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Diabetic cardiomyopathy (DCM) is one of the main complications of diabetic patients and the major reason for the high prevalence
of heart failure in diabetic patients. Fufang Xueshuantong (FXST) is a traditional Chinese medicine formula commonly used in the
treatment of diabetic retinopathy and stable angina pectoris. However, the role of FXST inDCMhas not yet been clari�ed.�is study
was conducted to investigate the e�ects of FXSTon diabetic myocardial lesions and reveal its molecular mechanism. �e rats were
intraperitoneally injected with 65mg/kg streptozotocin (STZ) to induce diabetes mellitus (DM). DM rats were given saline or FXST.
�e rats in the control group were intraperitoneally injected with an equal amount of sodium citrate bu�er and gavaged with saline.
After 12 weeks, echocardiography, heart weight index (HWI), andmyocardial pathological changes were determined.�e expression
of transforming growth factor-beta1 (TGF-β1), collagen I, and collagen III was examined using immuno�uorescence staining and
western blot. �e expressions of Wnt/β-catenin signaling pathway-related proteins and mRNA were detected by western blot and
real-time PCR. �e results showed that FXST signi�cantly improved cardiac function, ameliorated histopathological changes, and
decreased HWI in the DM rats. FXSTsigni�cantly inhibited the expression of myocardial TGF-β1, collagen I, and collagen III in DM
rats. Furthermore, FXST signi�cantly inhibited the Wnt/β-catenin pathway. Taken together, FXST has a protective e�ect on DCM,
which might be mediated by suppressing the Wnt/β-catenin pathway.

1. Introduction

Diabetic cardiomyopathy (DCM) is a major cause of the
high prevalence of heart failure in diabetic patients [1]. DCM
is characterized by speci�c myocardial structural and
functional abnormalities at di�erent stages, which cannot be
completely explained by other cardiovascular or non-
cardiovascular reasons [2]. �e main pathological mecha-
nisms of DCM are hyperglycemia, reactive oxygen species,
abnormal fatty acid metabolism, microvascular dysfunction,

and myocardial �brosis [3, 4]. At present, the treatment of
DCM is still based on antiglycemic agents, combined with
angiotensin-converting enzyme inhibitors, diuretics, and
β-blockers drugs. However, the risk of drug intolerance and
electrolyte disorders must be considered [4]. �erefore,
further studies are needed to elucidate the pathogenesis of
DCM and investigate new therapies.

Myocardial �brosis is one of the principal pathological
features in the late development of DCM [5]. Hyperglycemia
usually induces abnormal proliferation of myocardial
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fibroblasts and deposition of extracellular matrix (ECM) to
accelerate the process of myocardial fibrosis, ultimately
leading to cardiac insufficiency [6, 7]. It was reported that the
Wnt/β-catenin signaling pathway can regulate cardiac fi-
broblast activation and ECM secretion during cardiac fi-
brosis [8, 9]. In addition, the previous study showed that the
protein expression of Wnt2 and β-catenin is upregulated in
the left ventricles of streptozotocin (STZ)-induced diabetes
mellitus (DM) rats, and blocking the Wnt/β-catenin sig-
naling pathway can put off the development of DCM [10].

-e Fufang Xueshuantong (FXST) formula, currently
used in the clinical treatment of diabetic retinopathy and
stable angina pectoris, is composed of Panax notoginseng
(Burk.) F. H. Chen (San-Qi), Salvia miltiorrhiza Bunge (Dan-
Shen), Astragalus membranaceus (Fisch.) Bunge (Huang-Qi)
and Scrophularia ningpoensis Hemsl. (Xuan-Shen) [11]. In
the blood stasis rats established by injection of adrenalin
hydrochloride, FXST could reduce blood viscosity and
promote microcirculation [12]. In STZ-induced diabetic
rats, FXSTattenuated diabetic retinopathy by improving the
pathological changes in the retina and hemodynamic status
[13, 14]. Moreover, FXST moderated kidney hypertrophy
and renal histology in the high-fat diet/STZ-induced dia-
betic nephropathy rats [15]. -e clinical experiments
demonstrated that FXST can effectively relieve traditional
Chinese medicine syndromes of patients with stable angina
pectoris of coronary heart disease, can cut down the dosage
of nitroglycerin, and has no obvious toxic side effects [16].
But there are few reports about the effects of FXSTon DCM.
Hence, the purpose of this study was to observe the effects of
FXST on DCM and reveal its molecular mechanism, which
might provide new options for DCM patients.

2. Materials and Methods

2.1. Materials and Reagents. Antibodies against trans-
forming growth factor-beta1 (TGF-β1) (21898-1-AP), col-
lagen III (22734-1-AP), phospho-GSK-3β (Ser 9) (67558-1-
Ig), GSK-3β (15113-1-AP), β-catenin (51067-2-AP), Wnt2
(66656-1-Ig) and c-Myc (10828-1-AP) were purchased from
Proteintech Group, Inc (Chicago, USA). Collagen I
(AF7001) antibody was obtained from Affinity (USA).
WISP1 (ab178547), collagen I (ab255809), collagen III
(ab184993), and TGF-β1 (ab179695) antibodies were pur-
chased from Abcam (Cambridge Science Park, UK) for
western blot analysis. STZ was provided by Sigma-Aldrich
(No : S0130-1G; St Louis, USA). -e primers of Wnt2,
β-catenin, c-Myc, GSK-3β, and β-actin were all entrusted to
Sangon Biotech (Shanghai, China) Co. Ltd., for synthesis.

2.2. FXST Preparation. -e preparation method of FXST
was in accordance with the Chinese Pharmacopoeia (2020).
Panax notoginseng (Burk.) F. H. Chen (250 g) was crushed
and extracted twice with 50% ethanol, the filtrate was
combined, the ethanol was recovered and concentrated into
an ointment, and the dregs were dried and pulverized into
fine powder for use. -e remaining three herbs such as
Astragalus membranaceus (Fisch.) Bunge (80 g), Salvia

miltiorrhiza Bunge (50 g), and Scrophularia ningpoensis
Hemsl. (80 g) were heated and refluxed with 50% ethanol two
times.-en the filtrate was combined, ethanol was recovered
and concentrated to an appropriate amount, and finally
mixed with the above-prepared ointment and fine powder,
dried, crushed, and obtained. -e ultra-performance liquid
chromatography-mass spectrometry analysis of FXST was
determined in our previous work [14].

2.3. Animals and Treatment. Male Sprague-Dawley rats
weighing 180–200 g were purchased from Vital River Lab-
oratory Animal Technology Co., Ltd. (Beijing, China). -e
rats were raised in a specific pathogen-free environment,
with 12 h light/12 h dark cycles and free access to food and
water. All animal experimental protocols were approved by
the Ethical Committee of Experimental Animal Care, China
Academy of Chinese Medical Sciences, and complied with
the National Institutes of Health guidelines (Guide for the
care and use of laboratory animals).

After two weeks of adaptive feeding, the rats in the
control group (n� 8) were intraperitoneally injected with
sodium citrate buffer. -e remaining rats were injected with
an equal volume of 65mg/kg STZ dissolved in a 0.1M so-
dium citrate buffer (pH 4.5) to induce diabetes [17, 18].
Following one week of treatment, blood was collected from
the tail vein to measure the blood glucose. If the fasting
blood glucose level was higher than or equal to 16.7mmol/L,
the DM model was successfully established. Rats with blood
glucose <16.7mmol/L, were excluded from the study.

-e DM rats were randomly divided into 2 groups: the
DM group (n= 12) and the FXST group (n= 12). -e rats in
the FXST group were orally gavaged with FXST (1.05 g/kg/
day) once a day for 12 weeks.-e rats in the control and DM
groups were orally gavaged with an equal amount of saline.
-e body weight and blood glucose of the rats were mea-
sured at 0, 4, 8, and 12 weeks and 1, 2, 4, 8, and 12 weeks,
respectively. At the end of the experiment, the insulin level
was measured using enzyme-linked immunosorbent assay
analysis according to the manufacturer’s instructions (80-
INSRT-E01, ALPCO, USA).

2.4. Hemodynamic Detection. After 12 weeks of drug in-
tervention, the rats were weighed, anesthetized by inhalation
with isoflurane, and fixed in the supine position. A Standard
II lead electrocardiogramwas monitored.-e hemodynamic
examination was performed according to the requirements
of the MP150 multichannel physiological signal recording
and analysis system (Biopac, USA). -e right common
carotid arteries of the rats were separated, the distal ends
were ligated, and the proximal ends were clamped with an
arterial clamp. A 20G vein indwelling needle was inserted
through the right carotid artery and connected with the
pressure transducer, and then detected by an MP150 mul-
tiguide physiological recorder. Cardiac hemodynamic in-
dexes were recorded: heart rate, cardiac index (CI), left
ventricular systolic pressure (LVSP), left ventricular end-
diastolic pressure (LVEDP), dp/dt min, and dp/dt max.
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2.5. Echocardiography. -e echocardiography was con-
ducted using the Vevo 770 ultrasound imaging system
(Visual Sonies, Canada). -e rats were anesthetized and
fixed, and the left ventricle long and short axis sections were
obtained using an RMV-716 probe at a frequency of
17.5MHz at the left sternal border. Ejection fraction (EF)
and fractional shortening (FS) were measured and analyzed.
-e ultrasonic measurements were averaged over 3 con-
secutive cardiac cycles. Following the measurements of
cardiac function, blood from the abdominal aorta of rats was
collected, the whole heart was weighed, and the heart weight
index (HWI� heart weight/body weight) was calculated.

2.6.Histopathologic Evaluation. -e heart tissue was fixed in
4% paraformaldehyde for 48 h, dehydrated by an ethanol
gradient, and then embedded in paraffin. Paraffin-embedded
heart tissues were sliced into 4 μm sections. Hematoxylin-
eosin staining and Masson staining were performed to
evaluate histological changes. -e morphology of the left
ventricle was observed under the microscope. Additionally,
the collagen volume fraction was quantitatively analyzed by
the Image-Pro-Plus 6.0 Image software.

2.7. Immunofluorescence. -e sections were routinely
deparaffinized to water, followed by antigenic repair, and
then nonspecific epitopes were blocked. -e slices were
incubated with the primary antibody (TGF-β1, collagen I,
collagen III, 1 :100 dilution) overnight at 4°C. On the fol-
lowing day, slides were washed with phosphate buffer saline
three times and incubated with fluorescein-labeled sec-
ondary antibody for 1 h at 37°C.-e nuclei were stained with
4′,6-diamidino-2-phenylindole for 5min. -e images were
captured by a laser scanning confocal microscope (Leica,
SP8, Germany) and analyzed for fluorescence intensity with
Image J software.

2.8. Western Blot. Prechilled RIPA lysate (p0013 B, Beyo-
time, Shanghai, China) with a protease inhibitor mixture was
added to the myocardial tissues. -e tissues were fully
ground and lysed. -e homogenate was allowed to stand for
10min on ice and centrifuged at 12,000 r/min for 20min at
4°C to obtain the protein from the supernatant. -e protein
concentration was detected with the protein quantification
kit (MB155207A, Pierce, USA). Subsequently, the proteins
were separated on a SDS/PAGE gel and transferred to the
polyvinylidene fluoride membrane (Millipore, Massachu-
setts, USA). -e membrane was blocked with 5% skim milk
and incubated with β-actin, TGF-β1, collagen I, collagen III,
phospho-GSK-3β, GSK-3β, β-catenin, Wnt2, c-Myc, and
WISP1 antibodies at 4°C overnight. After being washed with
tris-buffered saline and tween 20, the membranes were
incubated with goat anti-rabbit IgG or goat anti-mouse IgG
(Sc-2004/Sc-2005, Santa Cruz Biotechnology, Inc. USA).
β-actin served as the internal control. -e protein bands
were detected using a gel imager (Bio-Rad, USA) and
quantified with Quantity One v.4.6.2 software.

2.9. Real-Time PCR. Total RNA was extracted from cardiac
tissues using Trizol reagent (15596018, Ambion, USA)
according to the manufacturer’s instructions. -e RNA
concentration was determined using a NanoDrop ND-2000
spectrophotometer (-ermo Scientific, USA). -en, the
RNA was reverse transcribed into cDNA using a reverse
transcription kit (Ambion, USA). -e real-time polymerase
chain reaction was performed with the SYBR Green qPCR
Master Mix on an Applied Biosystems Prism 7500 Sequence
Detection System. -e β-actin mRNA expression level was
used as the internal control. -e 2−ΔΔCt method was used to
calculate the expression of the target genes. -e PCR primer
sequences (5′⟶ 3′) were shown as follows:

(i) β-catenin (Forward primer),
GGACTCTAGTGCAGCTTCTGGGTTC

(ii) β-catenin (Reverse primer),
ACAGATGGCAGGCTCGGTAATG

(iii) c-Myc (Forward primer),
GCTCTCCGTCCTATGTTGCG

(iv) c-Myc (Reverse primer),
TCGGAGACCAGTTTGGCAG

(v) GSK-3β (Forward primer),
CGAACTCCACCAGAGGCAATC

(vi) GSK-3β (Reverse primer),
TGTCCACGGTCTCCAGCATTA

(vii) Wnt2 (Forward primer),
GCTGCGAAGTTATGTGTTGTG

(viii) Wnt2 (Reverse primer),
GTTGTCCAGTCGGCACTCT

(ix) β-actin (Forward primer),
GGAGATTACTGCCCTGGCTCCTA

(x) β-actin (Reverse primer),
GACTCATCGTACTCCTGCTTGCTG

2.10. Statistical Analysis. -e data were reported as the
mean± standard deviation (SD). When the data conformed
to the normal distribution, one-way analysis of variance
(ANOVA) was used for comparison among multiple groups
followed by the least significant difference (LSD) test for
equal variances or the Games-Howell test for unequal
variances; When the data did not conform to the normal
distribution, Kruskal-Wallis test was used for comparison
among multiple groups (SPSS software 23.0, SPSS Inc.,
Chicago, IL). P< 0.05 was considered statistically significant.

3. Results

3.1. FXST Increased Insulin Concentration in the DM Rats.
-e typical symptoms of STZ-induced type 1 diabetic rats
included polydipsia, polyphagia, polyuria, emaciation, hy-
perglycemia, and low insulin levels [19]. As shown in
Figure 1(a), the body weight of the control group rats in-
creased steadily, while the weight of the DM group rats was
significantly lower than that of the control group (P< 0.01 or
0.001), and there was no significant difference in body weight
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between the DM and FXST group (P> 0.05). Blood glucose
was signi�cantly elevated in the DM group as compared to
the control group (P< 0.01 or 0.001), and FXST treatment
had no signi�cant e�ect on blood glucose in the diabetic rats
(P> 0.05, Figure 1(b)). In addition, insulin concentration in
the DM group was signi�cantly reduced compared to the
control group (P< 0.01). �e insulin concentration of the
FXSTgroup was higher than that of the DM group without a
statistical di�erence (P> 0.05, Figure 1(c)).

3.2. FXST Improved Cardiac Function in the DM Rats.
�e left ventricular hemodynamic and echocardiography
parameters were measured to assess the cardiac diastolic and
systolic function of the rats. As shown in Figures 2(a)–2(i),
compared with the control group, the heart rate, CI, LVSP,
dp/dt min, dp/dt max, EF, and FS of the DM group sig-
ni�cantly decreased (P< 0.01 or 0.001). FXST treatment
signi�cantly increased heart rate, CI, LVSP, dp/dt min, EF,
and FS (P< 0.05 or 0.01). FXST treatment exhibited a trend
to enhance dp/dt max (P> 0.05). In addition, LVEDP was
increased while FXST was decreased in DM rats (P> 0.05).
�ese results testi�ed that FXST could alleviate cardiac
dysfunction and delay DCM progression in diabetic rats.

3.3. FXST Improved Myocardial Histomorphology and
Structure in the DM Rats. As shown in Figure 3(a), myo-
cardial hematoxylin-eosin staining showed that car-
diomyocytes were orderly arranged with uniform nuclear
and cytoplasmic staining in the control group. In the DM
group, cardiomyocytes were disordered with in�ammatory
cell in�ltration, and uneven nuclear and cytoplasmic
staining, which were reversed after FXST intervention.
Besides, the e�ect of FXST was also evaluated by HWI
(Figure 3(b)). Compared with the control group, the HWI of
the DM group signi�cantly increased (P< 0.001), whereas
FXSTmarkedly reduced HWI (P< 0.01). �e results showed
that FXST could signi�cantly alleviate the abnormal myo-
cardial tissue morphology and structure of diabetic rats.

3.4. FXSTAlleviated STZ-Induced Cardiac Fibrosis in the DM
Rats. �e results of Masson staining showed that the de-
position of myocardial collagen �bers in the heart tissue of
the DM group was signi�cantly higher than that of the
control group (P< 0.001). Inversely, the deposition area of
collagen �bers in the myocardial tissue of the FXST group
was signi�cantly reduced compared with the DM group and
the degree of �brosis was reduced (P< 0.01, Figures 4(a)-
4(b)). We further determined the levels of collagen I, col-
lagen III, and TGF-β1 by immuno�uorescence and Western
blot. �e expression levels of collagen I, collagen III, and
TGF-β1 was signi�cantly elevated in the myocardium of the
DM group compared with the control group (P< 0.05 or
0.01 or 0.001), nevertheless, FXST downregulated the ex-
pression of collagen I, collagen III, and TGF-β1 compared to
the DM group (P< 0.05 or 0.01 or 0.001, Figures 4(c)–4(k)).
As consequence, FXST could inhibit the expression of �-
brosis-associated genes in DCM.

3.5. FXST Attenuated Diabetic Cardiomyopathy via Regu-
lating Wnt/β-Catenin Pathway. Western blot demonstrated
that compared with the control group, the protein expres-
sion levels of Wnt2, β-catenin, WISP1, c-Myc, and p-GSK-
3β in the myocardial tissues of the DM group were sig-
ni�cantly upregulated (P< 0.001), and downregulated by
FXST treatment (P< 0.05 or 0.001, Figures 5(a)–5(g)).

�e results of the real-time PCR determined that
compared to the control group, the myocardial mRNA
Wnt2, β-catenin, GSK-3β, and c-Myc in the DM group were
signi�cantly increased (P< 0.05 or 0.01 or 0.001), by con-
trast, the mRNA expression levels of β-catenin and c-Myc
were signi�cantly decreased in the FXST group compared
with the DM group (P< 0.05 or 0.01, Figures 5(h)–5(k)).

4. Discussion

In the present study, we investigated the e�ect of FXST in
STZ-induced diabetic rats and con�rmed the following
points. (1) FXST improved cardiac function and
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Figure 1: E�ect of FXSTon general characteristics in DM rats. (a) Body weight was measured at 0, 4, 8, and 12 weeks. (b) Blood glucose was
measured at 1, 2, 4, 8, and 12 weeks. (c) Insulin levels were measured at termination. Data are expressed as the mean± SD (n� 7–12 for each
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histomorphology; (2) FXST signi�cantly alleviated collagen
deposition and downregulated TGF-β1, collagen I, and
collagen III expression; and (3) FXST suppressed the Wnt/
β-catenin pathway.

4.1. FXST Improved the Cardiac Function and Pathology of
DM Rats. In the current study, we found that body weight
loss, elevated blood glucose levels, HWI, cardiomyocyte
disorder, and myocardial �ber gap widening were the main
pathological features in STZ-induced diabetic rats. �ese
changes were consistent with the reports of the DCM rat
model [19]. It has been reported that FXST improves the
hemodynamic status in acute myocardial ischemic canines
established by ligating the coronary artery anterior
descending branch [20]. Panax notoginseng saponins and
Salvia miltiorrhiza Bunge, the main components of FXST,
increased EF, FS, and LVSP and decreased HWI in the
myocardial infarction rats [21, 22]. Moreover, Tanshinone
IIA, one of the main monomers of Salvia miltiorrhiza Bunge,
has been demonstrated to ameliorate DCM [23]. Noto-
ginsenoside R1, a newly extracted phytoestrogen from
Panax notoginseng (Burk.) F. H. Chen could suppress oxi-
dative stress and cardiac �brosis to prevent DCM in the db/
db mice [24]. �e above �ndings indicated that FXST may
become a potential therapeutic drug for DCM. Accordingly,

we assessed the pharmacologic e�ects of FXST in the STZ-
induced DCM rats. In this study, we clari�ed that FXST
improved the cardiac function of DCM rats. FXSTenhanced
EF and FS, maintained hemodynamic stabilization and
decreased HWI in the STZ-induced DM rats. Furthermore,
the pathological changes of myocardial tissues were also
partially restored following FXST treatment. However, we
found no signi�cant di�erence in blood glucose levels be-
tween the DM and FXST groups. Based on the concept of
“preventive treatment of disease” in Chinese medicine, if
diabetic rats are pretreated with FXST in advance, it might
play an imperative role in lowering blood glucose and better
preventing myocardial injury. Hence, we will investigate
whether FXST pretreatment could inhibit the development
of STZ-induced diabetes in future studies.

4.2. FXST Mitigated Myocardial Fibrosis in the DM Rats.
Myocardial �brosis is a key factor in the deterioration of
DCM cardiac function. �e characteristic of �brosis is ex-
cessive accumulation of ECM [25], and the �brin in the ECM
is mainly comprised of collagen I and collagen III. Studies
have con�rmed that the reduction of collagen I and collagen
III alleviates myocardial �brosis in STZ-induced diabetic
mice [26, 27]. TGF-β1 activation can increase the deposition
of ECM in the myocardial interstitium which consequently
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Figure 4: FXST alleviated STZ-induced cardiac �brosis in DM rats. (a) Representative images of Masson staining of myocardial tissues
(400×, magni�cation). Arrows represent the �brotic area. (b) �e quanti�cation analysis of the collagen volume fraction of myocardial
tissues. Representative immuno�uorescence images were shown for the expression of collagen I (c), collagen III (e), and TGF-β1 (g). �e
expression level of collagen I (d), collagen III (f ), and TGF-β1 (h) was detected and quanti�ed. (i–k) Western blot was used to determine the
protein expression of collagen I, collagen III, and TGF-β1 in the myocardial tissues of rats in each group. Data are expressed as the
mean± SD (n� 3–5 for each group). Scale bar� 50 μm. ∗P< 0.05, ∗∗P< 0.01, ∗∗∗P< 0.001 vs. the Control group, #P< 0.05, ##P< 0.01,
###P< 0.001 vs. the DM group.
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lead to an increase in themyocardial hardness and a decrease
in the ventricular systolic and diastolic function [28]. Our
data showed that in comparison with the control group, the
protein expression of collagen I, collagen III, and TGF-β1
was signi�cantly increased in the DM group, indicating that
collagen I, collagen III, and TGF-β1 were involved in the
progress of DCM. Additionally, studies have determined
that tanshinone IIA, astragaloside, and ginsenoside Rb1,
which are representative bioactive ingredients of FXST, play
a crucial role in inhibiting the development of cardiac �-
brosis [29–31]. In our study, compared to the DM group, the
protein expressions of TGF-β1, collagen I and collagen III
were remarkably reduced by FXST. �erefore, we could
assume that FXST attenuates the �brosis process.

4.3. FXST Inhibited the Wnt/β-Catenin Pathway. �e
components of the canonical Wnt pathway include ligands
(Wnt), transmembrane receptors, cytoplasmic regulatory
proteins (GSK-3β, β-catenin), and nuclear transcription
factors. Under myocardial injury conditions, the Wnt
pathway is activated. Wnt protein binds to cell surface

receptors, resulting in the depolymerization of the GSK-3β/
APC/Axin degradation complex, which inhibits the phos-
phorylation of β-catenin by GSK-3β. Subsequently, β-cat-
enin is accumulated in the cytoplasm and then transferred to
the nucleus, thus turning on the transcription of down-
stream target genes (c-Myc, WISP1) [32, 33]. �e Wnt/
β-catenin pathway exerts an imperative role in the regulation
of DCM [34] and myocardial �brosis [9]. β-catenin protein
expression is usually elevated in various cardiac �brotic
lesions [35]. GSK-3β can regulate cardiac hypertrophy and
cardiac �brosis [36]. Under stimulation factors such as is-
chemia and hypoxia, the dysregulation of c-Myc expression
causes �broblast proliferation and the increase of collagen
synthesis, leading to myocardial �brosis [37]. WISP1 is a
member of the connective tissue growth factor family, which
promotes proliferation and �brosis [38]. In our study, the
gene and protein expression levels of β-catenin, WISP1,
Wnt2, c-Myc, and GSK-3β in the myocardial tissues of the
DM group were increased compared to those of the control
group. Besides, it was reported that the downregulation of
Wnt2, GSK-3β, and β-catenin expression may ameliorate
cardiac �brosis in diabetic mice and type 1 diabetic rat
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Figure 5: FXSTattenuated diabetic cardiomyopathy by regulating theWnt/β-catenin pathway. (a-g)Western blot was used to determine the
protein expression of Wnt2, β-catenin, WISP1, c-Myc, and p-GSK-3β in the myocardial tissues of rats in each group. (h-k) Real-time PCR
was performed to measure the mRNA expression of Wnt2, β-catenin, GSK-3β, and c-Myc in the myocardial tissues of rats in each group.
Data are expressed as the mean± SD (n� 4 for each group). ∗P< 0.05, ∗∗P< 0.01, ∗∗∗P< 0.001 vs. the Control group, #P< 0.05, ##P< 0.01,
###P< 0.001 vs. the DM group.
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[39, 40]. Studies have shown that the effective ingredients of
FXST, tanshinone IIA, and ginsenoside Rb1, can inhibitWnt
and β-catenin levels in hyperglycemic circumstances
[41, 42]. In line with the literature, we found the expressions
of β-catenin, WISP1, p-GSK-3β, Wnt2, and c-Myc in the
FXST group were significantly inhibited. It is suggested that
the therapeutic effect of FXST on DCM cardiac fibrosis is at
least partially attributed to the inhibition of the Wnt/
β-catenin pathway. However, in future studies, we intend to
use Wnt inhibitors or Wnt transgenic mice to more directly
demonstrate the cardioprotective effect of FXST through the
Wnt/β-catenin pathway.

5. Conclusion

In summary, FXST could enhance cardiac function and
reduce myocardial damage caused by diabetes, and its
antimyocardial fibrosis mechanism might be related to the
downregulation of the Wnt/β-catenin signaling pathway.
-ese findings provide an experimental basis for under-
standing the beneficial role of FXST in the treatment of
DCM. -e components of FXST are pretty complex,
therefore further studies on the active ingredients of FXST
should be carried out. In addition, in-depth research can be
conducted to explore the components of FXST that can act
on fibrosis and the Wnt pathway.
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