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Background and Purpose. Carbohydrate antigen 19-9 (CA19-9) based approaches differentiate less than 60% of cases of pancreatic
cancer (PC) from those of pancreatic tissue damage caused by chronic pancreatitis and type 2 diabetes mellitus (DM). +is study
aims to identify potential blood-derived candidate biomarkers for improved diagnosis sensitivity. Methods. Plasma metabolic
profiles in 26 PC patients, 27 DM patients, and 23 healthy volunteers were examined using an ultraperformance liquid
chromatography coupled with tandem mass spectrometry platform. Differential metabolite ions were then identified using the
principal component analysis (PCA) model and the orthogonal partial least-squares discrimination analysis (OPLS-DA) model.
+e diagnosis performance of metabolite biomarkers was validated by logistic regression models. Results. We established a PCA
model (R2X� 23.5%, Q2� 8.21%) and an OPLS-DA model (R2X� 70.0%, R2Y� 84.9%, Q2� 69.7%). LysoPC (16 : 0), catelaidic
acid, cerebronic acid, nonadecanetriol, and asparaginyl-histidine were found to identify PC, with a sensitivity of 89% and a
specificity of 91%. Besides, lysoPC (16 : 0), lysoPC (16 :1), lysoPC (22 : 6), and lysoPC (20 : 3) were found to differentiate PC from
DM, with higher accuracy (68% versus 55%) and higher AUC values (72% versus 63%) than those of CA19-9. +e diagnostic
performance of metabolite biomarkers was finally validated by logistic regression models. Conclusion. We succeeded in screening
differential metabolite ions among PC and DM patients and healthy individuals, thus providing a preliminary basis for screening
the biomarkers for the early diagnosis of PC.

1. Introduction

Pancreatic cancer (PC) is a highly malignant gastrointestinal
tumor characterized by rapid progression and early me-
tastasis, which results in an incurability rate of 96% and a
recurrence rate of 80% after diagnosis [1, 2]. Malignancies
are projected to become the 2nd leading cause of cancer-
related death by 2030 [3, 4]. Surgical resection is considered
as the only potential curative treatment for PC patients.
However, more than 80% of PC patients at the time of
diagnosis already have had an unresectable, locally ad-
vanced, and metastatic tumor [5]. Consequently, PC has a 5-
year survival rate of approximately 5%, which is the lowest

among all types of malignancies [6]. Early diagnosis has been
accepted to hold promise for improving the prognosis of PC.

Carbohydrate antigen 19-9 (CA19-9), the only Food and
Drug Administration (FDA)-approved blood-based bio-
marker, is considered as a common tumor marker to
phenotype PC. Unfortunately, CA19-9 is nonspecific, thus
being widely accepted as a poor screening tool for PC di-
agnosis [6, 7]. +e low application value of CA19-9 may
result from its little expression in Lewis-negative patients
who account for about 10% of the total number of PC
patients [8]. Besides, previous studies have reported that the
sensitivity and specificity of CA19-9 in distinguishing cancer
from chronic pancreatitis is commonly no better than 65%
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or 60%, respectively [8, 9].+e complex relationships among
chronic pancreatitis, diabetes mellitus (DM), and PC hinder
the clinical application of CA 19-9 in the early diagnosis of
PC. Chronic pancreatitis is an inflammatory disease that
causes pancreatic inflammation and fibrotic injury. Chronic
pancreatitis is a risk factor for both PC and DM because PC
and DM patients often suffer from endocrine pancreatic
dysfunction [10]. About 80% of patients with chronic
pancreatitis will develop overt DM, which is an independent
risk factor for mortality in patients with chronic pancreatitis
[10–12]. In addition, CA19-9 is strongly correlated with
crucial biochemical markers of metabolic compensation in
diabetic patients [10]. +e elevated CA19-9 in diabetic pa-
tients is reported to result from chronic pancreatitis instead
of PC [10]. +ese findings suggest that individuals with a
high level of CA 19-9 in early diagnosis may simply have
developed DM instead of PC. CA19-9-induced misdiagnosis
can increase the psychological burden on patients and delay
the treatment. +erefore, it is urgent to explore alternative
noninvasive biomarkers for distinguishing PC from type 2
DM in early diagnosis.

Metabolomics is a powerful approach to identify cancer-
related biomarkers. +is technology has demonstrated its
feasibility in identifying metabolite alterations in various
types of tumors, including PC, recently [8]. +e advantages
of metabolomic technology include the following: (1) high
sensitivity: gas chromatography-mass spectrometry (GC-
MS) and liquid chromatography-mass spectrometry
(LC–MS), the main techniques used in metabolomics
analysis, can detect low concentration metabolites, which is
useful for early cancer diagnosis due to subtle metabolic
changes in early cancer [6]; (2) high throughput: the
metabolomic platform is efficient to analyze multiple
samples at the same time; and (3) small sample size: a study
recruiting up to 30 patients per group has suggested that
metabolomics is useful in PC detection [6].+ese advantages
of metabolomics ensure that the identified biomarkers are
reliable for further clinical tests.

+erefore, the current study aims to employ metab-
olomics technology to identify biomarkers that can differ-
entiate PC and DM in early diagnosis. To fulfill the design,
this study combined ultrahigh-performance liquid chro-
matography (UPLC) and high-resolutionmass spectrometry
(HRMS) with the high resolution and high-quality precision
in metabolomics analysis. Plasma metabolic profiles were
examined to demonstrate the differences in metabolites
among PC and DM patients and healthy volunteers. +is
study offers potential biomarkers for distinguishing PC from
DM in early diagnosis and provides a theoretical basis for an
indepth investigation on mechanisms behind the develop-
ment of the two diseases.

2. Materials and Methods

2.1. Study Subjects. +is study was approved by the Medical
Ethics Committee of the Tianjin +ird Central Hospital,
China (approval number: IRB2017-013-01). All subjects and/
or their guardians signed informed consent forms.

2.1.1. Pancreatic Cancer Patients. 26 patients who were di-
agnosed with PC by B-ultrasound, computed tomography,
magnetic resonance imaging, and endoscopy and admitted to
the +ird Central Hospital of Tianjin between May 2018 and
March 2019 were enrolled in the pancreatic cancer group (PC
group). +e diagnosis was performed in accordance with the
diagnostic criteria established by the Chinese consensus on
diagnosis and treatment of PC (2014 version). Patients were
excluded from participation if they had a history of receiving
surgery, other tumors, and viral hepatitis infection.

2.1.2. Diabetic Patients. +e diagnosis of type 2 DM met the
diagnostic criteria developed by the American Diabetes Asso-
ciation (ADA) in 2010. Patients with type 2 DM who received
medical checkup and hospitalized in the endocrinology de-
partment of the+ird Central Hospital of Tianjin over the same
period were enrolled in the diabetes group (DM group).
Subjects were excluded from participation if they had a history
of malignancy, pancreatic injury, and viral hepatitis infection. A
total of 27 subjects were enrolled in the DM group.

2.1.3. Healthy Volunteers. Volunteers were excluded from
participation if they had a history of diabetes, pancreatic
injury, and viral hepatitis infection. A total of 23 healthy
volunteers with normal liver function and renal function
were selected as healthy controls (normal group).

2.1.4. Collection of the Demographic Data. Clinical assess-
ments such as age, sex, body mass index (BMI), and un-
derlying diseases were characterized for the study
population. Fasting plasma glucose (GLU) and glycosylated
hemoglobin (HbAlc) were analyzed using a Roche Modular
P automatic biochemical analyzer. CA19-9 was measured
with a Roche Cobas 8000 automatic biochemical analyzer.

2.1.5. Collection of Plasma Specimens. Analyzed serum
samples were obtained from three different cohorts of partic-
ipants in PC group, DM group, and normal group. To reduce
the effects of food fluctuations onmetabolism, enrolled subjects
were required to have a light diet, avoiding seafood, spicy food,
smoking, and drinking the day before the sample collection. In
the early morning of the next day, 3mL of fasting venous blood
was collected and placed in a purple vacuum blood collection
tube (BD Biosciences, CA, USA), with ethylenediaminetetra-
acetate (EDTA) as an anticoagulant. +en, the blood was
centrifuged at 3500 rpm for 10min at 4°C. Next, the upper
plasma was collected and stored in an ultralow temperature
freezer at−80°C until analysis. All the blood samples and clinical
data were collected with the informed consent of the subjects.
+is study was authorized by the Clinical Research Ethics
Committee of the +ird Central Hospital of Tianjin.

2.2. Experimental Methods

2.2.1. Plasma Sample Pretreatment. Prior to the analysis, the
plasma samples were thawed at room temperature. 100 μL of
plasma was mixed with 300 μL of methanol. +e mixtures
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were shaken vigorously for 30 s, followed by being placed at
4°C for 5min. +en, the mixtures were centrifuged at
12000×g for 15min at 4°C. +e resultant supernatant was
collected and passed through a 0.22 μm filter. Next, the
samples to be tested were obtained. Equal volumes of each
sample were taken and mixed to prepare a quality control
(QC) sample, which was then injected repeatedly to monitor
the MS performance.

2.3. Liquid Chromatograph. +e liquid chromatograph used
in this study was an Accela Ultra High-Performance Liquid
Chromatography (UPLC) System (+ermo Fisher Scientific
MA), which was equipped with a binary solvent gradient
elution system and an automated sample-loading system.
Mobile phase A was a 0.1% formic acid aqueous solution,
and mobile phase B was a 0.1% formic acid acetonitrile
solution (the flow rate was 200 μL/min).+e initial condition
of the mobile phase consisted of 95% A solution and 5% B
solution during the first 2.5min. During the subsequent
3.5min of elution, the proportion of A solution was linearly
reduced from 95% to 5%. Next, the proportion of B solution
was linearly increased from 5% to 95% over 3min. Finally,
equilibrate the column with the mobile phase in the initial
gradient ratio over 3 minutes.

2.3.1. Mass Spectrometry (MS) Analysis. An LTQ Orbitrap
XLTM combined mass spectrometer was used in this study
for MS analysis. +e acquisition was performed in positive
ion mode. +e mass calibration was performed with a
calibration mixture consisting of caffeine, Ultramark 1621,
and tetrapeptide MRFA. Samples were analyzed in a random
order.

2.3.2. Sample Quality Control. To evaluate the stability and
repeatability of the UPLC/MS detection system (+ermo
Fisher Inc.). A total of 20 QC samples were analyzed, and 10
QC samples were continuously tested before specimen
analysis to examine the repeatability of the system. +en a
QC injection was conducted for quality control, every 9th
sample. Samples (n� 61 in total) were analyzed in random
order. Each sample (including the QC sample) was inserted
into the blank after detection to avoid cross-contamination.

2.4. Statistical Analysis

2.4.1. Data Preprocessing. +e raw data acquired from the
UPLC/MS detection platform was directly imported into
MZmine2.0 software (free analysis software) for data pre-
processing and normalization, including peak detection,
alignment, and normalization (with the total ionic strength
of each sample as a normalization factor). After the analysis,
a (i× j) two-dimensional peak table was obtained. Each row
(i) represented a sample, and each column (j) represented a
metabolite variable, i.e., the m/z value represented the ion
peak intensity (peak integral area). +e 80% rule was used to
remove variables with too many missing values, and then,

the MZmine2.0 was employed to assign values to variables
with few missing values.

MZmine 2.0 software was employed to extract ion
chromatographic peak intensity with a signal-to-noise ratio
(S/N)> 10, retention time (RT) shift <±0.2min, and mass-
to-charge ratio (m/z) deviation <±0.02. +en, peak identi-
fication, matching, and normalization were performed. +e
relative amount of plasma metabolites was expressed as the
integrated area of the chromatographic peak.

2.4.2. Multivariate Statistical Analysis. +e data obtained
from the preprocessing as described in Section 2.3.1 were
imported into SIMCA-P +12.0.1.0 software (Umetrics,
Sweden) for analysis. To visualize the differences in plasma
metabolic profiles between groups, a multidimensional model
was established. Firstly, the principal component analysis
(PCA) model was developed and used as an unsupervised
pattern recognition method to observe the overall distribu-
tion trend of samples and evaluate the stability of test results
of the devices. +e clustering was displayed in the PCA plot.
And outliers were removed. Secondly, the orthogonal partial
least-squares discriminant analysis (OPLS-DA) model was
constructed to identify the overall difference in the metabolic
spectrum between the two groups. Variables responsible for
distinguishing different sample groups (differential metabo-
lites) were selected based on the variable importance in the
projection (VIP) values. Briefly, variables containing “0” in
the confidence interval on VIP plots and coefficient plots were
excluded from metabolites with VIP scores above 1.0. Next,
loading plots were used to ensure that the selectedmetabolites
have a large degree of change and high reliability.

+e parameters for evaluating the quality of the OPLS-
DA model were R2X, R2Y, and Q2. R2X and R2Y describe
the percentage of X and Y matrix information that can be
explained by the model, respectively. Q2 reveals the pre-
dictive ability of the model. R2 and Q2 with their values
closer to 1 indicate the more stable and reliable model.
Effective and reliable models should meet the following
criteria: the model withQ2> 50% was considered to be valid,
while the model with Q2> 90% was considered to be
excellent.

2.4.3. Single-Dimensional Statistical Analysis. For clinical
data from each group, statistical analysis was performed
using SPSS 22.0 software. Measurement data were expressed
as X± SD (standard deviation), χ2 test was used to compare
the count data between the two groups. Differential me-
tabolites were screened, and a nonparametric test (Man-
n–Whitney U test) was performed. +e binary logistic
regression analysis was applied to assess the influence of
metabolites on the occurrence of diseases. +e correlation
between metabolite variation and the occurrence of diseases
was evaluated by quartile agreement. Combinations of
differential metabolites were identified by the one-way
ANOVA and Tukey HSD tests. ROC curves were plotted to
assess the diagnostic efficacy of different combinations. All
statistical treatments were performed on both sides, and
P< 0.05 was considered statistically significant.
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2.4.4. Screening and Identification of Differential Metabolites.
Some characteristic ions were identified by comparing the
standard chromatographic peak with the mass spectrum
peak (including the first mass spectrum peak and the second
fragment mass spectrum peak). +e method to identify
characteristic ions was as follows: (1) since the Orbitrap XL
mass spectrum with a resolution of 100,000 (FMHW) was
employed for the first-order mass spectrometry scan, the
HMDMwas searched for the exact mass-to-charge ratio (m/
z) of the characteristic ions. +e search results were verified
by the database (http://hmDM.ca/). +e instrument pa-
rameters were reset according to the selected variables, and
the QC samples were subjected to secondary MS/MS
scanning to obtain the characteristic secondary ion mass
spectra. Next, an accurate mass-to-charge ratio (m/z) and
second-order mass spectrum were used to search for mass in
Frontier 6.0 and the HMDB database for obtaining the
results via structure-based derivation.

2.4.5. Clinical Performance Evaluation. To calculate the
relative risk value for each metabolite, we conducted a lo-
gistic regression analysis on the metabolites selected from
ANOVA and multiple comparisons between groups. We
used a corrected P value threshold of 0.001 to account for the
21 metabolites analyzed as variables in the logistic regression
analysis. First, the insulin resistance and secretion were log-
transformed. +e logistic regression models were then ad-
justed for age, gender, body mass index (BMI), fasting blood
glucose, and log-transformed values. We analyzed metab-
olites as both continuous and categorical variables (with
quartile values used as cutoff points) to estimate the odds
ratio for each SD increment and each quartile increment. To
classify patients based on their metabolic profiles, we con-
structed a logistic regression model using the R and glm
function. Specificity, sensitivity, area under the curve
(AUC), accuracy, and kappa values were obtained from a 5
times repeated 5-fold cross-validation. Top metabolites se-
lected from one-way ANOVA analysis and Tukey’s HSD test
were used to construct different biomarker combinations in
the training set. We further assessed the performance of each
combination on the classification of individuals between
groups.

3. Results

3.1. Demographic Data of the Study Subjects. +e demo-
graphic data of the study subjects are summarized in Table 1.

3.2. Total Ion Current Map. Samples were analyzed
according to the chromatographic and mass spectrometry
conditions, as described in Section 2. +e total ion chro-
matograms (TIC) of plasma samples obtained from patients
with pancreatic cancer (PC group), diabetes (DM group),
and healthy controls (normal group) were shown in Figure 1.
Figure 1 describes the differences in peak height and peak
area under the same retention time among groups, which
indicates the difference in relative content of the same
substance among groups and the existence of disease. For

example, when the retention time is 7.87min, the spectrum
of plasma in the PC group shows a distinct peak, while the
DM group and the normal group show no significant
change. In addition, significant differences in the peak
heights and peak areas on the TIC maps are found among
the three groups (i.e., PC, DM, and normal groups) within
6.03–7.41min.

+e observed differences in TIC of plasma samples might
also exist among different samples (individuals) within the
same group.+e plasmametabolic profiles obtained by using
UPLC/MS involve a lot of information.+e determination of
information of interest in the absence of target components
(i.e., known biomarkers) is difficult. +erefore, a combi-
nation of multiple data analysis methods is required to
screen potential metabolic markers and potential links
among study subjects by integrating, classifying, and ana-
lyzing multidimensional and scattered data.

3.3. Results from PCA Analysis. According to the results
from data preprocessing, as described in Section 2.3.1, a total
of 319 metabolite ions extracted were used for further an-
alyses. +e PCA analysis was first performed as an unsu-
pervised learning method to evaluate the analytical stability
and reliability. +e score plot of the PCA analysis was shown
in Figure 2. As shown in Figure 2, the two orthogonal axes
(principal components), t[1] and t[2], used for modeling
accounted for 23.5% and 8.21% of the variable information,
respectively (R2X� 23.5% andQ2� 8.21%). Besides, Figure 2
suggests the tendency of separation, with a few discrete
points and insignificant dispersion (95% confidence inter-
val). +ese findings indicate that the distribution state of the
overall sample and instrument stability are good. However,
there is an obvious separation tendency between the PC
group and the normal group, suggesting the differences in
plasma metabolic profiles of PC patients and healthy
volunteers.

3.4. Results from Analysis Based on the OPLS-DA Model.
Differences in plasma metabolic profiles among PC patients,
DM patients, and healthy volunteers were identified by the
PCA analysis. Considering the complexity of interference
factors, to further eliminate the influence of nondisease
factors, maximize the separation, eliminate the influence of
nondisease factors caused by the complexity of interference
factors, maximize the separation and search for differential
metabolites in plasma among the three groups, the OPLS-
DA model was constructed to remove the information
unrelated to the sample classification and distinguish plasma
metabolic profiles among groups. +e OPLS-DA score plots
of the spectra demonstrate two predicted principal com-
ponents and five orthogonal components, with the R2X,
R2Y, and Q2 values being 70.0%, 84.9%, and 69.7%, re-
spectively (Figure 3), suggesting good fitness and predictive
ability. Besides, in Figure 4, a clear trend of clustering is
observed among groups (PC, DM, and normal groups),
indicating that the disease is the main factor of the clustering
trend.
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3.5. Identification of Differential Metabolites. +e identifi-
cation of metabolites was carried out as described in Section
2. A total of 17 kinds of differential metabolite ions were
detected, among which phospholipids (lysophosphati-
dylcholine (lysoPC), sphingosine, and ceramide) account for
the majority, while other ions (such as eicosanoids and long-
chain fatty acids) are responsible for cell differentiation and
energy metabolism. Results from the nonparametric test
show significant differences in the content of 4 metabolite
ions between the PC group and the DM group (Figure 4).
LysoPC (22 : 6), lysoPC (20 : 3), and 1,2,4-nonadecanetriol
are significantly higher in the PC group than those in the
DM group and the normal group. Figure 4 also demonstrates
that the content of lysoPC (16 : 0) in the PC group was
significantly lower than that in the DM group. +ese results
suggest the importance of lysoPC (22 : 6), lysoPC (20 : 3),
1,2,4-nonadecanetriol, and lysoPC (16 : 0) and their involved
metabolic pathways for elucidating the relationship between
the mechanisms of PC and DM, thus providing potential
biomarkers for early diagnosis of PC.

Interestingly, the plasma metabolic profiles in the PC
group were similar to those in the DM group. Compared to
the normal group, the levels of lysoPC (20 : 4), deoxy-
adenosine, asparaginyl-histidine, and vaccenyl carnitine in
the PC group and DM group were significantly increased,
while the levels of phytal, 2 (R)-hydroxydocosanoic acid,
behenic acid, catelaidic acid, 2-hydroxyphytanic acid, phy-
tosphingosine, cerebronic acid, docosanamide, and eicose-
noic acid in the PC group and DM group were significantly
reduced (Figure 4).

3.6. Evaluation of Clinic Performance. Logistic regression
models were used to assess the association between baseline
metabolite levels and future disease occurrence after
adjusting for age, sex, BMI, and fasting glucose. Most

phospholipids, fatty alcohols, and peptides were found to
have a stimulatory effect on the occurrence of PC and DM.
Among the top metabolites selected in our study, a 0.381-
fold, 0.286-fold, 1.099-fold, and 0.845-fold increase in the
risk of DM occurrence (P � 0.0051 to 0.0337) (Tables 2 and
3) for each increment of 1 SD in the log-transformed values
of lysoPC (16 : 0), LysoPC (16 :1), nonadecanetriol, and
asparaginyl-histidine, respectively, was observed. Individ-
uals with plasma metabolite levels in the top quartile had a
1.158- to 5.24-fold increased odds of developing DM
compared to those in the lowest quartile. In addition, we also
found a 1.441-fold, 3.026-fold, 1.915-fold, and 1.052-fold
increase in the risk of PC occurrence (P � 0.0011 to 0.0029)
for each increment of 1 SD in the log-transformed values of
lysoPC (22 : 0), lysoPC (22 : 3), nonadecanetriol, and
asparaginyl-histidine, respectively, with a 2.475- to 5.241-
fold odds between the top and lowest quartile. Beneficial
effects on preventing incidence of PC andDMwere observed
in the metabolites of fatty acids and fatty amides groups (i.e.,
catelaidic acid, docosanamide, cerebronic acid, behenic
acid). Catelaidic acid, docosanamide, cerebronic acid, and
behenic acid were negatively correlated with the risk of DM
occurrence, with odds ratios of 0.137–0.271. While catelaidic
acid, cerebronic acid, and behenic acid were negatively
correlated with the risk of PC occurrence, with odds ratios of
0.137–0.271. In the case of the distinction between PC and
DM, only phospholipids (i.e., lysoPC (16 : 0), lysoPC (22 : 6),
lysoPC (20 : 3), and lysoPC (16 :1)) were detected with
significant odds ratios. Among them, lysoPC (22 : 6) and
lysoPC (20 : 3) were found to have a positive effect on the
increased risk for future PC development in DM patients
(odds ratio� 2.296 and odds ratio� 1.683, respectively).
While lysoPC (16 : 0) and lysoPC (16 :1) showed an opposite
effect on the increased risk for future PC development in
DM patients (odds ratio� 0.917 and odds ratio� 0.878,
respectively) (Tables 2 and 3).

Table 1: Demographic data of subjects.

Characteristic PC group (n� 26) DM group (n� 27) Normal group (n� 23)
Sex
Male 14 14 12
Female 12 13 11

Age (years, mean± SD) 64.74± 7.93∗ 56.93± 9.93 60.22± 6.65
Underlying diseases
Acute coronary disease 2# 1 0
Hypertension 1 1 1
Cerebral infarction 1 1 0

Location
Head of pancreas 15
Body of pancreas 8
Tail of pancreas 4

BMI (mean± SD) 19.32± 4.11#∗ 22.98± 3.79 23.13± 3.62
Duration of DM (Mon, mean± SD) 10.97± 7.66∗ 14.26± 8.54
Fasting plasma glucose (GLU, mmoL/L, mean± SD) 7.32± 1.09# 7.65± 1.43# 5.11± 0.63
Glycosylated hemoglobin (HbAlc,%, median, range) 8.9 (6.3, 11.5)# 8.2 (5.8, 10.2)# 4.7 (2.7, 6.4)
CA19-9 (μ/ml, median, range) 198.6 (31–530)#∗ 4.2 (2.7, 10.2)# 2.1 (1.3, 6.9)
Notes: #compared with the normal, P< 0.01; ∗ compared with the DM, P< 0.01.
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Five combinations were obtained through one-way
ANOVA and Tukey’s HSD test and were defined as com-
bination1, combination2, combination3, combination4, and
combination5, respectively, in this study. +e combination1
involves differential metabolites (i.e., LysoPC (22 : 6), cat-
elaidic acid, cerebronic acid, docosanamide, and aspar-
aginyl-Histidine) that were screened through one-way
ANOVA. +e combination2 involves differential metabo-
lites (i.e., lysoPC (16 : 0), catelaidic acid, cerebronic acid,
nonadecanetriol, and asparaginyl-histidine) screened
through Tukey’s HSD (PC). +e combination3 involves
differential metabolites (i.e., lysoPC (22 : 6), catelaidic acid,

cerebronic acid, docosanamide, and asparaginyl-histidine)
screened through Tukey’s HSD (DC). +e combination 4
involves differential metabolites (i.e., lysoPC (16 : 0), lysoPC
(16 :1), lysoPC (22 : 6), and lysoPC (20 : 3)) screened through
Tukey’s HSD (PC). Combination5 consisted of all the me-
tabolites involved in abovementioned four combinations.
+e combination2 demonstrated an outstanding perfor-
mance in differentiating DM from the heathy population,
with a diagnostic accuracy of 85.8% (95% CI: 82.8% to
88.9%), a kappa statistic of 71.3% (95% CI: 65.1% to 77.5%),
an AUC of 0.95 (95% CI: 0.94 to 0.97), a sensitivity of 87.6%
(95% CI: 83.9% to 91.3%), and a specificity of 87.6% (95% CI:
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Figure 1: Total ion chromatogram (TIC) of plasma samples from pancreatic cancer (PC), diabetics (DM), and healthy controls (normal),
indicating the PC- and DM-caused variation in the content of small molecule metabolites.
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82.5% to 92.7%) (Figure 5 and Table 4). Besides, this
combination also showed outstanding abilities in differen-
tiating PC from healthy individuals, with a diagnostic ac-
curacy of 88.6% (95% CI: 86.4% to 90.9%), a kappa statistic
of 76.9% (95% CI: 72.2% to 81.7%), an AUC of 0.97 (95% CI:
0.96 to 0.99), a sensitivity of 89.0% (95%CI: 84.7% to 93.3%),
and a specificity of 90.6% (95% CI: 86.1% to 95.1%) (Figure 5
and Table 4). In contrast, CA19-9 showed a poor ability in
PC diagnosis, with a diagnostic accuracy of 81.3% (95% CI:
77.8% to 83.4%), a kappa statistic of 67.3% (95% CI: 60.3% to
74.7%), an AUC of 0.82 (95%CI: 0.76 to 0.87), a sensitivity of
79.1% (95% CI: 74.5% to82.6%), and a specificity of 82.6%
(95% CI: 76.5% to 89.4%), as demonstrated in Figure 6 and
Table 5.

+e combination4 was found to demonstrate excellent
diagnostic performance in differentiating PC from DM
(Table 4). Figure 6 and Table 5 also show that the
combination1–3 demonstrated higher ACU values than

other combination did (0.904 vs. 0.872; 0.919 vs. 0.882; and
0.680 vs. 0.586, respectively). +ese findings suggest that the
combined detection of metabolic substances can improve
the diagnostic efficacy of PC and DM, thus indicating that
the models shows stable and reasonable diagnostic perfor-
mance in differentiating PC and DM from the healthy
population.

4. Discussion

Early diagnosis is promising for improving the survival rates
and prognosis of PC patients. However, the early diagnosis
of PC is vulnerable to complex relationships among chronic
pancreatitis, DM, and PC [10, 12]. Metabolites, influenced
by the disease and identified by metabolomics, are accepted
as the powerful biomarkers for discriminating between
benign and malignant lesions [8]. +e current study
employed metabolomics technology to identify differential
metabolites and found that biomarker signatures comprising
of differential metabolites demonstrate good ability in dis-
tinguishing between PC and DM. +e pancreas consists of
two types of tissues, namely, exocrine and endocrine.
+erefore, the pancreas has two different functions: an
exocrine function that benefits digestion and an endocrine
function that regulates blood sugar [13]. Hormones (such as
insulin and glucagon) and any slight damage to the pancreas
can lead to changes in metabolites [14]. +e variations in
blood plasma metabolic profiles can provide clues for
identifying pancreatic diseases. For example, in 2011, Bathe
et al. used a Proton Nuclear Magnetic Resonance (1H
NMR)-based metabolomics approach to analyze 58 me-
tabolites and succeeded in distinguishing malignant pan-
creatic lesions from hepatobiliary disease [15]. In the present
study, the metabolomic profiles of plasma samples obtained
from PC patients, DM patients, and healthy controls were
identified and analyzed for the first time by using UPLC/MS-
based metabolomics.

+e feasibility of using metabolites as biomarkers for
identifying PC has been reported previously [16–18]. In
2018, an untargeted and targeted metabolomics approach on
914 patients and 477 metabolites validated that multimarker
signatures (nine metabolites and additionally, CA19-9)
improved the diagnostic accuracy for detecting PC com-
pared to CA19-9 alone [8]. +e present study aims to
identify more common and specific markers between PC
and DM by analyzing the metabolite differences, provide an
experimental basis for the indepth understanding of the two
diseases from the perspective of pathogenesis, and provide
guidance for the early diagnosis of PC. +erefore, optimized
sensitivity and specificity of the assay were highlighted in
this work. Under the condition that the PC incidence is
between 0.71% and 0.85%, to reduce healthcare expenditure
and improve patient survival, any new diagnostic test is
required to meet the sensitivity of over 88% and the spec-
ificity of over 85% [8, 19]. Five biomarker signatures (i.e.,
lysoPC (16 : 0), catelaidic acid, cerebronic acid, non-
adecanetriol, and asparaginyl-histidine) identified in this
current study demonstrated a sensitivity of 89% and a
specificity of 91%. +ese findings suggest a higher sensitivity

-14

-10

-5

0

5

10

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14
t[1]

t[2
]

PC
DM
Normal

Figure 2: PCA scores of plasma metabolic profiles in PC, DM, and
normal groups, suggesting good analytical stability and reliability of
the UPLC-MS/MS workflow, as well as the plasma metabolite
profile. t[1]: the first principal component; t[2]: the second prin-
cipal component.
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Figure 3: OPLS-DA scores of plasmametabolic profiles in PC, DM,
and normal groups, demonstrating the good fitness and predictive
ability of the model in identifying the differential metabolite ions. t
[1]: the first predicted principal component; t[2]: the first or-
thogonal principal component.
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and specificity than that of CA 19-9 reported previously
(79% and 82%, respectively) [20]. +erefore, five biomarker
signatures proposed in our study made significant progress

in identifying PC. Additionally, the classifier including these
five biomarker signatures demonstrated a high sensitivity
and specificity of 88% in distinguishing patients with DM
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Figure 4: Differential metabolite ions in PC, DM, and normal groups. Mann–Whitney U test: ∗P 0.05; ∗∗P 0.01. +ese results suggest the
importance of differential metabolite ions we screened and identified for differentiating PC and DM.
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from healthy individuals in our study. +e classifier showed
a higher sensitivity (88% versus 59%) than the reported
HbA1c and a specificity (88% versus 96%) similar to the
reported HbA1c [21]. +ese findings suggest that the clas-
sifier including these five biomarker signatures allows for a
more accurate exclusion of DM in individuals with a neg-
ative test result than HbA1c does.

+e integrity of pancreatic acinar cells, production of
digestive enzymes, and secretion of insulin depend on
choline phospholipid metabolism.+erefore, phospholipids,
including lysoPC, are significantly important for pancreatic

cell function [22]. LysoPC is produced by lecithin cholesterol
acyl transferase (LCAT) and phospholipase A2 (PLA2)
enzyme-catalyzed hydrolysis of the fatty acid ester, which is
responsible for cell proliferation, tumor cell infiltration, and
inflammatory responses [23, 24]. Elevated plasma lysoPC
levels were found in patients with type 2 DM and were
reported to be associated with insulin resistance and chronic
inflammation [25, 26]. Furthermore, mitochondrial oxida-
tive stress in DM patients was documented to activate the
protein kinase C (PKC) signaling pathway, which in turn
increased the activity of PLA2 enzymes and promoted the

Table 2: Relation of shared common metabolites to risk of future diseases (diabetes mellitus and pancreatic cancer).

Model LysoPC (16 : 0) Catelaidic acid LysoPC (22 : 6) Docosanamide Cerebronic acid Asparaginyl-
histidine

Logistic regression between diabetes mellitus patients and healthy volunteers
Metabolite as a continuous variable

Per SD 1.381
(1.163–1.930)

0.137
(0.041–0.341) 1.264 (0.922–1.776) 0.271

(0.105–0.555)
0.177

(0.056–0.415) 1.845 (1.288–3.069)

P 0.0063 0.0002 0.1557 0.0018 0.0006 0.0051
Metabolite as a categorical variable
1st
quartile 1.0 (referent) 1.0 (referent) 1.0 (referent) 1.0 (referent) 1.0 (referent) 1.0 (referent)

2nd
quartile

0.895
(0.496–1.653)

0.616
(0.217–1.312) 1.000 (0.644–1.552) 0.405

(0.144–0.822)
0.533

(0.187–1.149)
3.886

(1.966–10.953)
3rd
quartile

1.759
(0.957–3.515)

0.585
(0.210–1.192) 1.063 (0.642–1.775) 0.669

(0.238–1.416)
0.526

(0.190–1.043) 3.175 (1.556–9.048)

4th
quartile

3.119
(1.536–8.877)

0.232
(0.079–0.478) 1.442 (0.680–4.067) 0.306

(0.110–0.596)
0.263

(0.093–0.521)
5.241

(2.328–17.749)
P for trend 0.0001 <0.0001 0.8107 0.0005 0.0002 <0.0001

Logistic regression between pancreatic cancer patients and healthy volunteers
Metabolite as a continuous variable

Per SD 1.147
(1.015–1.364)

0.107
(0.028–0.291)

4.026
(2.079–11.805)

0.126
(0.032–0.330)

0.058
(0.009–0.210) 2.052 (1.386–3.556)

P 0.0559 0.0002 0.0011 0.0004 0.0003 0.0022
Metabolite as a categorical variable
1st
quartile 1.0 (referent) 1.0 (referent) 1.0 (referent) 1.0 (referent) 1.0 (referent) 1.0 (referent)

2nd
quartile

0.493
(0.248–0.853)

0.693
(0.246–1.472) 1.000 (0.329–3.036) 0.550

(0.200–1.079)
0.771

(0.274–1.635) 2.371 (1.250–5.114)

3rd
quartile

1.326
(0.781–2.390)

0.579
(0.207–1.191) 2.433 (1.232–6.771) 0.638

(0.225–1.364)
0.531

(0.190–1.080) 2.988 (1.652–6.307)

4th
quartile

1.671
(0.841–4.628)

0.191
(0.056–0.430)

5.241
(2.328–17.749)

0.199
(0.059–0.450)

0.203
(0.060–0.459) 4.160 (2.012–12.181)

P for trend 0.0010 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
Logistic regression between pancreatic cancer patients and diabetes mellitus patients
Metabolite as a continuous variable

Per SD 0.917
(0.844–0.989)

0.807
(0.436–1.453) 2.296 (1.547–3.921) 0.775

(0.458–1.276)
0.851

(0.468–1.517) 1.116 (0.860–1.464)

P 0.0287 0.4781 0.0004 0.3234 0.5857 0.4117
Metabolite as a categorical variable
1st
quartile 1.0 (referent) 1.0 (referent) 1.0 (referent) 1.0 (referent) 1.0 (referent) 1.0 (referent)

2nd
quartile

0.550
(0.250–1.089)

1.126
(0.722–1.775) 1.000 (0.329–3.036) 1.357

(0.838–2.289)
1.446

(0.919–2.355) 0.610 (0.209–1.428)

3rd
quartile

0.754
(0.418–1.280)

0.991
(0.627–1.562) 2.289 (1.170–6.334) 0.953

(0.606–1.490)
1.010

(0.629–1.614) 0.941 (0.325–2.202)

4th
quartile

0.536
(0.296–0.896)

0.822
(0.286–1.894)

3.634
(1.824–10.275)

0.652
(0.234–1.326)

0.771
(0.274–1.635) 0.794 (0.276–1.833)

P for trend 0.0824 0.8753 <0.0001 0.2421 0.2513 0.3034
Values are odds ratios (95% confidence intervals) for diabetes mellitus and pancreatic cancer, from logistic regressions.
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Table 3: Relation of specific metabolites to risk of future diseases (diabetes mellitus and pancreatic cancer).

Model Behenic acid Nonadecanetriol LysoPC (20 : 3) LysoPC (16 :1)
Logistic regression between diabetes mellitus patients and healthy volunteers
Metabolite as a continuous variable
Per SD 0.239 (0.085–0.530) 2.099 (1.237–4.506) 1.170 (0.770–1.836) 1.286 (1.080–1.749)
P 0.0019 0.0288 0.4690 0.0337
1st quartile 1.0 (referent) 1.0 (referent) 1.0 (referent) 1.0 (referent)
2nd quartile 0.693 (0.228–1.366) 1.401 (0.858–2.382) 0.756 (0.454–1.226) 0.956 (0.572–1.595)
3rd quartile 0.543 (0.196–1.080) 1.765 (1.038–3.191) 1.012 (0.622–1.652) 1.000 (0.594–1.683)
4th quartile 0.355 (0.128–0.689) 2.680 (1.340–7.524) 1.573 (0.780–4.376) 1.158 (0.822–3.130)
P for trend 0.0052 0.0219 0.2321 0.4422

Logistic regression between pancreatic cancer patients and healthy volunteers
Metabolite as a continuous variable
Per SD 0.049 (0.006–0.201) 2.915 (1.580–6.605) 2.441 (1.473–4.737) 1.017 (0.938–1.105)
P 0.0006 0.0029 0.0024 0.6738
1st quartile 1.0 (referent) 1.0 (referent) 1.0 (referent) 1.0 (referent)
2nd quartile 0.644 (0.228–1.366) 1.010 (0.547–1.819) 0.638 (0.314–1.153) 0.655 (0.356–1.130)
3rd quartile 0.543 (0.196–1.081) 1.688 (0.984–3.067) 0.991 (0.574–1.705) 0.812 (0.474–1.361)
4th quartile 0.193 (0.057–0.433) 3.208 (1.644–8.927) 2.475 (1.273–6.832) 1.554 (0.868–3.132)
P for trend <0.0001 0.0006 0.0007 0.0348

Logistic regression between pancreatic cancer patients and diabetes mellitus patients
Metabolite as a continuous variable
Per SD 0.746 (0.403–1.317) 1.489 (0.998–2.340) 1.683 (1.175–2.596) 0.878 (0.759–0.981)
P 0.3230 0.0631 0.0090 0.0384
1st quartile 1.0 (referent) 1.0 (referent) 1.0 (referent) 1.0 (referent)
2nd quartile 0.928 (0.588–1.459) 0.721 (0.367–1.357) 0.843 (0.411–1.574) 0.685 (0.370–1.192)
3rd quartile 1.022 (0.637–1.648) 0.956 (0.533–1.713) 0.979 (0.583–1.632) 0.812 (0.474–1.361)
4th quartile 0.543 (0.196–1.081) 1.197 (0.680–2.121) 1.574 (0.981–2.626) 1.023 (0.631–1.658)
P for trend 0.3312 0.2912 0.0981 0.4267

Values are odds ratios (95% confidence intervals) for diabetes mellitus and pancreatic cancer, from logistic regressions.
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Figure 5: ROC curves of the metabolites (biomarker signature) results on plasma samples from all patients with pancreatic cancer versus
healthy volunteers (a), from patients with diabetes mellitus versus healthy volunteers (b), and from patients with pancreatic cancer versus
patients with diabetes mellitus (c). Models were tested through 5 repeated 5-fold cross-validation. AUC, area under the curve; combination1,
model with top 5metabolites selected from one-way ANOVA test; combination2, model with top 5metabolites selected from Tukey’s honest
significance test between diabetes mellitus patients and healthy volunteers; combination3, model with top 5 metabolites selected from
Tukey’s honest significance test between pancreatic cancer patients and healthy volunteers; combination4, model with top 5 metabolites
selected from Tukey’s honest significance test between pancreatic cancer patients and diabetes mellitus patients; and combination5, model
with all the metabolites involved in previous 4 models.
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Table 4: Test performance characteristics for the biomarker signature from 5 repeated 5-fold cross-validation.

Model AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI) Kappa (95% CI)
Logistic regression between diabetes mellitus patients and healthy volunteers
Combination1 0.872 (0.847–0.896) 0.760 (0.690–0.830) 0.816 (0.778–0.854) 0.779 (0.751–0.807) 0.556 (0.499–0.613)
Combination2 0.953 (0.937–0.969) 0.876 (0.839–0.913) 0.876 (0.825–0.927) 0.858 (0.828–0.889) 0.713 (0.651–0.775)
Combination3 0.870 (0.842–0.898) 0.764 (0.712–0.816) 0.807 (0.761–0.852) 0.773 (0.734–0.811) 0.538 (0.460–0.615)
Combination4 0.847 (0.810–0.884) 0.768 (0.696–0.840) 0.735 (0.687–0.782) 0.767 (0.732–0.803) 0.537 (0.468–0.607)
Combination5 0.904 (0.870–0.938) 0.830 (0.782–0.878) 0.727 (0.675–0.778) 0.792 (0.753–0.830) 0.585 (0.510–0.660)
Logistic regression between pancreatic cancer patients and healthy volunteers
Combination1 0.882 (0.846–0.918) 0.816 (0.760–0.872) 0.873 (0.834–0.912) 0.852 (0.821–0.883) 0.701 (0.640–0.763)
Combination2 0.974 (0.958–0.991) 0.890 (0.847–0.933) 0.906 (0.861–0.951) 0.886 (0.864–0.909) 0.769 (0.722–0.817)
Combination3 0.879 (0.848–0.909) 0.834 (0.781–0.887) 0.896 (0.860–0.932) 0.865 (0.843–0.888) 0.728 (0.683–0.774)
Combination4 0.860 (0.823–0.896) 0.848 (0.785–0.911) 0.831 (0.778–0.883) 0.837 (0.801–0.874) 0.677 (0.605–0.750)
Combination5 0.919 (0.887–0.952) 0.894 (0.853–0.935) 0.773 (0.714–0.832) 0.841 (0.808–0.874) 0.684 (0.619–0.750)
Logistic regression between pancreatic cancer patients and diabetes mellitus patients
Combination1 0.586 (0.534–0.638) 0.503 (0.439–0.566) 0.629 (0.575–0.683) 0.586 (0.556–0.615) 0.183 (0.127–0.239)
Combination2 0.631 (0.580–0.682) 0.547 (0.493–0.600) 0.613 (0.544–0.683) 0.547 (0.522–0.572) 0.100 (0.049–0.151)
Combination3 0.569 (0.516–0.622) 0.463 (0.398–0.527) 0.612 (0.543–0.681) 0.547 (0.516–0.579) 0.101 (0.038–0.165)
Combination4 0.723 (0.691–0.754) 0.635 (0.589–0.681) 0.696 (0.641–0.751) 0.677 (0.641–0.713) 0.350 (0.278–0.422)
Combination5 0.680 (0.632–0.729) 0.589 (0.535–0.643) 0.671 (0.609–0.732) 0.659 (0.626–0.692) 0.313 (0.246–0.381)
AUC, area under the curve; combination1, model with top 5 metabolites selected from one-way ANOVA test; combination2, model with top 5 metabolites
selected from Tukey’s honest significance test between diabetes mellitus patients and healthy volunteers; combination3, model with top 5 metabolites selected
from Tukey’s honest significance test between pancreatic cancer patients and healthy volunteers; combination4, model with top 5 metabolites selected from
Tukey’s honest significance test between pancreatic cancer patients and diabetes mellitus patients; and combination5, model with all the metabolites involved
in previous 4 models.
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Figure 6: ROC curves of the diagnostic ability of combination2 versus CA19-9.

Table 5: +e abilities of combination2 and CA19-9 in PC diagnosis.

Project AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI) Kappa (95% CI)
Combination2 0.974 (0.958–0.991) 0.890 (0.847–0.933) 0.906 (0.861–0.951) 0.886 (0.864–0.909) 0.769 (0.722–0.817)
CA19-9 0.821 (0.765–0.874) 0.791 (0.745–0.826) 0.826 (0.765–0.894) 0.813 (0.778–0.834) 0.673 (0.603–0.747)
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production of lysoPC, thus increasing the serum levels of
lysoPC [27]. In addition, studies have found the elevated
activity of PLA2 enzymes in the pathological state of cancer,
especially in advanced malignant tumors. +ese findings
suggest an elevated lysoPC in the plasma of PC patients.
Urayama et al. confirmed the significantly increased plasma
levels of lysoPC in patients with PC by using an MS-based
plasma metabolic profiling analysis [28]. +erefore, PC and
DM show significantly increased lysoPC levels and disturbed
phospholipid metabolic pathways. In our work, the bio-
marker signatures (i.e., lysoPC (16 : 0), catelaidic acid, cer-
ebronic acid, nonadecanetriol, and asparaginyl-histidine)
demonstrated sufficient ability to distinguish PC and DM.
+ese findings might result from the similarly increased
lysoPC levels and similarly disturbed phospholipid meta-
bolic pathways in PD and DM. Of note, the biomarker
signatures, comprised of phospholipids (i.e., lysoPC (16 : 0),
lysoPC (16 :1), lysoPC (22 : 6), and lysoPC (20 : 3)), showed
increased accuracy (68% versus 55%) and AUC values (72%
versus 63%) in identifying PC. +erefore, further studies on
the underlying mechanisms of how phospholipids influence
the occurrence of PC may contribute to developing a di-
agnostic test for the more accurate and earlier detection of
PC.

Although the current study provides potential and
promising biomarkers for differentiating PC from DM, it
suffers from the limitation of small sample size. +e validity
and applicability of these markers needs to be further
confirmed by data from a multicenter, large-sample clinical
epidemiologic investigation. Besides, DM is accepted as a
risk factor for PC and also a paraneoplastic syndrome caused
by PC. In view of the potential contribution of DM to the
early diagnosis of PC, a multicenter, large sample clinical
epidemiologic investigation contributes to the establishment
of a prospective study cohort of new-onset diabetes in PC
and a screening system for the early diagnosis of pancreatic
cancer. +e screening system should also be developed in
combination with the current biological indicators of early
diagnosis of PC.

Taken together, the present study successfully iden-
tified 16 metabolite ions (i.e., lysoPC (20 : 4), lysoPC (22 :
6), lysoPC (20 : 3), deoxyadenosine, asparaginyl-histidine,
vaccenyl carnitine, phytal, 2 (R)-hydroxydocosanoic acid,
behenic acid, catelaidic acid, 2-hydroxyphytanic acid,
phytosphingosine, cerebronic acid, docosanamide, eico-
senoic acid, and 1,2,4-nonadecanetriol) that differ be-
tween PC patients and health controls. Meanwhile, there
were 4 metabolite ions (i.e., lysoPC (16 : 0), lysoPC (16 : 1),
lysoPC (22 : 6), and lysoPC (20 : 3)) that were found to
demonstrate excellent abilities in differentiating PC from
DM. Our study, therefore, provides potential biomarkers
for differentiating PC from DM and also elucidates the
relationship between PC and DM in terms of
pathogenesis.
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