same receptors [21]. +is gained a lot
of importance in understanding the molecular mechanisms
underlying the beneficial role of irisin in various

Site directed mutation
Glycosylated irisin
Irisin dimer
Incomplete deglycosylation
Other FNDC5 fragments exist
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Figure 1: +e existing controversies about irisin.
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physiological conditions and disease states. However, as
integrin receptors are widely expressed on various cell
surfaces in vivo, the possibility of other irisin-specific re-
ceptors may exist to regulate its activity. In addition, whether
the physiological activity of irisin in other tissues and organs
is also realized through integrin receptors remains to be
further investigated.

In conclusion, although studies on physiological func-
tions and circulating levels of irisin have shown much
controversy in humans, FNDC5/irisin has raised great ex-
pectations as a potential target in the conservative treatment
of obesity. Further studies are certainly needed to clarify the
conflicting and obscured results obtained in humans, which
requires the establishment of reliable technical assays for
quantifying circulating irisin levels.
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