

### Research Article

## Association between RBC Indices, Anemia, and Obesity-Related Diseases Affected by Body Mass Index in Iranian Kurdish Population: Results from a Cohort Study in Western Iran

# Maryam Kohsari (), Mehdi Moradinazar (), Zohreh Rahimi, Farid Najafi, Yahya Pasdar (), Atefeh Moradi, and Ebrahim Shakiba ()

Behavioral Disease Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran

Correspondence should be addressed to Mehdi Moradinazar; m.moradinazar@gmail.com

Received 28 March 2021; Accepted 27 August 2021; Published 6 September 2021

Academic Editor: Christian S. Goebl

Copyright © 2021 Maryam Kohsari et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Objective. The relationship between RBC indices and metabolic diseases remains unclear. The association between anemia and obesity is also controversial. The present study aimed to investigate the relationship between RBC indices and metabolic diseases caused by obesity and evaluate the effect of body mass index (BMI) on RBC indices on the Ravansar cohort data. Method. For the purpose of this study, 9826 participants aged 35-65 years (5158 females and 4668 males) were recruited in the analyses. A quadratic prediction fit plot investigated the association between RBC indices with BMI and lipid profile. The odds ratio of obesity-related diseases in each quartile category of RBC indices and anemia was estimated using multivariable logistic regression models. Results. Subjects in the fourth quartiles of RBC count, hematocrit (HCT), hemoglobin (HGB), and red cell distribution width (RDW) had a higher risk for obesity-related diseases compared to the first quartiles. However, individuals with the mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC) in fourth quartiles had lower ORs of obesity-related diseases. While BMI reduced the effect of RBC count, HCT, HGB, and RDW on the incidence risk of obesity-related disease, it increased the impact of MCV, MCH, and MCHC. There was a negative association between BMI and RBC indices except for RDW. The BMI effect on RBC indices was different in normal and obese individuals. BMI in mild anemia lowered the risk of metabolic diseases, but it increased the risk of metabolic diseases for moderate anemia. Conclusion. A higher risk of obesity-related diseases was observed in the fourth quartiles of RBC count, HCT, HGB, and RDW compared to the first quartiles. However, the incidence risk was lower for MCV, MCH, and MCHC. BMI plays an anemiatype dependent role in the relationship. Consideration should be given to the type of anemia in the relationship between BMI and anemia.

#### 1. Introduction

Obesity is defined as the body mass index (BMI)  $\geq$ 30 kg/m<sup>2</sup> [1]. The rate of obesity has grown so dramatically in the last three decades that in 2014, almost 30% of the world's population was considered overweight and obese, and the number is estimated to reach 50% mark by 2030 [2]. The role of obesity in metabolic diseases including diabetes mellitus (DM), cardiovascular disease (CVD), metabolic syndrome (MetS) [3], and hypertension (HTN) [4] is clearly understood. Obesity has a potent correlation with dyslipidemia that contributes to CVD risk developments [5], and an increase in BMI leads to the progression of heart damage [4] and nonalcoholic fatty liver disease (NAFLD) [6].

Recently, the role of red blood cell (RBC) indices was identified in metabolic diseases. The complete blood count (CBC) test which is routinely administered in medical examinations can be utilized in the early detection of metabolic disorders [7]. However, there are limited studies that indicate the role of RBC indices in the incidence of metabolic diseases. A number of reports have suggested that red cell distribution width (RDW) reduced the risk of MetS [8] and increased the risk of CVD [9] and NAFLD [10]. RDW is an indicator that shows the variation in the size of RBC [9, 10]. NAFLD and CVD are diseases in which inflammation plays an influential role. According to these studies, RDW is associated with inflammation that may increase in response to proinflammatory cytokines. Cytokines can also interact with erythropoietin in the bone marrow, resulting in the lower production of RBC. Besides, cytokines act as RBC suppressors and raise the number of immature RBC, and RDW increased consequently [9, 10].

On the other hand, increased hematocrit (HCT), hemoglobin (HGB), and red blood cell (RBC) count are associated with an increased chance of MetS [11]. Also, it has been suggested that RBC count has a positive relationship with the severity of HTN [12]. This effect may occur as a result of an additional load on the cardiovascular system by increasing RBC count [13].

Various studies indicated a controversial and contradictory relationship between RBC indices and anemia with lipid profile and BMI. Anemia is considered a risk factor for dyslipidemia [14] and CVD [15]. Some studies indicate a lack of association between increased BMI and obesity with anemia [16-18]. A study conducted in China found that the rate of anemia in overweight women was lower compared to normal subjects [18]. Contradictory results were also found on the Iranian population. In a study of young females in north Iran, Rad et al. demonstrated the absence of a significant difference in anemia prevalence between normal weight and obese females [16]. However, a study of young university students in central Iran (males and females) demonstrated a high incidence of anemia among the population with abnormal BMI [19]. Besides, reports indicated the absence of significant correlation [20] and the presence of a negative inverse correlation [21] between mean corpuscular volume (MCV) and BMI. Antwi-Baffour et al. illustrated that the lipid profile parameter is positively associated with RBC count and negatively correlated with HGB and HCT [22]. However, studies have discussed the relationship between inflammation and anemia [23]. We know that obesity is associated with low-grade chronic systemic inflammation. Also, obese people are prone to chronic inflammatory diseases such as DM, MetS, liver, and kidney failure, especially with age [24]. Inflammation in these people eventually leads to the activation of oxidative stress signaling pathways. Free radicals could cause the peroxidation of erythrocyte membrane lipids and activate Ca<sup>2+</sup> permeable nonselective cation channels in the cell membrane. Consequently, phosphatidylserine (PS) translocation enhances from the interior to the cell membrane surface and leads to the erythrocyte suicidal death or eryptosis [25, 26]. In addition, the effect of lipid profile on RBC indices still is ill-defined, although in vitro studies demonstrated that erythrocytes act as a storage of cholesterol for serum lipoproteins, and dyslipidemia may play a role in impairing erythrocyte maturation and deformability [27]. Given that obesity, dyslipidemia, and abnormalities in RBC indices such as anemia all are the risks of CVD. It is crucial to expand our knowledge of the underlying relationships between these factors. As the matter is not also investigated on the Iranian population, the present study is primarily conducted to evaluate the association between RBC indices and obesity-related diseases on a Kurdish population in western Iran. We also aimed to examine the effect of lipid profile parameters and BMI on this relationship.

#### 2. Methods

2.1. Study Design and Population. The present study used the data obtained from the Ravansar noncommunicable cohort disease (RaNCD) initial phase, which began in 2014 and ended in 2017. The RaNCD cohort study is part of the Iranian adult (PERSIAN) cohort that studies participants in the age range of 35-65 years and aims to conduct a series of follow-ups for a period of 15 years. Study details have been published [28, 29], and all questionnaires, study instructions, and additional information are available at http:// persiancohort.com. The study was approved by the Ethics Committees of Kermanshah University of Medical Sciences (KUMS.REC.1394.315), Kermanshah, Iran. Subjects aged 35-65 years who were residents of Ravansar for the past nine months were included in the study after they were fully informed of the process and signed written consent. Individuals with underlying kidney disease (101) and pregnant women (125) were excluded from the study to eliminate confounder variables.

2.2. Measurements and Definition. Fasting blood samples were collected by Venoject tubes. After centrifugation for 10 minutes at 300*q*, the samples were transferred to cryotubes and were kept at -20°C until the testing time. Serum triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), total cholesterol (TC), low-density lipoprotein cholesterol (LDL), and fasting blood glucose (FBG) were analyzed with the enzymatic colorimetric assay by the Mindray-BS-380 autoanalyzer (Mindray, USA). RBC indices including RBC count, HCT, HGB, mean corpuscular hemoglobin (MCH), MCHC, and RDW were measured via the CBC test by the Sysmex cell counter. Dyslipidemia was defined based on the presence of one or more abnormalities in the lipid profile, including serum levels of  $TC \ge 240 \text{ mg/dl}$ , lowdensity lipoprotein (LDL) 160 mg/dl, triglyceride (TG) ≥150 mg/dl, and high-density lipoprotein (HDL) <40 mg/dl [30]. Blood pressure was measured according to the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC-7) classification of hypertension to diagnose hypertension [31]. After 10 minutes rest, blood pressure was measured twice for each participant using the cuff on both arms at the heart level with one-minute interval between each measurement. The mean obtained for each arm was used as the final blood pressure. Nonalcoholic fatty liver (NAFLD) and cardiovascular diseases (CVD) are based on self-report of participants and use of related medication. NAFLD is reported in nonalcoholic participants with the fatty liver. HTN was defined as SBP  $\geq$ 140 mm Hg and/or DBP  $\geq$ 90 m Hg and/or current use of antihypertensive drugs. The presence of three or more of the following criteria identified the existence of MetS:

 $FBS \ge 100 \text{ mg/dl}, TG \ge 150 \text{ mg/dl}, and reduced HDL-C:$ <40 mg/dl in males and <50 mg/dl in females, waist circumference (WC)  $\geq$ 85 cm in males and  $\geq$ 80 cm in females, and SBP  $\geq$  130 and DBP  $\geq$  86 mmHg [32]. Diabetes mellitus was defined as  $FBS \ge 126 \text{ mg/dl}$  and/or a history of taking medications to treat diabetes [33]. Mild anemia was defined as HGB = 11-11.9 g/dL for females and HGB = 11-12.9 g/dL for males, with moderate anemia as HGB = 8-10.9 g/dL for males and females [34]. The bioimpedance analyzer (BIA) (In Body 770 BIOSPACE, Korea) was used to measure weight. Height was measured with 0.1 cm accuracy using a stadiometer. BMI was calculated by dividing weight (kg) by square of height (m<sup>2</sup>). BMI was categorized into 18.5-24.9 for normal weight, 25-29.9 for overweight, and greater than 30 for obese. An elastic tape was used to measure upper hip bones for waist circumference. The smoking status was specified the National Health Interview Survey (NHIS) [35]. The 24-hour physical activity was determined based on average weekday sport, work, and leisure-related activities, classifying the subjects into three categories of low, moderate, and high physical activities [36].

2.3. Statistical Analysis. Quantitative and qualitative variables were analyzed by the *t*-test and chi-square test, respectively. Quadratic prediction fit plot with confidence interval was used to assess the correlation between RBC indices with lipid profile and BMI. The relationship between anemia and the risk of obesity-related disorders was presented within the forest plot with an odds ratio (OR) and 95% confidence interval. The association between RBC indices quartiles with dyslipidemia, HTN, NAFLD, MetS, DM, and CVD was investigated by multivariable logistic regression models. For all tests, the statistical significance was considered at p level <0.05. Statistical analyses were carried out using Microsoft Excel 2016 and Stata software (version14.2) (Stata Corp, College Station, TX, USA).

#### 3. Results

As given in Table 1, the sample included 5158 females (52.5%) with a mean age of  $47.5 \pm 8.4$  years and 4668 males (47.5%) with a mean age  $47.0 \pm 8.0$  years. Overall, 38% of the subjects were considered healthy, 23.8% had one disorder, and 19.6% and 18.6% suffered from two disorders and more than two obesity-related disorders, respectively.

The prevalence of obesity-related diseases increased with age. Nearly 50% of the individuals over 55 had at least one type of dyslipidemia disorder, and CVD and HTN prevalence doubled compared to the age group of 45–55 years. Subjects with metabolic disorders had higher levels of anthropometric indices and SBP and DBP than the control group. No difference in hypertension parameters was found for NAFLD patients. Participants with obesity-related diseases had higher mean levels of FBG, TC, TG, and LDL-C, but a lower level of HDL-C.

Concerning RBC indices, those who suffered from metabolic diseases had significantly higher RDW and lower

MCV and MCH levels. RBC count, HCT, and HGB levels were significantly higher for dyslipidemia subjects. MetS, and DM, with NAFLD and CVD subjects, showed lower levels. There was no difference in RBC count, HCT, HGB, and MCHC between HTN and controls. All participants with metabolic disorders had significantly higher white blood cell (WBC) count. Lymphocyte (lymph) was higher for dyslipidemia and NAFLD patients and lower for HTN and CVD subjects. While only NAFLD showed no difference in monocyte (mono), this was proved to be higher for other obesity-related subjects. Granulocyte percent (GR %) was higher for dyslipidemia, HTN, and CVD subjects, but lower for NAFLD. Platelet (PLT) count was higher in NAFLD, MetS, and DM patients.

The correlation between the level of BMI and hematological parameters was examined by quadratic prediction fit plot along with a confidence interval, Figures 1(a)-1(l). The relationship between BMI and RBC indices (including RBC count, HCT, HGB, MCV, MCH, and MCHC) was positive for normal weights and negative for overweight/obese. RDW in normal weights was negatively related to BMI. In the overweight/obese group, the relationship was positive for RDW. Concerning the association between BMI and PLT count, WBC, and GR%, results were similar to the negative correlation in the normal weights versus the positive correlation in the overweight/obese group. BMI and lymphocyte count correlation was positive for normal weight and was negative for overweight/obese. No distinct difference was observed between normal and overweight/ obese groups in terms of monocyte count. Figure 2 shows the relationship between lipid profile parameters and RBC indices. TC and RBC indices (A1-A7) were positively related in the normal range but reversed outside. Regarding the RDW, the correlation was inverse. In the overweight/obese group, this relationship was different. The positive correlation between TC and RBC indices maintained out of the normal range. Besides, in the overweight/obese group outside the normal range, the TC level increases resulted in an increase in RBC count. TG and RBC indices (B1-B7) in the normal and overweight obese groups were almost similar. Except for the MCHC, which was negatively correlated with TG for normal weights and positively correlated with TG for overweight/obese, the correlation pattern between LDL-C and RBC indices (C1-C7) in both normal and overweight/obese groups was the same as TC results. However, the correlation between LDL-C and RBC count was negative for overweight/obese. HDL-C was inversely related to RBC indices (D1-D7). In overweight/obese individuals, the HDL-C had a positive correlation with MCV and MCHC.

Table 2 provides the results of OR with 95% CI according to RBC indices quartiles. After adjusting model 1 for age, gender, smoking status, and physical activity, RBC count, HCT, HGB, and RDW in fourth quartiles had a higher risk for HTN, dyslipidemia, NAFLD, MetS, DM, and CVD compared to the first quartiles. HGB and RBC count in the normal values had the highest risk for NAFLD. Also, there was a similar result of HGB for HTN. On the other hand, the risk of obesity-related disorders decreased within increased

| VariablesYesNoYesNumber % $4344$ ( $4.2$ ) $5482$ ( $55.8$ ) $1527$ ( $15.5$ )Males $2475$ ( $53$ ) $2193$ ( $47$ )° $673$ ( $14.4$ )Age group $2475$ ( $53$ ) $2193$ ( $47$ )° $673$ ( $14.4$ )Age group $2475$ ( $53$ ) $2193$ ( $57.3$ ) $292$ ( $6.3$ ) $35-45$ $1901$ ( $40.9$ ) $2751$ ( $59.1$ )° $554$ ( $177$ ) $35-45$ $999$ ( $49$ ) $1039$ ( $51$ ) $681$ ( $33.4$ ) $56-65$ $999$ ( $49$ ) $1039$ ( $51$ ) $681$ ( $3.3.4$ )Smoke $519$ ( $45.1$ ) $631$ ( $54.9$ ) $186$ ( $16.2$ )Physical activity $614$ ( $49.3$ ) $1489$ ( $50.7$ ) $525$ ( $17.9$ )Moderate $2014$ ( $41.8$ ) $2803$ ( $58.2$ ) $731$ ( $15.2$ )High ( $245$ ) $884$ ( $42.6$ ) $1190$ ( $57.4$ ) $271$ ( $13$ )Moderate $2014$ ( $41.8$ ) $2803$ ( $58.2$ ) $731$ ( $15.2$ )High ( $245$ ) $884$ ( $42.6$ ) $1190$ ( $57.4$ ) $271$ ( $13$ )BMINormal $926$ ( $21.3$ ) $1910$ ( $57.4$ ) $271$ ( $13$ )BMINormal $926$ ( $21.3$ ) $1910$ ( $57.4$ ) $271$ ( $13$ )BMINormal $926$ ( $21.3$ ) $1910$ ( $57.4$ ) $271$ ( $13$ )BMINormal $926$ ( $21.3$ ) $1910$ ( $57.4$ ) $271$ ( $13$ )BMINormal $926$ ( $21.3$ ) $1910$ ( $34.8$ ) $66.2$ $499.65$ BMINormal $926$ ( $21.3$ ) $1910$ ( $34.8$ ) $66.2$ $499.65$ BMINormal $926$ ( $21.3$ ) $1910$ ( $34.8$ ) $28$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No $5.5$ 8298 $84.5$ $4.4$ 3995 $85.6$ $4.4$ 3995 $85.6$ $7.7$ 2581 $82.3$ $3.4$ 1357 $66.6$ $5.2$ 964 $83.8$ $5.2$ 964 $83.8$ $5.2$ 964 $83.8$ $5.2$ 964 $83.8$ $5.2$ 964 $83.8$ $5.2$ 964 $83.8$ $5.2$ 4086 $84.8$ $3.3$ 1802 $87$ $3.3$ 1802 $87$ $3.3$ 1802 $87$ $1.9$ $2516$ $(30.3)^c$ $7.2$ $2190$ $26.5$ $7.2$ $2190$ $26.5$ $7.2$ $67.8 \pm 7.9^c$ $27.8 \pm 7.9^c$ | Yes<br>1008 (10.3) 88<br>306 (6.7) 43<br>418 (9) 4<br>380 (12.1) 27<br>380 (12.1) 27<br>210 (10.3) 18<br>117 (10.2) 10<br>365 (12.4) 25<br>365 (12.4) 25<br>365 (12.4) 25<br>365 (12.4) 25<br>365 (12.4) 27<br>124 (6) 1<br>124 (6) 1<br>124 (6) 1<br>122 (11.9) 27<br>448 (44.4) 37<br>440 (43.7) 2<br>102.1 ± 9.9 96<br>102.1 ± 9.9 96<br>102.1 ± 0.10<br>108.6 + 16.2 10<br>108.6 + | No<br>18 (89.7)<br>$62 (93.4)^{c}$<br>55 (87.9)<br>33 (89.7)<br>33 (89.7)<br>33 (89.7)<br>33 (89.7)<br>298 (89.7)<br>950 (94)<br>$16 (30.8)^{c}$<br>86 (89.4)<br>316 (84)<br>3116 (84)<br>$311\pm 17.1$ | Yes $3432$ $(3.3.3)$ $6$ $3432$ $(3.3.3)$ $6$ $1605$ $(34.4)$ $3$ $12266$ $(27.2)$ $3$ $1247$ $(39.8)$ $1$ $919$ $(45.1)$ $1$ $919$ $(45.1)$ $1$ $919$ $(45.1)$ $1$ $919$ $(34.7)$ $7$ $399$ $(34.7)$ $7$ $399$ $(34.7)$ $7$ $1691$ $(35.1)$ $3$ $1691$ $(35.1)$ $3$ $1691$ $(35.1)$ $2$ $1692$ $(37.1)$ $1$ $100.8 \pm 9.1$ $9$ $114.5 \pm 19.3$ $10$ | No<br>6393 (66.7)<br>3063 (65.6)<br>3386 (72.8) <sup>c</sup><br>1888 (60.2)<br>1119 (54.9)<br>751 (65.3) <sup>c</sup><br>1751 (59.7) <sup>c</sup><br>3126 (64.9)<br>1516 (73.1)<br>2349 (36.7) <sup>c</sup><br>2557 (39.9)<br>1487 (23.4) |                                                                                                                                                                                                   | No<br>8932 (91.4)<br>4262 (91.8)<br>4425 (95.7) <sup>c</sup><br>2776 (89)<br>1731 (85)<br>1044 (91.2) <sup>c</sup><br>4379 (91.3)<br>1935 (93.8)<br>2680 (30.0) <sup>c</sup><br>3846 (43.0)<br>2406 (26.9)                                                                   | Yes<br>1639 (16.7)<br>567 (12.2)<br>310 (6.7)<br>561 (17.9)<br>768 (37.7)<br>190 (16.5)<br>190 (16.5)<br>808 (16.8)<br>237 (11.4)<br>237 (11.4)<br>320 (19.5)<br>688 (41.9)<br>631 (38.6)  | No<br>8187 (83.3)<br>4101 (87.8)<br>4342 (93.3) <sup>c</sup><br>2575 (82.1)<br>1270 (62.3)<br>960 (83.5) <sup>c</sup><br>4009 (83.5) <sup>c</sup><br>1837 (88.6)<br>1837 (88.6)<br>2516 (30.7) <sup>c</sup><br>3546 (43.3) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ber % 4344 (44.2) 5482 (55.8)<br>s 2475 (53) 2193 (47) <sup>6</sup><br>group 1901 (40.9) 2751 (59.1) <sup>6</sup><br>-55 1444 (46) 1692 (54)<br>-65 999 (49) 1039 (51)<br>ke 519 (45.1) 631 (54.9) <sup>b</sup><br>ical activity 2014 (41.8) 2803 (51.2)<br>METs 2014 (41.8) 2803 (58.2)<br>644.9 3884 (42.6) 1190 (57.4)<br>gh (24-36.5) 1446 (49.3) 1489 (50.7) <sup>c</sup><br>oderate 2014 (41.8) 2803 (58.2)<br>6.6-44.9 3884 (42.6) 1190 (57.4)<br>gh (24-5) 3884 (42.6) 1190 (57.4)<br>gh (245) 884 (42.6) 1190 (57.4)<br>gh (245) 884 (42.6) 1190 (57.4)<br>6.6-44.9 30.8 (42.6) 1190 (57.4)<br>$10.10 + 17.3 106.3 \pm 16.5^{c}$<br>$10.10 \pm 10.1$ 68.8 $\pm 9.6^{c}$<br>$30.7 (10^{6} \mu/L)$ 5.01 $\pm 0.5$ 4.8 $\pm 0.5^{c}$<br>$10.6 \pm 1.6$ 30.8 $\pm 1.5^{b}$<br>$110.4 \pm 1.7$ 30.8 $\pm 2.9.6^{c}$<br>$CV (fL) 80.4 \pm 6.9 80.8 \pm 7.0^{b}$<br>$GH (pg) 28.9 \pm 3.0 28.9 \pm 3.0 c$<br>$CHC (g/dl) 35.9 \pm 1.4 35.8 \pm 1.5^{b}$<br>$0.0-CHC (g/dl) 35.9 \pm 1.4 35.8 \pm 1.5^{c}$<br>$0.0-CHC (g/dl) 35.9 \pm 1.4 35.8 \pm 1.5^{c}$<br>$0.09 \pm 1.0^{c}$<br>$0.00 \pm 1.0^{c}$ $6.2 \pm 1.5^{c}$<br>$0.00 \pm 1.0^{c}$<br>$0.00 \pm 1.0^{c}$<br>$0.00 \pm 1.0^{c}$<br>$0.00 \pm 1.0^{c}$<br>$0.00 \pm 1.0^{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                         | <ul> <li>4432 (33.3)</li> <li>1605 (34.4)</li> <li>1266 (27.2)</li> <li>1247 (39.8)</li> <li>919 (45.1)</li> <li>399 (34.7)</li> <li>399 (34.7)</li> <li>399 (34.7)</li> <li>184 (40.3)</li> <li>1184 (40.3)</li> <li>167 (26.9)</li> <li>487 (14.1)</li> <li>1676 (48.8)</li> <li>1269 (37.1)</li> <li>114.5 ± 19.3</li> </ul>                        | 6393 (66.7)<br>3063 (65.6)<br>3386 (72.8)°<br>1388 (60.2)<br>1119 (54.9)<br>751 (65.3)°<br>1751 (65.3)°<br>3126 (64.9)<br>1516 (73.1)<br>1516 (73.1)<br>1516 (73.1)<br>2557 (39.9)<br>1487 (23.4)                                         | 846 (8.6)<br>379 (8.2)<br>198 (4.3)<br>343 (11)<br>305 (15)<br>101 (8.8)<br>300 (10.3)<br>417 (8.7)<br>129 (6.2)<br>148 (17.5)<br>360 (42.5)<br>370 (42.5)                                        | $\begin{array}{c} 8932 \ (91.4) \\ 4262 \ (91.8) \\ 4262 \ (91.8) \\ 2776 \ (89) \\ 1731 \ (85) \\ 1044 \ (91.2)^{\circ} \\ 2618 \ (89.7)^{\circ} \\ 4379 \ (91.3) \\ 1935 \ (93.8) \\ 1935 \ (93.8) \\ 2680 \ (30.0)^{\circ} \\ 3846 \ (43.0) \\ 2406 \ (26.9) \end{array}$ | 1639 (16.7)<br>567 (12.2)<br>310 (6.7)<br>561 (17.9)<br>768 (37.7)<br>190 (16.5)<br>594 (20.2)<br>808 (16.8)<br>237 (11.4)<br>237 (11.4)<br>320 (19.5)<br>688 (41.9)<br>631 (38.6)         | 8187 (83.3)<br>4101 (87.8)<br>2575 (82.1)<br>1270 (62.3)<br>960 (83.5) <sup>c</sup><br>2341 (79.8) <sup>c</sup><br>1837 (88.6)<br>1837 (88.6)<br>3546 (43.3)                                                               |
| s $2475 (53)$ $2193 (47)^c$ group $-45$ $1901 (40.9)$ $2751 (59.1)^c$ $-55$ $1444 (46)$ $1692 (54)$ $-65$ $999 (49)$ $1039 (51)$ $-65$ $999 (49)$ $1039 (51)$ $-65$ $999 (49)$ $1039 (51)$ $-65$ $999 (49)$ $1039 (51)$ $-65$ $999 (49)$ $1039 (51)$ $-65$ $999 (49)$ $1039 (51)$ $-65$ $999 (49)$ $1039 (51)$ $-65$ $999 (49)$ $1039 (51)$ $-66$ $519 (45.1)$ $631 (54.9)^b$ $-66$ $2014 (41.8)$ $2803 (58.2)$ $066 - 44.9$ $884 (42.6)$ $1190 (57.4)$ $066 - 44.9$ $884 (42.6)$ $1190 (57.4)$ $066 - 44.9$ $884 (42.6)$ $1190 (57.4)$ $010 (241)$ $2103 (48.5)$ $2126 (38.7)$ $010 (241)$ $202 (21.3)$ $1910 (57.4)$ $010 (241)$ $30.2$ $1446 (26.5)$ $010 (241)$ $202 (21.3)$ $1910 (57.4)$ $010 - 410.1$ $210 (48.5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                         | 1605 (34.4)<br>1266 (27.2)<br>1247 (39.8)<br>919 (45.1)<br>399 (34.7)<br>184 (40.3)<br>1691 (35.1)<br>557 (26.9)<br>487 (14.1)<br>1676 (48.8)<br>1269 (37.1)<br>$114.5 \pm 19.3$<br>$114.5 \pm 19.3$                                                                                                                                                   | 3063 (65.6)<br>3386 (72.8)°<br>1888 (60.2)<br>1119 (54.9)<br>751 (65.3)°<br>1751 (59.7)°<br>3126 (64.9)<br>1516 (73.1)<br>1516 (73.1)<br>2557 (39.9)<br>1487 (23.4)                                                                       | 379 (8.2)<br>198 (4.3)<br>343 (11)<br>305 (15)<br>101 (8.8)<br>300 (10.3)<br>417 (8.7)<br>129 (6.2)<br>148 (17.5)<br>360 (42.5)<br>370 (42.5)                                                     | $\begin{array}{c} 4262 \ (91.8) \\ 4425 \ (95.7)^{\circ} \\ 2776 \ (89) \\ 1731 \ (85) \\ 1044 \ (91.2)^{\circ} \\ 2618 \ (89.7)^{\circ} \\ 4379 \ (91.3) \\ 1935 \ (93.8) \\ 1935 \ (93.8) \\ 2680 \ (30.0)^{\circ} \\ 3846 \ (43.0) \\ 2406 \ (26.9) \end{array}$          | 567 (12.2)<br>310 (6.7)<br>561 (17.9)<br>768 (37.7)<br>190 (16.5)<br>594 (20.2)<br>808 (16.8)<br>237 (11.4)<br>237 (11.4)<br>320 (19.5)<br>688 (41.9)<br>631 (38.6)                        | 4101 $(87.8)$<br>4342 $(93.3)^{c}$<br>2575 $(82.1)$<br>960 $(83.5)^{c}$<br>4009 $(83.5)^{c}$<br>1837 $(88.6)$<br>1837 $(88.6)$<br>3546 $(43.3)^{c}$                                                                        |
| group<br>-45 1901 (40.9) 2751 (59.1) <sup>c</sup><br>-55 1444 (46) 1692 (54)<br>-65 999 (49) 1039 (51)<br>(e 519 (45.1) 631 (54.9) <sup>b</sup><br>ical activity<br>METs<br>w (24-36.5) 1446 (49.3) 1489 (50.7) <sup>c</sup><br>oderate 2014 (41.8) 2803 (58.2)<br>(gh (245) 884 (42.6) 1190 (57.4)<br>26.6-44.9) 884 (42.6) 1190 (57.4)<br>26.6-44.9) 884 (42.6) 1190 (57.4)<br>56.6-44.9) 884 (42.6) 1190 (57.4)<br>2014 (41.8) 2803 (58.2)<br>(gh (245) 884 (42.6) 1190 (57.4)<br>2108 (48.5) 2126 (38.7)<br>220 (200 (34.8) <sup>c</sup><br>2108 (48.5) 2126 (38.7)<br>220 (10 <sup>6</sup> $\mu$ /L) 5.01 ± 0.5 48.6 96.2 ± 11.0 <sup>c</sup><br>210 $\mu$ /L) 5.01 ± 0.5 4.8 ± 0.5 <sup>c</sup><br>210 $\mu$ /L) 5.01 ± 0.5 4.8 ± 0.5 <sup>c</sup><br>210 $\mu$ /L) 5.01 ± 0.5 4.8 ± 0.5 <sup>c</sup><br>210 $\mu$ /L) 5.01 ± 0.5 4.8 ± 0.5 <sup>c</sup><br>210 $\mu$ /L) 5.01 ± 0.5 4.8 ± 0.5 <sup>c</sup><br>210 $\mu$ /L) 5.01 ± 0.5 4.8 ± 0.5 <sup>c</sup><br>210 $\mu$ /L) 5.01 ± 0.5 4.8 ± 0.5 <sup>c</sup><br>210 $\mu$ /L) 5.01 ± 0.5 4.8 ± 0.5 <sup>c</sup><br>210 $\mu$ /L) 5.01 ± 0.5 4.8 ± 0.5 <sup>c</sup><br>210 $\mu$ /L) 5.01 ± 0.5 4.8 ± 0.5 <sup>c</sup><br>210 $\mu$ /L) 5.01 ± 0.5 4.8 ± 0.5 <sup>c</sup><br>210 $\mu$ /L) 5.01 ± 0.5 4.8 ± 0.5 <sup>c</sup><br>210 $\mu$ /L) 5.01 ± 0.5 4.8 ± 0.5 <sup>c</sup><br>210 $\mu$ /L) 5.01 ± 0.5 4.8 ± 0.5 <sup>c</sup><br>210 $\mu$ /L) 5.01 ± 0.5 4.8 ± 0.5 <sup>c</sup><br>210 $\mu$ /L) 5.01 ± 0.5 4.8 ± 0.5 <sup>c</sup><br>210 $\mu$ /L) 6.6 ± 1.6 6.2 \pm 1.5 <sup>c</sup><br>210 $\mu$ /L) 6.6 ± 1.6 6.2 \pm 1.5 <sup>c</sup><br>210 $\mu$ /L) 6.6 ± 1.6 6.2 \pm 1.5 <sup>c</sup><br>210 $\mu$ /L) 6.6 ± 1.6 6.2 \pm 1.5 <sup>c</sup><br>210 $\mu$ /L) 6.6 ± 1.6 6.2 \pm 1.5 <sup>c</sup><br>210 $\mu$ /L) 6.6 ± 1.6 6.2 \pm 1.5 <sup>c</sup><br>210 $\mu$ /L) 6.6 ± 1.6 6.2 \pm 1.5 <sup>c</sup><br>210 $\mu$ /L) 6.6 ± 1.6 6.2 \pm 1.5 <sup>c</sup><br>210 $\mu$ /L) 6.6 ± 1.6 6.2 \pm 1.5 <sup>c</sup><br>210 $\mu$ /L) 6.6 ± 1.6 6.2 \pm 1.5 <sup>c</sup><br>210 $\mu$ /L) 6.6 ± 1.6 6.2 \pm 1.5 <sup>c</sup><br>210 $\mu$ /L) 6.6 ± 1.6 6.2 \pm 1.5 <sup>c</sup>                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                         | $(266 (27.2) (247 (39.8) 919 (45.1) 399 (34.7) 399 (34.7) (184 (40.3) 1691 (35.1) 557 (26.9) 487 (14.1) 1676 (48.8) 1269 (37.1) 100.8 \pm 9.1 114.5 \pm 19.3$                                                                                                                                                                                          | 3386 (72.8) <sup>c</sup><br>1888 (60.2)<br>1119 (54.9)<br>751 (65.3) <sup>c</sup><br>1751 (59.7) <sup>c</sup><br>3126 (64.9)<br>1516 (73.1)<br>2349 (36.7) <sup>c</sup><br>2557 (39.9)<br>1487 (23.4)                                     | 198 (4.3)<br>343 (11)<br>305 (15)<br>101 (8.8)<br>300 (10.3)<br>417 (8.7)<br>129 (6.2)<br>148 (17.5)<br>360 (42.5)                                                                                | $\begin{array}{c} 4425 \ (95.7)^{\circ} \\ 2776 \ (89) \\ 1731 \ (85) \\ 1044 \ (91.2)^{\circ} \\ 4379 \ (91.3) \\ 1935 \ (93.8) \\ 1935 \ (93.8) \\ 2680 \ (30.0)^{\circ} \\ 3846 \ (43.0) \\ 2406 \ (26.9) \end{array}$                                                    | 310 (6.7)<br>561 (17.9)<br>768 (37.7)<br>190 (16.5)<br>808 (16.8)<br>237 (11.4)<br>320 (19.5)<br>688 (41.9)<br>631 (38.6)                                                                  | 4342 (93.3)°<br>2575 (82.1)<br>1270 (62.3)<br>960 (83.5)°<br>4009 (83.2)<br>1837 (88.6)<br>1837 (88.6)<br>1837 (88.6)<br>2516 (30.7)°<br>3546 (43.3)                                                                       |
| -45       1901 (40.9) $2751 (59.1)^{\circ}$ -55       1444 (46)       1692 (54)         -65       999 (49)       1039 (51)         ke       519 (45.1)       631 (54.9) <sup>b</sup> ical activity       519 (45.1)       631 (54.9) <sup>b</sup> mETs       999 (49)       1039 (51)         w       24-36.5)       1446 (49.3)       1489 (50.7) <sup>c</sup> w       24-36.5)       1446 (41.8)       2803 (58.2)         igh (245)       884 (42.6)       1190 (57.4)         igh (245)       884 (42.6)       1190 (57.4)         oderate       2014 (41.8)       2803 (58.2)         6.6-44.9)       884 (42.6)       1190 (57.4)         oderate       2014 (41.8)       2803 (58.2)         cold       2018 (48.5)       2126 (387)         oderate       2014 (41.8)       2803 (56.5)         ormal       926 (21.3)       1910 (57.4)         ormal       926 (21.3)       1910 (57.4) <t< td=""><td></td><td></td><td></td><td><math>(266 (27.2) (247 (39.8) 919 (45.1) 399 (34.7) 399 (34.7) (184 (40.3) (1691 (35.1) 557 (26.9) 487 (14.1) (1676 (48.8) (1269 (37.1) 1269 (37.1) 114.5 \pm 19.3</math></td><td><math display="block">\begin{array}{c} 3386 \ (72.8)^{c} \\ 1888 \ (60.2) \\ 1119 \ (54.9) \\ 751 \ (65.3)^{c} \\ 3126 \ (64.9) \\ 1516 \ (73.1) \\ 1516 \ (73.1) \\ 2349 \ (36.7)^{c} \\ 2557 \ (39.9) \\ 1487 \ (23.4) \end{array}</math></td><td><math display="block">\begin{array}{c} 198 \ (4.3) \\ 343 \ (11) \\ 305 \ (15) \\ 101 \ (8.8) \\ 101 \ (8.8) \\ 417 \ (8.7) \\ 129 \ (6.2) \\ 129 \ (6.2) \\ 148 \ (17.5) \\ 360 \ (42.5) \\ 370 \ (42.5) \end{array}</math></td><td><math display="block">\begin{array}{c} 4425 \ (95.7)^{\circ} \\ 2776 \ (89) \\ 1731 \ (85) \\ 1044 \ (91.2)^{\circ} \\ 4379 \ (91.3) \\ 1935 \ (93.8) \\ 1935 \ (93.8) \\ 2680 \ (30.0)^{\circ} \\ 3846 \ (43.0) \\ 2406 \ (26.9) \end{array}</math></td><td><math display="block">\begin{array}{c} 310 \ (6.7) \\ 561 \ (17.9) \\ 768 \ (37.7) \\ 190 \ (16.5) \\ 808 \ (16.2) \\ 808 \ (16.8) \\ 237 \ (11.4) \\ 320 \ (19.5) \\ 688 \ (41.9) \\ 631 \ (38.6) \end{array}</math></td><td><math>4342 (93.3)^{\circ}</math><br/>2575 (82.1)<br/>1270 (62.3)<br/><math>960 (83.5)^{\circ}</math><br/>4009 (83.2)<br/>1837 (88.6)<br/>1837 (88.6)<br/>1837 (88.6)<br/>3546 (43.3)<br/>3546 (43.3)</td></t<>                                    |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                         | $(266 (27.2) (247 (39.8) 919 (45.1) 399 (34.7) 399 (34.7) (184 (40.3) (1691 (35.1) 557 (26.9) 487 (14.1) (1676 (48.8) (1269 (37.1) 1269 (37.1) 114.5 \pm 19.3$                                                                                                                                                                                         | $\begin{array}{c} 3386 \ (72.8)^{c} \\ 1888 \ (60.2) \\ 1119 \ (54.9) \\ 751 \ (65.3)^{c} \\ 3126 \ (64.9) \\ 1516 \ (73.1) \\ 1516 \ (73.1) \\ 2349 \ (36.7)^{c} \\ 2557 \ (39.9) \\ 1487 \ (23.4) \end{array}$                          | $\begin{array}{c} 198 \ (4.3) \\ 343 \ (11) \\ 305 \ (15) \\ 101 \ (8.8) \\ 101 \ (8.8) \\ 417 \ (8.7) \\ 129 \ (6.2) \\ 129 \ (6.2) \\ 148 \ (17.5) \\ 360 \ (42.5) \\ 370 \ (42.5) \end{array}$ | $\begin{array}{c} 4425 \ (95.7)^{\circ} \\ 2776 \ (89) \\ 1731 \ (85) \\ 1044 \ (91.2)^{\circ} \\ 4379 \ (91.3) \\ 1935 \ (93.8) \\ 1935 \ (93.8) \\ 2680 \ (30.0)^{\circ} \\ 3846 \ (43.0) \\ 2406 \ (26.9) \end{array}$                                                    | $\begin{array}{c} 310 \ (6.7) \\ 561 \ (17.9) \\ 768 \ (37.7) \\ 190 \ (16.5) \\ 808 \ (16.2) \\ 808 \ (16.8) \\ 237 \ (11.4) \\ 320 \ (19.5) \\ 688 \ (41.9) \\ 631 \ (38.6) \end{array}$ | $4342 (93.3)^{\circ}$<br>2575 (82.1)<br>1270 (62.3)<br>$960 (83.5)^{\circ}$<br>4009 (83.2)<br>1837 (88.6)<br>1837 (88.6)<br>1837 (88.6)<br>3546 (43.3)<br>3546 (43.3)                                                      |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                         | (247 (39.8))<br>919 (45.1)<br>399 (34.7)<br>(184 (40.3))<br>1691 (35.1)<br>557 (26.9)<br>487 (14.1)<br>1676 (48.8)<br>1269 (37.1)<br>114.5 $\pm$ 19.3                                                                                                                                                                                                  | $\begin{array}{c} 1888 \ (60.2) \\ 1119 \ (54.9) \\ 751 \ (65.3)^{c} \\ 1751 \ (65.3)^{c} \\ 3126 \ (64.9) \\ 1516 \ (73.1) \\ 1516 \ (73.1) \\ 2349 \ (36.7)^{c} \\ 2557 \ (39.9) \\ 1487 \ (23.4) \end{array}$                          | $\begin{array}{c} 343 \ (11) \\ 305 \ (15) \\ 101 \ (8.8) \\ 300 \ (10.3) \\ 417 \ (8.7) \\ 129 \ (6.2) \\ 148 \ (17.5) \\ 360 \ (42.5) \\ 370 \ (40) \end{array}$                                | 2776 (89)<br>1731 (85)<br>1044 (91.2) <sup>c</sup><br>2618 (89.7) <sup>c</sup><br>4379 (91.3)<br>1935 (93.8)<br>2680 (30.0) <sup>c</sup><br>3846 (43.0)<br>2406 (26.9)                                                                                                       | 561 (17.9)<br>768 (37.7)<br>190 (16.5)<br>594 (20.2)<br>808 (16.8)<br>237 (11.4)<br>320 (19.5)<br>688 (41.9)<br>631 (38.6)                                                                 | 2575 (82.1)<br>1270 (62.3)<br>960 (83.5) <sup>c</sup><br>4009 (83.2)<br>1837 (88.6)<br>1837 (88.6)<br>2516 (30.7) <sup>c</sup><br>3546 (43.3)                                                                              |
| -65       999 (49)       1039 (51)         ke       519 (45.1)       631 (54.9) <sup>b</sup> ical activity       631 (54.9) <sup>b</sup> mETs       w (24–36.5)       1446 (49.3)       1489 (50.7) <sup>c</sup> w (24–36.5)       1446 (49.3)       1489 (50.7) <sup>c</sup> oderate       2014 (41.8)       2803 (58.2) $6.6-44.9$ 884 (42.6)       1190 (57.4)         igh (245)       884 (42.6)       1190 (57.4)         oderate       2014 (41.8)       2803 (58.2) $6.6-44.9$ 884 (42.6)       1190 (57.4)         orbit       2108 (48.5)       2126 (387)         verweight       2108 (48.5)       2126 (387)         oesity       1310 (30.2)       1446 (26.5)         n ± SD       98.7 ± 9.6       96.2 ± 11.0 <sup>c</sup> of (mmHg)       110.4 ± 17.3       106.3 ± 16.5 <sup>c</sup> of (mmHg)       110.4 ± 17.3       106.3 ± 16.5 <sup>c</sup> of (mmHg)       110.4 ± 17.3       106.3 ± 16.5 <sup>c</sup> of (mmHg)       110.4 ± 17.3       108.2 ± 1.5 <sup>c</sup> of (mmHg)       110.4 ± 17.3       106.3 ± 16.5 <sup>c</sup> of (mmHg)       110.4 ± 17.3       106.3 ± 1.5 <sup>c</sup> of (mmHg)       110.4 ± 1.5       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                         | 919 $(45.1)$<br>399 $(34.7)$<br>(184 (40.3)<br>1691 (35.1)<br>557 (26.9)<br>487 (14.1)<br>1676 (48.8)<br>1269 (37.1)<br>$100.8 \pm 9.1$<br>$114.5 \pm 19.3$                                                                                                                                                                                            | 1119 (54.9)<br>751 (65.3) <sup>c</sup><br>1751 (59.7) <sup>c</sup><br>3126 (64.9)<br>1516 (73.1)<br>2349 (36.7) <sup>c</sup><br>2557 (39.9)<br>1487 (23.4)                                                                                | $\begin{array}{c} 305 \ (15) \\ 101 \ (8.8) \\ 300 \ (10.3) \\ 417 \ (8.7) \\ 129 \ (6.2) \\ 148 \ (17.5) \\ 360 \ (42.5) \\ 370 \ (42.5) \end{array}$                                            | $\begin{array}{c} 1731 \ (85) \\ 1044 \ (91.2)^{\rm c} \\ 2618 \ (89.7)^{\rm c} \\ 4379 \ (91.3) \\ 1935 \ (93.8) \\ 2680 \ (30.0)^{\rm c} \\ 3846 \ (43.0) \\ 2406 \ (26.9) \end{array}$                                                                                    | 768 (37.7)<br>190 (16.5)<br>594 (20.2)<br>808 (16.8)<br>237 (11.4)<br>320 (19.5)<br>688 (41.9)<br>631 (38.6)                                                                               | 1270 (62.3)<br>960 (83.5) <sup>c</sup><br>2341 (79.8) <sup>c</sup><br>4009 (83.2)<br>1837 (88.6)<br>1837 (88.6)<br>3546 (43.3)                                                                                             |
| ke 519 (45.1) 631 (54.9) <sup>b</sup><br>ical activity<br>METs<br>w (24–36.5) 1446 (49.3) 1489 (50.7) <sup>c</sup><br>oderate 2014 (41.8) 2803 (58.2)<br>6.6-44.9) 884 (42.6) 1190 (57.4)<br>6.6-44.9) 884 (42.6) 1190 (57.4)<br>6.6-44.9) 884 (42.6) 1190 (57.4)<br>6.6-44.9) 884 (42.6) 1190 (57.4)<br>7.4) $9.26$ (21.3) 1910 (34.8) <sup>c</sup><br>verweight 2108 (48.5) 2126 (38.7)<br>7.6 (38.7) $1310$ (30.2) 1446 (26.5)<br>1.4 (30.2) 1446 (26.5)<br>1.4 (30.2) 1446 (26.5)<br>$1.2$ (20) $9.7.7 + 9.6$ $9.6.2 \pm 11.0^{c}$<br>$1.2$ (20) $9.7.7 + 9.6$ $9.6.2 \pm 11.0^{c}$<br>$1.2$ (20) $9.7.7 + 9.6$ $9.6.2 \pm 11.0^{c}$<br>$1.2$ (20) $9.7.1 + 4.1$ $3.106.3 \pm 16.5^{c}$<br>$1.2$ (20) $9.7.1 + 4.1$ $3.106.3 \pm 16.5^{c}$<br>$1.2$ (20) $9.0.2 \pm 1.1.3$ $106.3 \pm 16.5^{c}$<br>$1.2$ (20) $9.0.2 \pm 1.1.3$ $10.9 \pm 1.1.5^{c}$<br>$1.2$ (20) $3.2.9 \pm 1.4$ $3.3.8 \pm 4.0^{c}$<br>$1.1.1 \pm 0.9$ $10.9 \pm 1.1.5^{c}$<br>$1.1.1 \pm 0.9$ $10.9 \pm 1.1.5^{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                         | $399 (34.7)$ $1184 (40.3)$ $1691 (35.1)$ $557 (26.9)$ $487 (14.1)$ $1676 (48.8)$ $1269 (37.1)$ $100.8 \pm 9.1$ $114.5 \pm 19.3$                                                                                                                                                                                                                        | 751 (65.3)°<br>1751 (59.7)°<br>3126 (64.9)<br>1516 (73.1)<br>2349 (36.7)°<br>2557 (39.9)<br>1487 (23.4)                                                                                                                                   | 101 (8.8)<br>300 (10.3)<br>417 (8.7)<br>129 (6.2)<br>148 (17.5)<br>360 (42.5)                                                                                                                     | 1044 (91.2)°<br>2618 (89.7)°<br>4379 (91.3)<br>1935 (93.8)<br>2680 (30.0)°<br>3846 (43.0)<br>2406 (26.9)                                                                                                                                                                     | 190 (16.5)<br>594 (20.2)<br>808 (16.8)<br>237 (11.4)<br>320 (19.5)<br>688 (41.9)<br>631 (38.6)                                                                                             | 960 (83.5) <sup>c</sup><br>2341 (79.8) <sup>c</sup><br>4009 (83.2)<br>1837 (88.6)<br>1837 (88.6)<br>3546 (43.3)                                                                                                            |
| ical activity<br>METs<br>w (24–36.5) 1446 (49.3) 1489 (50.7) <sup>c</sup><br>oderate 2014 (41.8) 2803 (58.2)<br>6.6-44.9) 884 (42.6) 1190 (57.4)<br>6.6-44.9) 884 (42.6) 1190 (57.4)<br>6.6-44.9) 884 (42.6) 1190 (57.4)<br>6.6-44.9) 884 (42.6) 1190 (57.4)<br>7.10 (26.5) 1446 (26.5)<br>1.1310 (30.2) 1446 (26.5)<br>1.26 (38.7)<br>1.28 (38.7) (30.2) 1446 (26.5)<br>1.20 (cm) 98.7 ±9.6 96.2 ±11.0 <sup>c</sup><br>1.0 (mHg) 110.4 ±17.3 106.3 ±16.5 <sup>c</sup><br>1.0 (cm) 98.7 ±9.6 96.2 ±11.0 <sup>c</sup><br>1.0 (cm) 98.7 ±9.6 96.2 ±11.0 <sup>c</sup><br>1.0 (cm) 98.7 ±9.6 96.2 ±11.0 <sup>c</sup><br>1.0 (mHg) 110.4 ±17.3 106.3 ±16.5 <sup>c</sup><br>1.0 (cm) 90.2 ±11.0 <sup>c</sup><br>2.0 (cm) 80.4 ±6.9 80.8 ±7.0 <sup>b</sup><br>2.0 (cHC (g/dl)) 35.9 ±1.4 35.8 ±1.5 <sup>b</sup><br>2.0 (cHC (g/dl)) 35.9 ±1.4 35.8 ±1.5 <sup>c</sup><br>2.0 (cHC (g/dl)) 35.9 |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                         | $\begin{array}{c} (184 \ (40.3) \\ 1691 \ (35.1) \\ 557 \ (26.9) \\ 487 \ (14.1) \\ 1676 \ (48.8) \\ 1269 \ (37.1) \\ 100.8 \pm 9.1 \\ 114.5 \pm 19.3 \end{array}$                                                                                                                                                                                     | 1751 (59.7)°<br>3126 (64.9)<br>1516 (73.1)<br>2349 (36.7)°<br>2557 (39.9)<br>1487 (23.4)                                                                                                                                                  | 300 (10.3)<br>417 (8.7)<br>129 (6.2)<br>148 (17.5)<br>360 (42.5)                                                                                                                                  | 2618 (89.7) <sup>c</sup><br>4379 (91.3)<br>1935 (93.8)<br>2680 (30.0) <sup>c</sup><br>3846 (43.0)<br>2406 (26.9)                                                                                                                                                             | 594 (20.2)<br>808 (16.8)<br>237 (11.4)<br>320 (19.5)<br>688 (41.9)<br>631 (38.6)                                                                                                           | 2341 (79.8)°<br>4009 (83.2)<br>1837 (88.6)<br>2516 (30.7)°<br>3546 (43.3)                                                                                                                                                  |
| METs<br>wv (24–36.5) 1446 (49.3) 1489 (50.7) <sup>c</sup><br>oderate 2014 (41.8) 2803 (58.2)<br>6.6-44.9) 884 (42.6) 1190 (57.4)<br>gh (245) 884 (42.6) 1190 (57.4)<br>rerweight 2108 (48.5) 2126 (38.7)<br>rerweight 210 (30.2) 1446 (26.5)<br>$rer (mmHg) 110.4 \pm 17.3 106.3 \pm 16.5^{c}$<br>$rer (%) 98.7 \pm 9.6$<br>$rer (%) 98.7 \pm 9.6$<br>$rer (%) 98.7 \pm 9.6$<br>$rer (%) 98.7 \pm 9.6$<br>$rer (%) 90.8 \pm 7.0^{b}$<br>$rer (%) 11.1 \pm 0.9 10.9 \pm 1.10^{c}$<br>$rer (%) 11.1 \pm 0.9 10.9 \pm 1.10^{c}$<br>$rer (%) 11.1 \pm 0.9 10.9 \pm 1.10^{c}$<br>$rer (rerweight) 35.9 \pm 1.4 35.8 \pm 1.5^{b}$<br>$rer (rerweight) 35.9 \pm 1.4 35.8 \pm 1.5^{b}$<br>$rer (rerweight) 35.9 \pm 1.4 35.8 \pm 1.5^{b}$<br>$rerweight) 6.6 \pm 1.6 6.2 \pm 1.5^{c}$<br>$rerweight) 6.6 \pm 1.6 6.2 \pm 1.5^{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                         | <ul> <li>1184 (40.3)</li> <li>1691 (35.1)</li> <li>557 (26.9)</li> <li>487 (14.1)</li> <li>1676 (48.8)</li> <li>1269 (37.1)</li> <li>100.8 ± 9.1</li> <li>114.5 ± 19.3</li> </ul>                                                                                                                                                                      | 1751 (59.7)°<br>3126 (64.9)<br>1516 (73.1)<br>2349 (36.7)°<br>2557 (39.9)<br>1487 (23.4)                                                                                                                                                  | 300 (10.3)<br>417 (8.7)<br>129 (6.2)<br>148 (17.5)<br>360 (42.5)                                                                                                                                  | 2618 (89.7)°<br>4379 (91.3)<br>1935 (93.8)<br>2680 (30.0)°<br>3846 (43.0)<br>2406 (26.9)                                                                                                                                                                                     | 594 (20.2)<br>808 (16.8)<br>237 (11.4)<br>320 (19.5)<br>688 (41.9)<br>631 (38.6)                                                                                                           | 2341 (79.8)°<br>4009 (83.2)<br>1837 (88.6)<br>2516 (30.7)°<br>3546 (43.3)                                                                                                                                                  |
| ww $(24-36.5)$ 1446 $(49.3)$ 1489 $(50.7)^c$ oderate $2014 (41.8)$ $2803 (58.2)$ $6.6-44.9$ $884 (42.6)$ $1190 (57.4)$ $5.6-44.9$ $884 (42.6)$ $1190 (57.4)$ $5.6-44.9$ $884 (42.6)$ $1190 (57.4)$ $5.6-44.9$ $884 (42.6)$ $1190 (57.4)$ $5.6-44.9$ $884 (42.6)$ $1190 (57.4)$ $5.01 (25.7)$ $1190 (57.4)$ $110 (34.8)^c$ $7.10 (30.2)$ $1446 (26.5)$ $110 (34.8)^c$ $0.2 \text{ ctr}$ $1310 (30.2)$ $1446 (26.5)$ $0.2 \text{ ctr}$ $98.7 \pm 9.6$ $96.2 \pm 11.0^c$ $0.7 \text{ ctr}$ $98.7 \pm 9.6$ $96.2 \pm 11.0^c$ $0.7 \text{ ctr}$ $98.7 \pm 9.6$ $96.2 \pm 11.0^c$ $0.7 \text{ ctr}$ $98.7 \pm 9.6$ $96.2 \pm 11.0^c$ $0.7 \text{ ctr}$ $98.7 \pm 9.6$ $96.2 \pm 11.0^c$ $0.7 \text{ ctr}$ $98.7 \pm 9.6$ $96.2 \pm 11.0^c$ $0.7 \text{ ctr}$ $98.7 \pm 9.6$ $96.2 \pm 11.0^c$ $0.7 \text{ ctr}$ $98.7 \pm 9.6$ $96.2 \pm 11.0^c$ $0.7 \text{ ctr}$ $98.7 \pm 9.6$ $96.2 \pm 1.5^c$ $0.7 \text{ ctr}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                         | $\begin{array}{c}  184 \ (40.3) \\ 1691 \ (35.1) \\ 557 \ (26.9) \\ 487 \ (14.1) \\ 1676 \ (48.8) \\ 1269 \ (37.1) \\ 100.8 \pm 9.1 \\ 114.5 \pm 19.3 \end{array}$                                                                                                                                                                                     | 1751 (59.7)°<br>3126 (64.9)<br>1516 (73.1)<br>2349 (36.7)°<br>2557 (39.9)<br>1487 (23.4)                                                                                                                                                  | $\begin{array}{c} 300 \ (10.3) \\ 417 \ (8.7) \\ 129 \ (6.2) \\ 148 \ (17.5) \\ 360 \ (42.5) \\ 370 \ (40) \end{array}$                                                                           | $2618 (89.7)^{\circ} 4379 (91.3) \\1935 (93.8) \\2680 (30.0)^{\circ} 3846 (43.0) \\2406 (26.9) \\2406 (26.9) \\$                                                                                                                                                             | 594 (20.2)<br>808 (16.8)<br>237 (11.4)<br>320 (19.5)<br>688 (41.9)<br>631 (38.6)                                                                                                           | 2341 (79.8)°<br>4009 (83.2)<br>1837 (88.6)<br>2516 (30.7)°<br>3546 (43.3)                                                                                                                                                  |
| oderate<br>$6.6-44.9$ ) $2014 (41.8) 2803 (58.2)$ $6.6-44.9$ ) $884 (42.6) 1190 (57.4)$ $190 (245)$ $884 (42.6) 1190 (57.4)$ $190 (57.4)$ $1190 (57.4)$ $1190 (57.4)$ $1190 (57.4)$ $1190 (57.4)$ $1190 (57.4)$ $1190 (57.4)$ $1190 (57.4)$ $1190 (57.4)$ $1190 (57.4)$ $1190 (57.4)$ $1190 (57.4)$ $1190 (57.4)$ $1190 (57.4)$ $110 (50.2)$ $1190 (57.4)$ $110 (50.2)$ $11446 (26.5)$ $110 (417) (50.2)$ $11446 (26.5)$ $110 (417) (50.2)$ $110.4 \pm 17.3$ $106 (34.8) (50.2) (56.5)$ $110.4 \pm 17.3$ $106 (411) (50.2) (110.4 \pm 17.3)$ $106.3 \pm 16.5^{6}$ $110 (411) (50.2) (110.4 \pm 17.3)$ $106.3 \pm 16.5^{6}$ $110 (411) (50.2) (110.4 \pm 11.3)$ $106.3 \pm 16.5^{6}$ $110 (412) (20.2) (110.4 \pm 11.3)$ $106.3 \pm 16.5^{6}$ $110 (412) (20.1) (20.2) (20.4 \pm 6.9)$ $80.8 \pm 7.0^{6}$ $110 (410) (20.4 \pm 11.3) (20.2) (20.4 \pm 6.9)$ $80.8 \pm 7.0^{6}$ $111 (412) (20.4 \pm 11.3) (20.9 \pm 11.0^{6})$ $210.9 \pm 11.0^{6}$ $111 (412) (20.4 \pm 11.6) (20.4 \pm 11.6)$ $210.9 \pm 11.0^{6}$ $111 (412) (20.4 \pm 11.6) (20.4 \pm 11.6)$ $110.9 \pm 11.0^{6}$ $111 (412) (20.4 \pm 11.6) (20.4 \pm 11.6)$ $110.9 \pm 11.0^{6}$ $111 (412) (20.4 \pm 11.6) (20.2 \pm 11.6)$ $100.9 \pm 11.0^{6}$ $111 (412) (20.4 \pm 11.6) (20.4 \pm 11.6)$ $110.9 \pm 11.0^{6}$ $111 (412) (20.4 \pm 11.6) (20.4 \pm 11.6) (20.4 \pm 11.6)$ $110.9 \pm 11.0^{6}$ $111 (412) (411) (411.6) (411.6) (411.6) (411.6) (411.6)$ $110.9 \pm 11.0^{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                         | 1691 (35.1)<br>557 (26.9)<br>487 (14.1)<br>1676 (48.8)<br>1269 (37.1)<br>100.8 $\pm$ 9.1<br>114.5 $\pm$ 19.3                                                                                                                                                                                                                                           | 3126 (64.9)<br>1516 (73.1)<br>2349 (36.7) <sup>c</sup><br>2557 (39.9)<br>1487 (23.4)                                                                                                                                                      | 417 (8.7)<br>129 (6.2)<br>148 (17.5)<br>360 (42.5)                                                                                                                                                | $\begin{array}{c} 4379 \ (91.3) \\ 1935 \ (93.8) \\ 2680 \ (30.0)^{c} \\ 3846 \ (43.0) \\ 2406 \ (26.9) \end{array}$                                                                                                                                                         |                                                                                                                                                                                            | $\begin{array}{c} 4009 \ (83.2) \\ 1837 \ (88.6) \\ 2516 \ (30.7)^{\circ} \\ 3546 \ (43.3) \\ 3107 \ (20.7)^{\circ} \end{array}$                                                                                           |
| $6.6-44.9$ ) $2014 (41.5)$ $2802 (35.2)$ $gh (\geq 45)$ $884 (42.6)$ $1190 (57.4)$ $primal$ $926 (21.3)$ $1910 (34.8)^c$ $primeight$ $2108 (48.5)$ $2126 (38.7)$ $primeight$ $2108 (48.5)$ $216.5^c$ $primeight$ $210 (30.2)$ $1446 (26.5)$ $primeight$ $210 \pm 10.7$ $106.3 \pm 16.5^c$ $primeight$ $210 \pm 10.1$ $68.8 \pm 9.6^c$ $primeight$ $210 \pm 10.1$ $38.9 \pm 4.0^c$ $primeight$ $28.9 \pm 3.0$ $28.9 \pm 3.0$ $primeight$ $28.9 \pm 3.0$ $28.9 \pm 3.0$ $primeight$ $28.9 \pm 3.0$ $28.9 \pm 1.5^c$ $primeight$ $28.9 \pm 1.4$ $35.8 \pm 1.5^c$ $primeight$ $28.9 \pm 1.4$ $35.8 \pm 1.5^c$ $primeight$ $28.9 \pm 3.0$ $28.9 \pm 3.0$ $primeight$ $28.9 \pm 1.4$ $35.8 \pm 1.5^c$ $primeight$ $28.9 \pm 1.4$ $35.8 \pm 1.5^c$ $primeight$ $28.9 \pm 1.4$ $35.8 \pm 1.5^c$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                         | 1091 (95.1)<br>557 (26.9)<br>487 (14.1)<br>1676 (48.8)<br>1269 (37.1)<br>100.8 ± 9.1<br>114.5 ± 19.3                                                                                                                                                                                                                                                   | 21.26 (04.97)<br>1516 (73.1)<br>2349 (36.7) <sup>c</sup><br>2557 (39.9)<br>1487 (23.4)<br>05.4 ± 10.7 <sup>c</sup>                                                                                                                        | 41/ (8.7)<br>129 (6.2)<br>148 (17.5)<br>360 (42.5)                                                                                                                                                | $\begin{array}{c} (2.19) \\ (2.12) \\ (2.1935 \\ (2.1935 \\ (2.10)^{\circ} \\ 3846 \\ (2.10)^{\circ} \\ 2406 \\ (26.9) \end{array}$                                                                                                                                          |                                                                                                                                                                                            | 4009 (83.2)<br>1837 (88.6)<br>2516 (30.7) <sup>c</sup><br>3546 (43.3)                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                         | 557 (26.9)<br>487 (14.1)<br>1676 (48.8)<br>1269 (37.1)<br>100.8 ± 9.1<br>114.5 ± 19.3                                                                                                                                                                                                                                                                  | 1516 (73.1)<br>2349 (36.7) <sup>c</sup><br>2557 (39.9)<br>1487 (23.4)<br>ac 4 ± 10.7 <sup>c</sup>                                                                                                                                         | 129 (6.2)<br>148 (17.5)<br>360 (42.5)                                                                                                                                                             | $\begin{array}{c} 1935 \ (93.8) \\ 2680 \ (30.0)^{c} \\ 3846 \ (43.0) \\ 2406 \ (26.9) \end{array}$                                                                                                                                                                          |                                                                                                                                                                                            | 1837 (88.6)<br>2516 (30.7) <sup>c</sup><br>3546 (43.3)                                                                                                                                                                     |
| strmal926 (21.3)1910 (34.8)°verweight2108 (48.5)2126 (38.7)besity1310 (30.2)1446 (26.5) $n \pm SD$ 98.7 \pm 9.696.2 \pm 11.0°C (cm)98.7 \pm 9.696.2 \pm 11.0° $P(mmHg)$ 110.4 \pm 17.3106.3 \pm 16.5° $P(mmHg)$ 71.0 \pm 10.168.8 \pm 9.6° $SP$ ( $10^6 \mu/L$ )5.01 \pm 0.54.8 \pm 0.5° $C$ (fL)80.4 \pm 6.980.8 \pm 7.0° $GP$ ( $P(H)$ )80.4 \pm 6.980.8 \pm 7.0° $GP$ ( $P(H)$ )80.4 \pm 6.980.8 \pm 7.0° $GP$ ( $P(H)$ )11.4.4 \pm 1.513.9 \pm 1.5° $CH$ ( $Pg$ )28.9 \pm 3.028.9 \pm 3.0 $CHC$ ( $g/dl$ )35.9 \pm 1.435.8 \pm 1.5° $NV-CV$ (%)11.1 \pm 0.910.9 \pm 1.0° $BC$ ( $10^3 \mu/L$ )6.6 \pm 1.66.2 \pm 1.5° $mphocyte$ $A_1 + \pm 8$ $A_0 + a$ 8 $8^b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                         | $487 (14.1) 1676 (48.8) 1269 (37.1) 100.8 \pm 9.1 114.5 \pm 19.3 $                                                                                                                                                                                                                                                                                     | 2349 (36.7)°<br>2557 (39.9)<br>1487 (23.4)<br>ac 4 + 10 7°                                                                                                                                                                                | 148 (17.5)<br>360 (42.5)<br>220 (40)                                                                                                                                                              | $\begin{array}{c} 2680 & (30.0)^{c} \\ 3846 & (43.0) \\ 2406 & (26.9) \end{array}$                                                                                                                                                                                           |                                                                                                                                                                                            | 2516 (30.7) <sup>c</sup><br>3546 (43.3)                                                                                                                                                                                    |
| ght $2108 (48.5)$ 1910 (34.8)<br>ght 2108 (48.5) 2126 (38.7)<br>(1) 98.7 \pm 9.6 96.2 \pm 11.0^{c}<br>mHg) 110.4 \pm 17.3 106.3 \pm 16.5^{c}<br>mHg) 71.0 \pm 10.1 68.8 \pm 9.6^{c}<br>$^{6}\mu/L$ 5.01 \pm 0.5 4.8 \pm 0.5^{c}<br>$^{6}\mu/L$ 5.01 \pm 0.5 4.8 \pm 0.5^{c}<br>(1) 80.4 \pm 6.9 80.8 \pm 7.0^{b}<br>(2) 80.4 \pm 6.9 80.8 \pm 7.0^{b}<br>(3) 11.1 ± 0.9 10.9 \pm 1.5^{c}<br>g) $^{2}\mu/L$ 6.6 \pm 1.4 35.8 \pm 1.5^{b}<br>(3) $^{4}\mu/L$ 6.6 \pm 1.6 6.2 \pm 1.5^{c}<br>cyte $A1.5 \pm 8.8 A0.8 \pm 8^{b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                         | $\frac{48}{(14.1)}$ $\frac{48}{(676} (48.8)$ $\frac{1269}{(37.1)}$ $100.8 \pm 9.1$ $114.5 \pm 19.3$                                                                                                                                                                                                                                                    | 2549 (30.7)<br>2557 (39.9)<br>1487 (23.4)<br>05.4 + 10.7 <sup>c</sup>                                                                                                                                                                     | (3.17) $(1.7)$ $(1.7)$ $(1.7)$ $(1.7)$ $(1.5)$ $(1.5)$ $(1.5)$ $(1.0)$                                                                                                                            | 2680 (30.0)<br>3846 (43.0)<br>2406 (26.9)                                                                                                                                                                                                                                    |                                                                                                                                                                                            | 2516 (30.7)<br>3546 (43.3)                                                                                                                                                                                                 |
| ght         2108 (48.5)         2126 (38.7)           (1)         98.7 $\pm$ 9.6         96.2 $\pm$ 11.0 <sup>c</sup> nHg)         110.4 $\pm$ 17.3         106.3 $\pm$ 16.5 <sup>c</sup> mHg)         71.0 $\pm$ 10.1         68.8 $\pm$ 9.6 <sup>c</sup> $^{6}\mu/L$ )         5.01 $\pm$ 0.5         4.8 $\pm$ 0.5 <sup>c</sup> $^{6}\mu/L$ )         5.01 $\pm$ 0.5         4.8 $\pm$ 0.5 <sup>c</sup> $^{11}$ 10.4 $\pm$ 1.7         106.3 $\pm$ 16.5 <sup>c</sup> $^{11}$ 5.01 $\pm$ 0.5         4.8 $\pm$ 0.5 <sup>c</sup> $^{11}$ 10.1         68.8 $\pm$ 9.6 <sup>c</sup> $^{6}\mu/L$ )         5.01 $\pm$ 0.5         4.8 $\pm$ 0.5 <sup>c</sup> $^{11}$ 10.1 $\pm$ 3.89 $\pm$ 4.0 <sup>c</sup> 9.0.8 $\pm$ 7.0 <sup>b</sup> $^{11}$ 14.4 $\pm$ 1.5         13.9 $\pm$ 1.5 <sup>c</sup> $^{11}$ 14.4 $\pm$ 1.5         13.9 $\pm$ 1.5 <sup>c</sup> $^{11}$ 11.4 $\pm$ 3.5.8 $\pm$ 1.5 <sup>b</sup> 9.6 $\pm$ 1.6 $^{11}$ 0.9 $\pm$ 1.4         35.8 $\pm$ 1.5 <sup>c</sup> $^{11}$ 6.6 $\pm$ 1.6         6.2 $\pm$ 1.5 <sup>c</sup> $^{11}$ 6.6 $\pm$ 1.6         6.2 $\pm$ 1.5 <sup>c</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                         | $\begin{array}{c} 1676 (48.8) \\ 1269 (37.1) \\ 100.8 \pm 9.1 \\ 114.5 \pm 19.3 \end{array}$                                                                                                                                                                                                                                                           | 2557 (39.9)<br>1487 (23.4)<br>05 4 ± 10 7 <sup>c</sup>                                                                                                                                                                                    | 360 (42.5)                                                                                                                                                                                        | 3846 (43.0)<br>2406 (26.9)                                                                                                                                                                                                                                                   |                                                                                                                                                                                            | 3546 (43.3)                                                                                                                                                                                                                |
| 1310 (30.2)       1446 (26.5)         nHg)       98.7 ± 9.6       96.2 ± 11.0 <sup>c</sup> nHg)       110.4 ± 17.3       106.3 ± 16.5 <sup>c</sup> mHg)       71.0 ± 10.1       68.8 ± 9.6 <sup>c</sup> $^{6}\mu/L$ )       5.01 ± 0.5       4.8 ± 0.5 <sup>c</sup> $^{6}\mu/L$ )       5.01 ± 0.5       4.8 ± 0.5 <sup>c</sup> $^{10}$ 90.1 ± 4.1       38.9 ± 4.0 <sup>c</sup> $^{11}$ 14.4 ± 1.5       13.9 ± 1.5 <sup>c</sup> $^{11}$ 14.4 ± 1.5       13.9 ± 1.5 <sup>c</sup> $^{11}$ 13.9 ± 1.5 <sup>c</sup> 30.8 ± 7.0 <sup>b</sup> $^{11}$ 14.4 ± 1.5       13.9 ± 1.5 <sup>c</sup> $^{11}$ 13.5 ± 1.4       35.8 ± 1.5 <sup>b</sup> $^{11}$ 5.9 ± 1.4       35.8 ± 1.5 <sup>c</sup> $^{11}$ 6.6 ± 1.6       6.2 ± 1.5 <sup>c</sup> $^{11}$ 4.1 5 ± 8.8       4.0 8 ± 8.8 <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                         | $\frac{1269 (37.1)}{100.8 \pm 9.1}$                                                                                                                                                                                                                                                                                                                    | 1487 (23.4)<br>סק <i>א</i> + 10 7 <sup>c</sup>                                                                                                                                                                                            | 101/ 066                                                                                                                                                                                          | 2406 (26.9)                                                                                                                                                                                                                                                                  |                                                                                                                                                                                            |                                                                                                                                                                                                                            |
| (i) $98.7 \pm 9.6$ $96.2 \pm 11.0^{\circ}$<br>mHg) $110.4 \pm 17.3$ $106.3 \pm 16.5^{\circ}$<br>mHg) $71.0 \pm 10.1$ $68.8 \pm 9.6^{\circ}$<br>$^{6} \mu/L$ ) $5.01 \pm 0.5$ $4.8 \pm 0.5^{\circ}$<br>$1.0$ $80.4 \pm 6.9$ $80.8 \pm 7.0^{\circ}$<br>L) $80.4 \pm 6.9$ $80.8 \pm 7.0^{\circ}$<br>T) $14.4 \pm 1.5$ $13.9 \pm 1.5^{\circ}$<br>g) $28.9 \pm 3.0$ $28.9 \pm 3.0$<br>$(g/dl)$ $35.9 \pm 1.4$ $35.8 \pm 1.5^{\circ}$<br>V $(\%)$ $11.1 \pm 0.9$ $10.9 \pm 1.0^{\circ}$<br>$0^{3} \mu/L$ ) $6.6 \pm 1.6$ $6.2 \pm 1.5^{\circ}$<br>cyte $41.5 \pm 8.8$ $40.8 \pm 8.8^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                         | $100.8 \pm 9.1$<br>$114.5 \pm 19.3$                                                                                                                                                                                                                                                                                                                    | סב <i>1</i> + 10 7 <sup>c</sup>                                                                                                                                                                                                           | (04) 8CC                                                                                                                                                                                          |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                            | (0.02) 6212                                                                                                                                                                                                                |
| $98.7 \pm 9.6$ $96.2 \pm 11.0^c$ $110.4 \pm 17.3$ $106.3 \pm 16.5^c$ $71.0 \pm 10.1$ $68.8 \pm 9.6^c$ $5.01 \pm 0.5$ $4.8 \pm 0.5^c$ $40.1 \pm 4.1$ $38.9 \pm 4.0^c$ $80.4 \pm 6.9$ $80.8 \pm 7.0^b$ $14.4 \pm 1.5$ $13.9 \pm 1.5^c$ $28.9 \pm 3.0$ $35.9 \pm 1.4$ $35.9 \pm 1.4$ $35.8 \pm 1.5^b$ $11.1 \pm 0.9$ $10.9 \pm 1.0^c$ $6.6 \pm 1.6$ $6.2 \pm 1.5^c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                         | $100.8 \pm 9.1$<br>$114.5 \pm 19.3$                                                                                                                                                                                                                                                                                                                    | 05 4 ± 10 7 <sup>c</sup>                                                                                                                                                                                                                  |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                            |                                                                                                                                                                                                                            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                         | $14.5 \pm 19.3$                                                                                                                                                                                                                                                                                                                                        | 70.4 I T 10./                                                                                                                                                                                                                             | $100.9 \pm 9.8$                                                                                                                                                                                   | $96.9 \pm 10.5^{\circ}$                                                                                                                                                                                                                                                      | $100.5 \pm 10.5$                                                                                                                                                                           | $96.6 \pm 10.4^{\circ}$                                                                                                                                                                                                    |
| 71.0 $\pm$ 10.1 68.8 $\pm$ 9.6 <sup>c</sup><br>5.01 $\pm$ 0.5 4.8 $\pm$ 0.5 <sup>c</sup><br>40.1 $\pm$ 4.1 38.9 $\pm$ 4.0 <sup>c</sup><br>80.4 $\pm$ 6.9 80.8 $\pm$ 7.0 <sup>b</sup><br>14.4 $\pm$ 1.5 13.9 $\pm$ 1.5 <sup>c</sup><br>28.9 $\pm$ 3.0 28.9 $\pm$ 3.0<br>35.9 $\pm$ 1.4 35.8 $\pm$ 1.5 <sup>b</sup><br>11.1 $\pm$ 0.9 10.9 $\pm$ 1.0 <sup>c</sup><br>6.6 $\pm$ 1.6 6.2 $\pm$ 1.5 <sup>c</sup><br>4.1 5 $\pm$ 8.8 40.8 $\pm$ 8.8 <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                        | $104.8 \pm 14.5^{\circ}$                                                                                                                                                                                                                  | $115.3\pm18.0$                                                                                                                                                                                    | $107.5 \pm 16.7^{c}$                                                                                                                                                                                                                                                         | $119.5 \pm 20.3$                                                                                                                                                                           | $105.8 \pm 15.2^{\circ}$                                                                                                                                                                                                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                              | $69.8 \pm 9.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $69.8 \pm 9.9$                                                                                                                                                                                          | $73.0 \pm 11.1$                                                                                                                                                                                                                                                                                                                                        | $68.0 \pm 8.7^{c}$                                                                                                                                                                                                                        | $72.8 \pm 10.6$                                                                                                                                                                                   | $69.5 \pm 9.8^{\circ}$                                                                                                                                                                                                                                                       | $74.9 \pm 11.2$                                                                                                                                                                            | $68.7 \pm 9.3^{\circ}$                                                                                                                                                                                                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1.5 	4.9 \pm 0.5$                                                                                                                                                                                                                                                                                                                                                           | $4.8 \pm 0.01$ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $4.9 \pm 0.006^{b}$                                                                                                                                                                                     | $4.9 \pm 0.5$                                                                                                                                                                                                                                                                                                                                          | $4.8 \pm 0.5^{\circ}$                                                                                                                                                                                                                     | $4.99 \pm 0.5$                                                                                                                                                                                    | $4.91 \pm 0.5^{b}$                                                                                                                                                                                                                                                           | $4.8 \pm 0.5$                                                                                                                                                                              | $4.9 \pm 0.5^{\circ}$                                                                                                                                                                                                      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $4.2$ $39.4 \pm 4.1$                                                                                                                                                                                                                                                                                                                                                         | $38.8 \pm 3.9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $39.5 \pm 4.1^{\circ}$                                                                                                                                                                                  | $39.7 \pm 4.1$                                                                                                                                                                                                                                                                                                                                         | $39.3 \pm 4.1^{\circ}$                                                                                                                                                                                                                    | $39.7 \pm 3.9$                                                                                                                                                                                    | $39.4 \pm 4.1^{a}$                                                                                                                                                                                                                                                           | $38.8 \pm 4.1$                                                                                                                                                                             | $39.6 \pm 4.1^{\circ}$                                                                                                                                                                                                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                              | $80.2 \pm 6.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $80.6 \pm 7.0$                                                                                                                                                                                          | $80.3 \pm 6.9$                                                                                                                                                                                                                                                                                                                                         | $80.7 \pm 7.0^{\rm b}$                                                                                                                                                                                                                    | $80.0 \pm 6.3$                                                                                                                                                                                    | $80.7 \pm 7.0^{b}$                                                                                                                                                                                                                                                           | $80.3 \pm 7.0$                                                                                                                                                                             | $80.7 \pm 7.0^{a}$                                                                                                                                                                                                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1.6  14.1 \pm 1.5$                                                                                                                                                                                                                                                                                                                                                          | $13.8 \pm 1.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $14.2 \pm 1.5^{\circ}$                                                                                                                                                                                  | $14.2 \pm 1.5$                                                                                                                                                                                                                                                                                                                                         | $14.1 \pm 1.5^{c}$                                                                                                                                                                                                                        | $14.2 \pm 1.5$                                                                                                                                                                                    | $14.1 \pm 1.5$                                                                                                                                                                                                                                                               | $13.8 \pm 1.5$                                                                                                                                                                             | $14.2 \pm 1.5^{\circ}$                                                                                                                                                                                                     |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                              | $28.6 \pm 3.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $28.9 \pm 3.0^{\rm b}$                                                                                                                                                                                  | $28.8 \pm 3.0$                                                                                                                                                                                                                                                                                                                                         | $29.0 \pm 3.0^{\rm b}$                                                                                                                                                                                                                    | $28.6 \pm 2.8$                                                                                                                                                                                    | $28.9 \pm 3.0^{\rm b}$                                                                                                                                                                                                                                                       | $28.7 \pm 3.0$                                                                                                                                                                             | $28.9 \pm 3.0^{b}$                                                                                                                                                                                                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                              | $35.6 \pm 1.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $35.8 \pm 1.4^{\circ}$                                                                                                                                                                                  | $35.8 \pm 1.5$                                                                                                                                                                                                                                                                                                                                         | $35.8 \pm 1.4$                                                                                                                                                                                                                            | $35.7 \pm 1.7$                                                                                                                                                                                    | $35.8 \pm 1.4$                                                                                                                                                                                                                                                               | $35.7 \pm 1.4$                                                                                                                                                                             | $35.8 \pm 1.5^{a}$                                                                                                                                                                                                         |
| $6.6 \pm 1.6$ $6.2 \pm 1.5^{c}$<br>$415 \pm 88$ $408 \pm 88^{b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                              | $11.2 \pm 1.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $11.0 \pm 0.9^{c}$                                                                                                                                                                                      | $11.1 \pm 0.9$                                                                                                                                                                                                                                                                                                                                         | $10.9 \pm 1.0^{\circ}$                                                                                                                                                                                                                    | $11.0\pm0.8$                                                                                                                                                                                      | $11.0\pm0.9^{\mathrm{a}}$                                                                                                                                                                                                                                                    | $11.1 \pm 1.0$                                                                                                                                                                             | $11.0 \pm 0.9^{b}$                                                                                                                                                                                                         |
| $41 + 88 + 408 + 88^{b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.6  6.4 \pm 1.5^{\rm b}$                                                                                                                                                                                                                                                                                                                                                   | $6.6 \pm 1.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $6.4 \pm 1.6^{\circ}$                                                                                                                                                                                   | $6.7 \pm 1.5$                                                                                                                                                                                                                                                                                                                                          | $6.2 \pm 1.5^{\circ}$                                                                                                                                                                                                                     | $7.0 \pm 1.7$                                                                                                                                                                                     | $6.3 \pm 1.5^{\circ}$                                                                                                                                                                                                                                                        | $6.5 \pm 1.6$                                                                                                                                                                              | $6.4 \pm 1.5^{c}$                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                              | $41.7 \pm 8.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $41.1 \pm 8.8^{a}$                                                                                                                                                                                      | $41.3\pm8.7$                                                                                                                                                                                                                                                                                                                                           | $41.0 \pm 8.8$                                                                                                                                                                                                                            | $41.2 \pm 9.0$                                                                                                                                                                                    | $41.1 \pm 8.8$                                                                                                                                                                                                                                                               | $40.5 \pm 9.0$                                                                                                                                                                             | $41.3 \pm 8.7^{\mathrm{b}}$                                                                                                                                                                                                |
| Monocyte $3.5 \pm 1.2$ $3.4 \pm 1.2^{c}$ $3.6 \pm 1.3$ $(10^{3}  \mu/L)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.3 $3.4 \pm 1.2^{\rm C}$                                                                                                                                                                                                                                                                                                                                                    | $3.5 \pm 1.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $3.5 \pm 1.2$                                                                                                                                                                                           | $3.5 \pm 1.2$                                                                                                                                                                                                                                                                                                                                          | $3.4 \pm 1.2^{\mathrm{a}}$                                                                                                                                                                                                                | $3.6 \pm 1.3$                                                                                                                                                                                     | $3.5 \pm 1.2^{a}$                                                                                                                                                                                                                                                            | $3.5 \pm 1.3$                                                                                                                                                                              | $3.5 \pm 1.2^{a}$                                                                                                                                                                                                          |
| GR % $54.8 \pm 9.4$ $55.6 \pm 9.3^{\circ}$ $56.0 \pm 9.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $9.4  55.1 \pm 9.3^{\rm b}$                                                                                                                                                                                                                                                                                                                                                  | $54.7 \pm 9.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $55.3 \pm 9.4^{a}$                                                                                                                                                                                      | $55.0 \pm 9.3$                                                                                                                                                                                                                                                                                                                                         | $55.4 \pm 9.4$                                                                                                                                                                                                                            | $55.1 \pm 9.6$                                                                                                                                                                                    | $55.2 \pm 9.3$                                                                                                                                                                                                                                                               | $55.9 \pm 9.5$                                                                                                                                                                             | $55.1 \pm 9.3^{\rm b}$                                                                                                                                                                                                     |
| $9  253.0 \pm 62.5  2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | О                                                                                                                                                                                                       | $259.0 \pm 61.9$                                                                                                                                                                                                                                                                                                                                       | $250.8 \pm 61.5^{\circ}$                                                                                                                                                                                                                  | $259.8 \pm 62.7$                                                                                                                                                                                  | $253.1 \pm 61.7^{b}$                                                                                                                                                                                                                                                         | $256.2 \pm 65.2$                                                                                                                                                                           | $253.2 \pm 61.1$                                                                                                                                                                                                           |
| $190.7 \pm 46.7$ $181.3 \pm 28.4^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                              | $186.9 \pm 37.9$ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                         | $191.3 \pm 39.1$                                                                                                                                                                                                                                                                                                                                       | $182.4 \pm 37.0^{\circ}$                                                                                                                                                                                                                  | $190.2 \pm 43.7$                                                                                                                                                                                  | $185.0 \pm 37.3^{\rm b}$                                                                                                                                                                                                                                                     | $187.4 \pm 40.1$                                                                                                                                                                           | $185.1 \pm 37.5^{a}$                                                                                                                                                                                                       |
| TG (mg/dl) $182.0 \pm 99.8 \ 102.0 \pm 38.0^{\circ} \ 151.7 \pm 91.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $91.0  134.9 \pm 80.5^{\circ}$                                                                                                                                                                                                                                                                                                                                               | $150.3 \pm 88.4$ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $136.1 \pm 81.6^{\circ}$                                                                                                                                                                                | $197.7 \pm 98.8$                                                                                                                                                                                                                                                                                                                                       | $105.6 \pm 47.9^{\circ}$                                                                                                                                                                                                                  | $179.5 \pm 119.0$                                                                                                                                                                                 | $133.6 \pm 76.9^{\circ}$                                                                                                                                                                                                                                                     | $150.4 \pm 87.6$                                                                                                                                                                           | $134.9 \pm 81.1^{\circ}$                                                                                                                                                                                                   |
| HDL ( $mg/dl$ ) 39.8±10.1 51.6±9.3 <sup>c</sup> 45.9±11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $11.0  46.5 \pm 11.3$                                                                                                                                                                                                                                                                                                                                                        | $45.42 \pm 11.0$ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $46.5 \pm 11.3^{\rm b}$                                                                                                                                                                                 | $40.0 \pm 8.7$                                                                                                                                                                                                                                                                                                                                         | $49.7 \pm 11.1^{c}$                                                                                                                                                                                                                       | $44.0 \pm 11.0$                                                                                                                                                                                   | $46.6 \pm 11.3^{\circ}$                                                                                                                                                                                                                                                      | $46.1 \pm 11.2$                                                                                                                                                                            | $46.4 \pm 11.3$                                                                                                                                                                                                            |
| $105.9 \pm 30.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                         | $105.7 \pm 26.0$                                                                                                                                                                                                                                                                                                                                       | $100.1 \pm 24.9^{\circ}$                                                                                                                                                                                                                  | $104.0 \pm 28.1$                                                                                                                                                                                  | $101.9 \pm 25.1^{a}$                                                                                                                                                                                                                                                         | $102.9 \pm 26.6$                                                                                                                                                                           | $101.9 \pm 25.2$                                                                                                                                                                                                           |
| $101.0 \pm 34.5$ $93.8 \pm 25.6^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                              | $102.9 \pm 33.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $96.3 \pm 29.6^{\circ}$                                                                                                                                                                                 | $109.7 \pm 39.6$                                                                                                                                                                                                                                                                                                                                       | $90.3 \pm 20.7^{c}$                                                                                                                                                                                                                       | $167.8\pm62.9$                                                                                                                                                                                    | $90.3 \pm 9.8^{\circ}$                                                                                                                                                                                                                                                       | $107.7 \pm 40.2$                                                                                                                                                                           | $94.8 \pm 27.1^{\circ}$                                                                                                                                                                                                    |

TABLE 1: General and biochemical characteristics of participants.

4

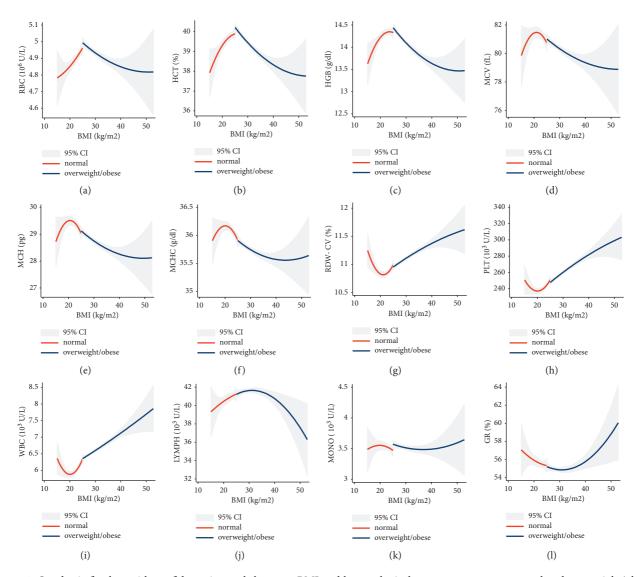



FIGURE 1: Quadratic fit plots with confidence intervals between BMI and hematological parameters among normal and overweight/obese groups.

MCV, MCH, and MCHC levels. Adjusted model 2 for model 1 plus BMI indicated the dual effects of BMI on the relationship between RBC indices and obesity-related diseases. BMI had a reducing effect on the increased ORs of obesityrelated disorders by RBC count, HCT, HGB, and RDW and decreased the risk of these diseases by RBC indices. However, BMI increased the influence of MCV, MCH, and MCHC on obesity-related diseases.

The association between anemia and the OR of obesityrelated diseases is illustrated in Figure 3. In adjusted model 1 for age, gender, smoking status, and physical activity, subjects with mild anemia had 0.83, 0.91, 0.90, 0.85, 0.94, and 1.06-fold risk of dyslipidemia, HTN, NAFLD, MetS, DM, and CVD, respectively, compared with the subject in first quartiles. While the BMI effect in model 2 (model 1 plus BMI) decreased the OR for mild anemia, it increased the risk of obesity-related diseases for the moderate anemia participants.

#### 4. Discussion

The current study indicated that the prevalence of dyslipidemia, MetS, CVD, HTN, NAFLD, and DM was 44.2, 33.3, 16.7, 15.5, 10.3, and 8.6% among participants from the Ravansar cohort. According to the literature, no studies have targeted a large homogeneous population in terms of examining the association between complete RBC indices and the risk of metabolic diseases, the effect of BMI alteration on RBC indices, and the influence of lipid profile on hematological indices. Yet we found an increase of WBC, monocytes, PLT counts, and RDW for metabolic diseases. Overweight/obese individuals with increased BMI had also higher WBC, PLT, GR%, and RDW.

Increased WBC count in overweight/obese people can be explained by production of the IL-6, a proinflammatory cytokine in adipose tissue that plays a role in bone marrow granulopoiesis, WBC proliferation, and differentiation [37].

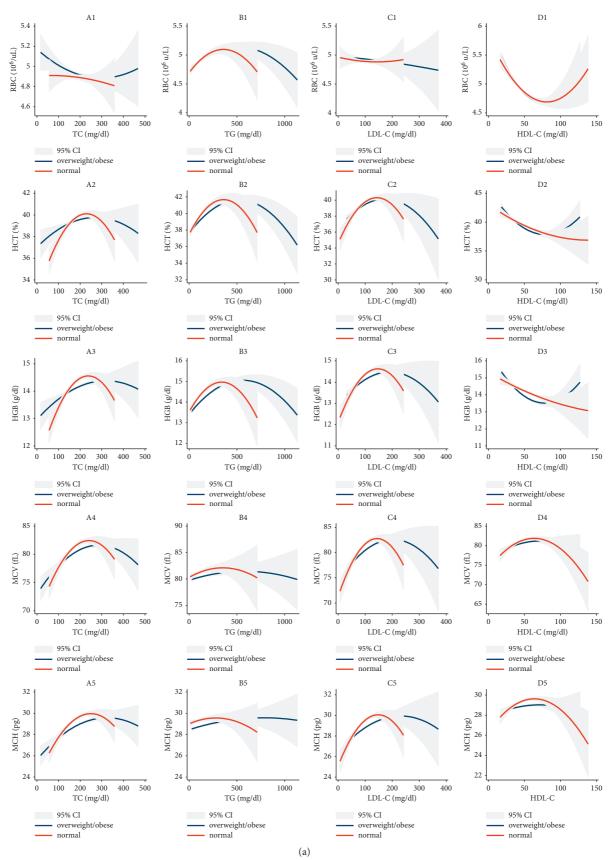



FIGURE 2: Continued.

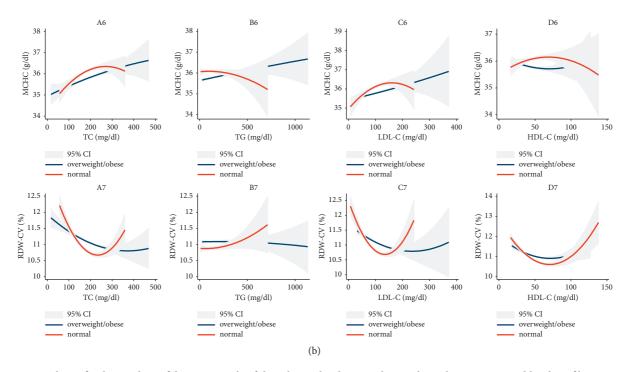



FIGURE 2: Quadratic fit plots with confidence intervals of the relationship between hematological parameters and lipid profiles parameters among normal and overweight/obese groups.

Besides, obesity is associated with impaired glucose tolerance, leading to inflammation in the body tissues [37]. Also, higher levels of WBC, monocyte, and PLT counts in subjects with metabolic diseases, positive association between BMI with WBC, PLT, and monocyte counts, and also GR% in overweight/obese individuals indicate the presence of inflammation in these subjects [38]. Increased thrombocytosis in both individuals with metabolic diseases and those who were overweight/obese could result from an inflammatory process and the activation of platelet which has a key role in atherothrombosis acceleration [39].

In overweight/obese individuals with increasing LDL-C, the levels of RBC count, HGB, HCT, MCV, MCH, MCHC, and RDW decreased. However, decreasing HDL-C was associated with elevation of the RBC count, HGB, HCT, MCV, MCH, and MCHC levels. Increased BMI in overweight/obese subjects was associated with decreased RBC count, HGB, HCT, MCV, MCH, MCHC levels, and lymphocyte counts.

A recent study demonstrated no correlation between BMI and RBC indices except for MCH and MCHC, but it did not specify the relationship and point to a discrepancy by MCH and MCHC between different BMI categories [20]. Alrubaie et al. reported a negative correlation between BMI with MCH and MCV [21]. We noticed a different association between BMI and RBC indices for normal weights against the overweight/obese. This difference can result from proinflammatory cytokines driven from adipocytes and free radicals from oxidative stress. Increased free radicals by affecting RBCs membrane proteins change their natural structure, increase fragility, decrease survival, and cause anisocytosis by the raised proportion of circulating premature erythrocytes [39]. To compensate for the reduction in red blood cell life, the body increases the production of new red blood cells, which has led to an increase in RBC count [27].

In metabolic diseases, we detected increased levels of RBC, HCT, HGB, RDW, and TC. Increased levels of RBC count, HGB, HCT, and RDW were associated with the risk of metabolic diseases. However, enhanced levels of MCV, MCH, and MCHC were associated with reduced risk of metabolic diseases.

In two studies, similar results were obtained, and a positive correlation was detected between HGB, HCT, and RBC count with MetS components, without examination of other RBC indices [7, 11]. Also, Hu et al. demonstrated RDW was a potential prognostic index for liver disease [40]. Furthermore, Jiang et al. determined that HGB can help predict NAFLD [41]. The mechanisms underlying the increased RDW in liver disease are well not understood; however, nutrition deficiency is prevalent in liver disease patients, and reports indicated lower folic acid levels in these patients than healthy controls. Decreased folic acid might affect hematopoiesis and amplify the heterogeneity of RBC [42]. Also, an increase in blood concentration and viscosity causes reduced blood flow rate and blood glucose supply to the muscle, leading to insulin resistance. Insulin resistance is one of the known factors involved in NAFLD pathogenesis that leads to mitochondrion oxidation overload and aggravating fat deposition in liver cells [41, 43]. However, Nebeck et al. reported no differences in RBC indices between MetS individuals and the healthy group [7]. Unlike our

|           |                        |           | (min) onni mno in in    | (comments of an and a functional) according to the first of and the first of the fi | or given to and to compare to | Autor of the south      |                         |                         |
|-----------|------------------------|-----------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------|-------------------------|-------------------------|
|           | <b>RBC</b> indices     |           | HTN OR (95% CI)         | Dyslipidemia OR (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NAFLD OR (95% CI)             | MetS OR (95% CI)        | DM OR (95% CI)          | CVD OR (95% CI)         |
|           | Q1 < 4.53              | Reference | 1.00                    | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00                          | 1.00                    | 1.00                    | 1.00                    |
|           |                        | Model 1   | $1.03 \ (0.82\_1.30)$   | $1.06(0.90_{-1.25})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $1.02(0.79_{-1.31})$          | $1.24 \ (1.04_1.47)$    | $1.26(0.93_{-1.70})$    | $0.86\ (0.69\_1.07)$    |
|           | 10.4 <sup>-</sup> 40.4 | Model 2   | $0.99 (0.79_{-1.25})$   | $1.01 \ (0.86_{-1.20})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.95 (0.74_1.23)$            | $1.16(0.97_{-1.39})$    | $1.20(0.88_{-1.63})$    | $0.82 \ (0.66_{-1.02})$ |
| RBC count | O2 1 80 E 71           | Model 1   | $1.28 (1.01_{-}1.62)$   | $1.39 (1.17_{-}1.65)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.34 (1.03_{-1.74})$         | $1.64 (1.37_{-}1.96)$   | $1.84 \ (1.36_{-}2.50)$ | $1.11 \ (0.88_{-1.39})$ |
|           | 17.C_C0.1 CX           | Model 2   | $1.20(0.95_{-}1.53)$    | 1.27 (1.07 - 1.52)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $1.21 \ (0.93_{-}1.58)$       | $1.44 \ (1.20_{-}1.74)$ | $1.68 (1.23_2.28)$      | $1.03 \ (0.82_{-1.30})$ |
|           |                        | Model 1   | $1.56 (1.22_2.00)$      | $1.72 (1.43_2.05)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $1.26(0.94_{-}1.68)$          | $2.05 (1.70_2.47)$      | 2.10 (1.53_2.88)        | $1.16\ (0.91\_1.48)$    |
|           | C7.C < 4)              | Model 2   | 1.38 (1.07_1.78)        | $1.52 \ (1.26_{-1}.82)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $1.08(0.81_{-}1.46)$          | $1.73 (1.42_2.11)$      | $1.84 \ (1.33_2.53)$    | $1.03 (0.81_{-}1.33)$   |
|           | Q1 < 36.7              | Reference | 1.00                    | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00                          | 1.00                    | 1.00                    | 1.00                    |
|           | 01 36 0 30 V           | Model 1   | $0.92 (0.73_{-1.16})$   | $1.07 \ (0.91\_1.26)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.00(0.79_{-1.27})$          | $1.20 \ (1.02_{-1.43})$ | $1.21 \ (0.91\_1.60)$   | $0.89\ (0.72\_1.10)$    |
|           | 4.ec_0.0c 20           | Model 2   | $0.94 \ (0.74\_1.18)$   | $1.07 \ (0.91\_1.27)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.01 \ (0.79\_1.28)$         | $1.22 \ (1.02\_1.45)$   | $1.18 (0.89_{-1.57})$   | $0.88 \ (0.71_{-1.10})$ |
| Hct       | 03 30 5 47 7           | Model 1   | $1.23(0.97_{-1.56})$    | $1.25\ (1.05\_1.49)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $1.14 \ (0.88_{-}1.49)$       | $1.40 (1.17_{-1.69})$   | $1.03 \ (0.75\_1.40)$   | $1.05\ (0.83\_1.32)$    |
|           | 7.75 C.CC C            | Model 2   | $1.20(0.94_{-}1.54)$    | $1.21 \ (1.01_{-}1.45)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $1.05\ (0.80\_1.38)$          | $1.35 (1.12_{-1.64})$   | $0.97 \ (0.71_{-}1.33)$ | $1.03 \ (0.81\_1.30)$   |
|           | 04 > 423               | Model 1   | $1.36\ (1.03_{-}1.78)$  | $1.40 \ (1.15_{-}1.70)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $1.21 \ (0.87\_1.68)$         | $1.62 \ (1.32_2.00)$    | $1.26(0.89_{-}1.77)$    | $1.07\ (0.81\_1.40)$    |
|           | C.74 < 42              | Model 2   | $1.27(0.96_{-}1.68)$    | $1.29 \ (1.05_{-1.58})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $1.10(0.79_{-1.54})$          | $1.47 (1.19_1.83)$      | $1.12 \ (0.79\_1.59)$   | $1.01 \ (0.77_{-}1.34)$ |
|           | Q1 < 13.2              | Reference | 1.00                    | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00                          | 1.00                    | 1.00                    | 1.00                    |
|           | 07 13 3 14 7           | Model 1   | 0.97 (0.78_1.22)        | $1.03 \ (0.88\_1.21)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.88 \ (0.69\_1.12)$         | $1.02 (0.86_{-1.20})$   | $1.00(0.75_{-}1.32)$    | $1.13 (0.91_{-}1.40)$   |
|           | 7.FI_C.CI 22           | Model 2   | $1.00(0.80_{-}1.26)$    | $1.06(0.90_{-1.24})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.88 \ (0.69\_1.12)$         | $1.05 (0.88_{-}1.25)$   | $0.98 (0.74_{-}1.30)$   | $1.16(0.93_{-}1.44)$    |
| HGB       | O2 14 2 15 7           | Model 1   | $1.22(0.96_{-}1.54)$    | $1.16(0.97_{-}1.37)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $1.02(0.78_{-1.32})$          | $1.22 \ (1.02\_1.46)$   | $1.06(0.79_{-1.43})$    | $1.11 \ (0.88_{-}1.41)$ |
|           | 7.01-0.11 0            | Model 2   | $1.25(0.98_{-}1.58)$    | $1.16(0.98_{-1.39})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $1.00(0.76_{-1.30})$          | $1.25 (1.04_{-}1.50)$   | $1.04 \ (0.77_{-}1.41)$ | $1.13 (0.89_{-}1.44)$   |
|           | 04~15.2                | Model 1   | $1.20(0.92_{-1.57})$    | $1.47 (1.21_{-}1.78)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.94 \ (0.67\_1.30)$         | $1.47 (1.20_{-}1.79)$   | $1.18 \ (0.85\_1.66)$   | $1.01 \ (0.76_{-}1.34)$ |
|           | C.CI < #2              | Model 2   | $1.16(0.88_{-}1.52)$    | $1.41 \ (1.16_{-}1.71)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.88 \ (0.63\_1.23)$         | $1.39 (1.13_1.71)$      | $1.09(0.78_1.54)$       | $1.00(0.75_{-1.32})$    |
|           | Q1 < 78                | Reference | 1.00                    | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00                          | 1.00                    | 1.00                    | 1.00                    |
|           | 9 18 1 81 CU           | Model 1   | $0.90(0.72_{-1.12})$    | $1.23(1.05_{-1.45})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $1.00(0.77_{-}1.29)$          | $0.93 (0.79_{-1.09})$   | $1.09\ (0.84\_1.42)$    | $1.04 \ (0.84\_1.30)$   |
|           | 0.10_1.01 22           | Model 2   | $0.92 (0.74_{-}1.16)$   | $1.28(1.09_{-1.51})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $1.03 \ (0.80\_1.33)$         | $0.98 (0.83_{-1.16})$   | $1.11 \ (0.85_{-}1.46)$ | $1.10(0.88_{-1.37})$    |
| MCV       | 03 81 7 84 7           | Model 1   | $0.80 \ (0.64\_0.99)$   | $0.97 \ (0.83\_1.14)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.88 \ (0.67\_1.14)$         | $0.81 \ (0.69\_0.96)$   | $0.79 \ (0.60_{-}1.05)$ | $0.91 \ (0.73_{-1.14})$ |
|           | 1.FO_1.10 CY           | Model 2   | $0.83 (0.66_{-1.04})$   | $1.02(0.87_{-1.20})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.94 (0.72_{-1.23})$         | $0.88 \ (0.74\_1.05)$   | $0.83 \ (0.62\_1.02)$   | $0.98 \ (0.78_{-1.23})$ |
|           | 04 > 84.8              | Model 1   | $0.75 \ (0.60\_0.94)$   | $0.82 \ (0.69\_0.96)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.01 \ (0.78_{-}1.30)$       | $0.74 \ (0.63\_0.88)$   | $0.57 \ (0.42\_0.77)$   | 0.89 (0.71_1.11)        |
|           | 0.10 / 17              | Model 2   | $0.82 \ (0.65_{-1.03})$ | $0.90(0.76_{-}1.06)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $1.13 (0.87_{-}1.47)$         | 0.72 (0.72_1.02)        | $0.63 \ (0.46\_0.85)$   | 0.97 (0.77_1.21)        |

TABLE 2: Odds ratio (ORs) and 95% CI of obesity-related diseases (according to quartiles of RBC indices).

|             | RBC indices          |                 | HTN OR (95% CI)                                                       | Dyslipidemia OR (95% CI) NAFLD OR (95% CI) | NAFLD OR (95% CI)     | MetS OR (95% CI)        | DM OR (95% CI)          | CVD OR (95% CI)         |
|-------------|----------------------|-----------------|-----------------------------------------------------------------------|--------------------------------------------|-----------------------|-------------------------|-------------------------|-------------------------|
|             | Q1 < 27.8            | Reference       | 1.00                                                                  | 1.00                                       | 1.00                  | 1.00                    | 1.00                    | 1.00                    |
|             |                      | Model 1         | $0.98(0.78_{-1.21})$                                                  | $1.19 \ (1.02\_1.40)$                      | $1.09\ (0.85\_1.39)$  | $0.97 (0.83_{-1.15})$   | $1.02 \ (0.78_{-1.32})$ | $1.03 \ (0.82\_1.28)$   |
|             | C.K2_K.12 20         | Model 2         | $0.97 (0.78_{-1.21})$                                                 | $1.22 \ (1.04_1.43)$                       | $1.10(0.85_{-}1.41)$  | $0.99 (0.83_{-1.17})$   | $1.01 \ (0.77_{-}1.32)$ | $1.07 \ (0.85\_1.33)$   |
| MCH         | 002 20 20 0          | Model 1         | $0.81 \ (0.65_{-}1.02)$                                               | $0.91 \ (0.77\_1.06)$                      | $0.95 (0.74_1.23)$    | $0.81 \ (0.69\_0.96)$   | $0.73 \ (0.55\_0.96)$   | $0.93 \ (0.75_{-}1.62)$ |
|             | 0.UC_0.62 CV         | Model 2         | $0.85 \ (0.68\_1.07)$                                                 | $0.94 \ (0.80\_1.11)$                      | $1.00(0.78_{-1.30})$  | $0.87 \ (0.74\_1.04)$   | $0.75 \ (0.56_{-}0.99)$ | $1.00(0.80_{-1.25})$    |
|             | 0.4 > 30.0           | Model 1         | $0.77 (0.61_{-}0.96)$                                                 | $0.88(0.75_{-1.03})$                       | $0.81 \ (0.62\_1.06)$ | $0.75 \ (0.64\_0.89)$   | $0.60\ (0.45\_0.81)$    | $0.81 \ (0.65\_1.01)$   |
|             | 6.00 < 4V            | Model 2         | $0.84 \ (0.66_{-1.05})$                                               | $0.98 \ (0.83_{-1.15})$                    | $0.93 (0.71_{-}1.22)$ | $0.88 \ (0.74\_1.04)$   | $0.68 \ (0.50\_0.91)$   | $0.91 \ (0.72_{-1.15})$ |
|             | Q1 < 35.2            | Reference       | 1.00                                                                  | 1.00                                       | 1.00                  | 1.00                    | 1.00                    | 1.00                    |
|             | UJ 3E 3 36 1         | Model 1         | $1.13(0.91_{-}1.41)$                                                  | $1.27 \ (1.09\_1.49)$                      | $1.01 \ (0.79\_1.28)$ | $1.08 \ (0.92\_1.27)$   | $1.02 \ (0.78\_1.34)$   | $1.00(0.81_{-}1.24)$    |
|             | ויטכ־כיככ א          | Model 2         | $1.13(0.90_{-1.41})$                                                  | $1.30(1.11_{-1.53})$                       | $1.01 \ (0.79\_1.29)$ | $1.08(0.91_{-}1.28)$    | $1.01 \ (0.77_{-}1.33)$ | $1.01 \ (0.82_{-}1.26)$ |
| MCHC        | U3 36 J 36 U         | Model 1         | $1.07 \ (0.85\_1.33)$                                                 | $1.07 \ (0.91\_1.25)$                      | $0.71 \ (0.55_0.92)$  | $0.91 \ (0.77_{-1.07})$ | $0.93 (0.70_{-1.22})$   | $091 \ (0.73_{-1.13})$  |
|             | 6.00_2.00 cy         | Model 2         | $1.12 \ (0.89\_1.40)$                                                 | $1.13(0.96_{-1.32})$                       | $0.74 \ (0.57\_0.95)$ | $0.98 (0.82_{-1.16})$   | $0.96\ (0.72\_1.27)$    | $0.97 (0.78_{-1.21})$   |
|             | 24 - 27              | Model 1         | $0.94 \ (0.74\_1.96)$                                                 | $1.15\ (0.98\_1.36)$                       | $0.68 \ (0.52\_0.90)$ | $0.81 \ (0.81 \ 1.14)$  | $0.91 \ (0.68_{-1.22})$ | $0.82 \ (0.65\_1.04)$   |
|             | Q4 > 3/              | Model 2         | $1.03 \ (0.81\_1.31)$                                                 | $1.26 \ (1.06_{-1.48})$                    | $0.75 \ (0.57_0.99)$  | $1.08 \ (0.91\_1.29)$   | $0.98 (0.73_1.31)$      | $0.92 (0.72_{-1.16})$   |
|             | Q1 < 10.4            | Reference       | 1.00                                                                  | 1.00                                       | 1.00                  | 1.00                    | 1.00                    | 1.00                    |
|             | 0.01.2.01.00         | Model 1         | $1.04 \ (0.84\_1.30)$                                                 | $1.56(1.31_1.81)$                          | $1.30(0.99_{-}1.69)$  | $1.46 (1.23_1.72)$      | $1.09\ (0.82\_1.45)$    | $1.17 (0.94_1.46)$      |
|             | C'01-C'01 7          | Model 2         | $0.97 (0.78_{-1.22})$                                                 | $1.45 \ (1.24\_1.69)$                      | $1.16(0.89_{-}1.53)$  | $1.31 \ (1.10_{-}1.59)$ | $0.98 (0.74_1.31)$      | $1.10(0.87_{-}1.37)$    |
| RDW         | O3 11 11 A           | Model 1         | $1.23(0.98_{-}1.54)$                                                  | $2.15(1.83_2.52)$                          | $1.49 \ (1.14\_1.96)$ | $2.06(1.74_2.44)$       | $1.26(0.95_{-}1.68)$    | $1.31 \ (1.05\_1.65)$   |
|             | 111 <sup>-11</sup> c | Model 2         | $1.06\ (0.84\_1.34)$                                                  | $1.93 (1.63_2.27)$                         | $1.28(0.97_{-}1.68)$  | $1.73 (1.45_2.06)$      | $1.09\ (0.81\_1.45)$    | $1.13 (0.90_{-}1.42)$   |
|             |                      | Model 1         | $1.21 \ (0.96_{-}1.52)$                                               | $1.91 \ (1.62 - 2.26)$                     | $1.80 \ (1.38_2.35)$  | $2.06(1.73_2.45)$       | $1.46\ (1.10\_1.94)$    | $1.22(0.97_{-1.53})$    |
|             | Q4 > 11.4            | Model 2         | $1.04(0.82_{-1.31})$                                                  | $1.66 \ (1.40\_1.97)$                      | $1.48 (1.12_{-1.94})$ | $1.68(1.40_{-2.01})$    | $1.21 \ (0.90_{-}1.62)$ | $1.04(0.82_{-1.31})$    |
| *Model 1 ad | justed for age, gend | ler, and smokir | *Model 1 adjusted for age, gender, and smoking and physical activity. | ** Model 2 adjusted for model 1 plus BMI   | olus BMI.             |                         |                         |                         |

| Continued. |  |
|------------|--|
| 5          |  |
| TABLE      |  |

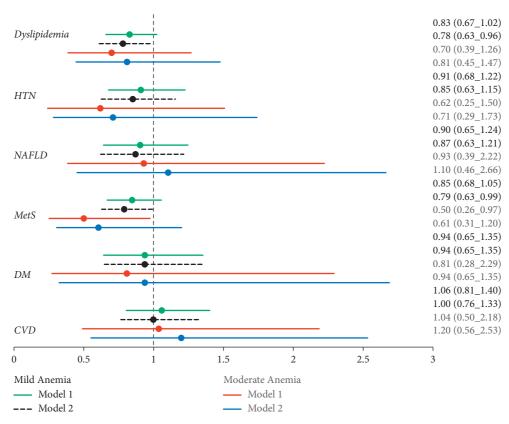



FIGURE 3: Forest plot of ORs (95% CIs) of obesity-related diseases according to anemia severity.

findings, Yan et al. reported that an increase in the RDW level was associated with reduced MetS incidence among Chinese population [8]. As the Chinese study was performed on people over 60 years, this contrast might be due to age differences between the two studies. Some evidence suggests that RDW is associated with pulmonary hypertension mortality [40], and RBC count is related to the severity of hypertension [12]. We found no significant difference in RBC count, HTC, HGB, and MCHC levels between HTN subjects and control groups. However, individuals with HTN had higher RDW levels than control subjects. Furthermore, upper levels of RDW, RBC count, HCT, and HGB was correlated with greater risk of HTN. An association between RBC count and HTN may occur due to an additional load on the cardiovascular system by increasing the RBC count [13].

In the present study, moderate anemia was associated with increased BMI and metabolic diseases. Anemia is an independent risk factor for CVD progression and predicts heart complications [44]. It was observed that anemia was the highest risk factor for CVD. RDW is used in the prognosis of CVD and heart failure, and increased RDW could be an important predictor of the mortality and morbidity in atherosclerosis and heart failure, regardless of the level of hemoglobin [43].

We found that BMI decreased the metabolic disease incidence risk in mild anemia and increased it in moderate anemia, indicating that the type and the severity of anemia should be considered when examining the relationship between anemia and obesity. The effect of BMI on the association between obesity-related disorders and RBC indices (including RBC count, HCT, HGB, and RDW) decreased in the ORs. In contrast, BMI increased the incidence risk of metabolic diseases by affecting MCV, MCH, and MCHC, which shows an inverse relationship between BMI and RBC indices based on our findings.

There is presently no consensus in the literature regarding the relationship between anemia and obesity. A study on Chinese women reported a lower prevalence of anemia in overweight females compared to normal weight participants [18]. Findings of two studies on Iranian population suggested no significant difference in the prevalence of anemia and the levels of hemoglobin, MCV, serum iron, ferritin, and transferrin according to BMI [16, 45]. In contrast, evidence exists that indicate an association between obesity and anemia [19, 46]. The role of iron deficiency in obesity is unclear. However, obesity, as a low-grade inflammation status, may cause a negative regulation of iron absorption through increased secretion of hepcidin by adipocytes and result in a decrease in iron uptake in small intestine [45, 46]. Current results demonstrated that HGB and HDL-C levels were negatively correlated with obesity. The association between HDL-C and MCV was also a positive linear correlation in overweight/obese. Studies have shown that HDL-C levels are inversely related to the incidence of anemia. HDL-C is positively associated with MCV, which is likely to play a role in megaloblastic anemia [27]. Although dyslipidemia, MetS, and DM group had higher mean of RBC count, their level of MCV and MCH was lower compared to the controls.

Being the first study of an Iranian population on a large scale, our findings imply that obesity affected the lipid profile and influenced the RBC indices. Decreased HGB and increased RDW levels with consequent anemia and the elevation of PLT, WBC count, and reduction of lymphocytes resulted in inflammation with BMI playing an important role in the process. Abnormal lipid profile in overweight/obese had an inverse relation with RBC indices. We observed an inflammatory state with increased WBC, monocytes, and PLT counts and also changes in all RBC indices for metabolic diseases. Changes in RBC indices in overweight/obese had a significant impact on the interpretation of laboratory results. Finally, it should be noted that the current study is an explorative study aiming to create new hypotheses which should be further investigated in future studies.

#### 5. Conclusion

We found an increase of WBC, monocytes, PLT counts, and RDW for metabolic diseases. There was also a correlation between increased levels of RBC count, HGB, HCT, and RDW and the risk of metabolic diseases. Increased BMI enhanced the WBC, PLT, GR counts, and RDW for overweight/obese. An inverse correlation between LDL-C and the levels of RBC count, HGB, HCT, MCV, MCH, MCHC, and RDW was also observed for them. Furthermore, their increased BMI was associated with reduced RBC count, HGB, HCT, MCV, MCH, MCHC levels, and lymphocyte counts. While the risk of obesity-related diseases in the fourth quartiles of RBC count, HCT, HGB, and RDW was higher than the first quartiles; MCV, MCH, and MCHC had lower OR. Moderate anemia was associated with increased BMI and metabolic diseases. Further studies on inflammation signaling pathways in adipose tissue are needed to achieve accurate results.

#### **Data Availability**

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

#### **Additional Points**

*Limitations of the Study*. Since the study was cross-sectional, a prospective study is needed to confirm the results. The inflammatory and lipid peroxidation indices were not examined in our population.

#### **Ethical Approval**

The study was approved by the Ethics Committees of Kermanshah University of Medical Sciences (KUMS.-REC.1394.315), Kermanshah, Iran. All participants entered the study after they were fully informed of the process and signed a written consent.

#### Disclosure

The funder had no role in the design of the study, collection, analysis, and interpretation of the data or writing and approval of manuscript.

#### **Conflicts of Interest**

The authors declare that they have no conflicts of interest.

#### Acknowledgments

The authors are deeply grateful to the investigators of PERSIAN for their valuable support for designing the methods and developing the questionnaire. The authors also appreciate their interviewers, RaNCD staff, and Ravansar population for their significant cooperation in data collection. This study was supported by the Ministry of Health and Medical Education of Iran and Kermanshah University of Medical Science (grant no: 92472).

#### References

- W. T. Garvey, "New tools for weight-loss therapy enable a more robust medical model for obesity treatment: rationale for a complications-centric approach," *Endocrine Practice*, vol. 19, no. 5, pp. 864–874, 2013.
- [2] M. Tremmel, U.-G. Gerdtham, P. Nilsson, and S. Saha, "Economic burden of obesity: a systematic literature review," *International Journal of Environmental Research and Public Health*, vol. 14, no. 4, p. 435, 2017.
- [3] D. Petrakis, L. Vassilopoulou, C. Mamoulakis et al., "Endocrine disruptors leading to obesity and related diseases," *International Journal of Environmental Research and Public Health*, vol. 14, no. 10, p. 1282, 2017.
- [4] F. Spannella, F. Giulietti, C. Di Pentima, and R. Sarzani, "Prevalence and control of dyslipidemia in patients referred for high blood pressure: the disregarded "double-trouble" lipid profile in overweight/obese," *Advances in Therapy*, vol. 36, no. 6, pp. 1426–1437, 2019.
- [5] S. B. Nicholas, "Lipid disorders in obesity," Current Hypertension Reports, vol. 1, no. 2, pp. 131-136, 1999.
- [6] R. Sarwar, N. Pierce, and S. Koppe, "Obesity and nonalcoholic fatty liver disease: current perspectives," *Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy*, vol. 11, pp. 533–542, 2018.
- [7] K. Nebeck, B. Gelaye, S. Lemma et al., "Hematological parameters and metabolic syndrome: findings from an occupational cohort in Ethiopia," *Diabetes & Metabolic Syndrome: Clinical Research & Reviews*, vol. 6, no. 1, pp. 22–27, 2012.
- [8] Z. Yan, Y. Fan, Z. Meng et al., "The relationship between red blood cell distribution width and metabolic syndrome in elderly Chinese: a cross-sectional study," *Lipids in Health and Disease*, vol. 18, p. 34, 2019.
- [9] C. Lassale, A. Curtis, I. Abete et al., "Elements of the complete blood count associated with cardiovascular disease incidence: findings from the EPIC-NL cohort study," *Scientific Reports*, vol. 8, p. 3290, 2018.
- [10] W. Yang, H. Huang, Y. Wang, X. Yu, and Z. Yang, "High red blood cell distribution width is closely associated with nonalcoholic fatty liver disease," *European Journal of Gastroenterology & Hepatology*, vol. 26, no. 2, pp. 174–178, 2014.

- [12] A. Gebrie, N. Gnanasekaran, M. Menon, M. Sisay, and A. Zegeye, "Evaluation of lipid profiles and hematological parameters in hypertensive patients: laboratory-based crosssectional study," SAGE Open Medicine, vol. 6, 2018.
- [13] M. Emamian, S. M. Hasanian, M. Tayefi et al., "Association of hematocrit with blood pressure and hypertension," *Journal of Clinical Laboratory Analysis*, vol. 31, no. 6, Article ID e22124, 2017.
- [14] M. M. Aboromia, A. A. El-Sherbeny, and E. A. Abd El-Hady, "Iron-deficiency anemia as a risk factor for dyslipidemia in Egyptian patients," *Egyptian Journal of Haematology*, vol. 441, p. 14, 2019.
- [15] M. J. Sarnak, H. Tighiouart, G. Manjunath et al., "Anemia as a risk factor for cardiovascular disease in the atherosclerosis risk in communities (ARIC) study," *Journal of the American College of Cardiology*, vol. 40, no. 1, pp. 27–33, 2002.
- [16] H. A. Rad, S. A. A. Sefidgar, A. Tamadoni et al., "Obesity and iron-deficiency anemia in women of reproductive age in northern Iran," *International Journal of Health Promotion and Education*, vol. 8, p. 115, 2019.
- [17] K. J. Ausk and G. N. Ioannou, "Is obesity associated with anemia of chronic disease? A population-based study," *Obesity*, vol. 16, no. 10, pp. 2356–2361, 2008.
- [18] Y. Qin, A. Melse-Boonstra, X. Pan et al., "Anemia in relation to body mass index and waist circumference among Chinese women," *Nutrition Journal*, vol. 12, p. 10, 2013.
- [19] A. Moafi, S. Rahgozar, and M. Ghias, "A study on body mass index, blood pressure, and red blood cell indices in new entering students of the University of Isfahan," *International Journal of Preventive Medicine*, vol. 24, p. 280, 2011.
- [20] S. U. Abro, Q. Saleem, A. Begum, S. Azhar, A. Naseer, and A. A. Qureshi, "Association of BMI (body mass index) to hemoglobin and red blood cell indices among adolescents," *The Professional Medical Journal*, vol. 27, no. 10, pp. 2210–2215, 2020.
- [21] A. Alrubaie, S. Majid, R. Alrubaie, and F. A.-Z. B. Kadhim, "Effects of body mass index (BMI) on complete blood count parameters," *Inflammation*, vol. 8, p. 11, 2019.
- [22] S. Antwi-Baffour, R. Kyeremeh, S. O. Boateng, L. Annison, and M. A. Seidu, "Haematological parameters and lipid profile abnormalities among patients with type-2 diabetes mellitus in Ghana," *Lipids in Health and Disease*, vol. 17, p. 283, 2018.
- [23] E. Nemeth and T. Ganz, "Anemia of inflammation," *He-matology/Oncology Clinics of North America*, vol. 28, no. 4, pp. 671–681, 2014.
- [24] L. Marseglia, S. Manti, G. D'Angelo et al., "Oxidative stress in obesity: a critical component in human diseases," *International Journal of Molecular Sciences*, vol. 16, pp. 378–400, 2015.
- [25] Y. Iuchi, Anemia Caused by Oxidative Stress, InTechOpen, London, UK, 2012.
- [26] R. Bissinger, A. A. M. Bhuyan, S. M. Qadri, and F. Lang, "Oxidative stress, eryptosis and anemia: a pivotal mechanistic nexus in systemic diseases," *FEBS Journal*, vol. 286, no. 5, pp. 826–854, 2019.
- [27] M. B. Fessler, K. Rose, Y. Zhang, R. Jaramillo, and D. C. Zeldin, "Relationship between serum cholesterol and indices of erythrocytes and platelets in the US population," *Journal of Lipid Research*, vol. 54, no. 11, pp. 3177–3188, 2013.
- [28] H. Poustchi, S. Eghtesad, F. Kamangar et al., "Prospective epidemiological research studies in Iran (the Persian cohort

study): rationale, objectives, and design," *American Journal of Epidemiology*, vol. 187, no. 4, pp. 647–655, 2018.

- [29] Y. Pasdar, F. Najafi, M. Moradinazar et al., "Cohort profile: Ravansar non-communicable disease cohort study: the first cohort study in a Kurdish population," *International Journal* of Epidemiology, vol. 48, no. 3, pp. 682-683, 2019.
- [30] D. Haj Mouhamed, A. Ezzaher, F. Neffati, L. Gaha, W. Douki, and M. F. Najjar, "Association between cigarette smoking and dyslipidemia," *Immuno-Analyse & Biologie Spécialisée*, vol. 28, no. 4, pp. 195–200, 2013.
- [31] A. V. Chobanian, G. L. Bakris, H. R. Black et al., "Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure," *Hypertension*, vol. 42, no. 6, pp. 1206–1252, 2003.
- [32] K. G. M. M. Alberti, R. H. Eckel, S. M. Grundy et al., "Harmonizing the metabolic syndrome," *Circulation*, vol. 120, no. 16, pp. 1640–1645, 2009.
- [33] M. Joffres, E. Falaschetti, C. Gillespie et al., "Hypertension prevalence, awareness, treatment and control in national surveys from England, the USA and Canada, and correlation with stroke and ischaemic heart disease mortality: a crosssectional study," *BMJ Open*, vol. 3, Article ID e003423, 2013.
- [34] WHO, Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity, World Health Organization, Geneva, Switzerland, 2011.
- [35] H. Ryan, A. Trosclair, and J. Gfroerer, "Adult current smoking: differences in definitions and prevalence estimates—NHIS and NSDUH, 2008," *Journal of Environmental and Public Health*, vol. 2012, Article ID 918368, 11 pages, 2012.
- [36] M. Aadahl and T. Jørgensen, "Validation of a new self-report instrument for measuring physical activity," *Medicine & Science in Sports & Exercise*, vol. 35, no. 7, pp. 1196–1202, 2003.
- [37] H. R. Jeong and Y. S. Shim, Positive Association between Body Mass Index and Hematologic Parameters, Including RBC, WBC and Platelet Count, in Korean Children and Adolescent, Research Square, Durham, NC, USA, 2021.
- [38] M. A. Farhangi, S.-A. Keshavarz, M. Eshraghian, A. Ostadrahimi, and A.-A. Saboor-Yaraghi, "White blood cell count in women: relation to inflammatory biomarkers, haematological profiles, visceral adiposity, and other cardiovascular risk factors," *Journal of Health, Population and Nutrition*, vol. 31, p. 58, 2013.
- [39] M. Tonelli, F. Sacks, M. Arnold, L. Moye, B. Davis, and M. Pfeffer, "Relation between red blood cell distribution width and cardiovascular event rate in people with coronary disease," *Circulation*, vol. 117, no. 2, pp. 163–168, 2008.
- [40] Z. Hu, Y. Sun, Q. Wang et al., "Red blood cell distribution width is a potential prognostic index for liver disease," *Clinical Chemistry and Laboratory Medicine*, vol. 517, pp. 1403–1408, 2013.
- [41] Y. Jiang, J. Zeng, and B. Chen, "Hemoglobin combined with triglyceride and ferritin in predicting non-alcoholic fatty liver," *Journal of Gastroenterology and Hepatology*, vol. 29, no. 7, pp. 1508–1514, 2014.
- [42] A. Cárdenas and P. Ginès, "Portal hypertension," Current Opinion in Gastroenterology, vol. 25, no. 3, pp. 195–201, 2009.
- [43] S. H. Park, B. I. Kim, J. W. Yun et al., "Insulin resistance and C-reactive protein as independent risk factors for non-alcoholic fatty liver disease in non-obese Asian men," *Journal of Gastroenterology and Hepatology*, vol. 19, no. 6, pp. 694–698, 2004.
- [44] I. Mozos, "Mechanisms linking red blood cell disorders and cardiovascular diseases," *BioMed Research International*, vol. 2015, Article ID 682054, 12 pages, 2015.

- [45] A. Ghadiri-Anari, N. Nazemian, and H.-A. Vahedian-Ardakani, "Association of body mass index with hemoglobin concentration and iron parameters in Iranian population," *International Scholarly Research Notices*, vol. 2014, Article ID 525312, 3 pages, 2014.
- [46] S. Pande, R. Ranjan, and V. A. Kratasyuk, "Is body mass index a potential biomarker for anemia in obese adolescents?" *Journal of Nutrition & Intermediary Metabolism*, vol. 15, pp. 1-2, 2019.