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Background. Ultrasonography (US) is the most common method of identifying thyroid nodules, but US images require an
experienced surgeon for identi�cation. Many arti�cial intelligence (AI) techniques such as computer-aided diagnostic systems
(CAD), deep learning (DL), and machine learning (ML) have been used to assist in the diagnosis of thyroid nodules, but whether
AI techniques can improve the diagnostic accuracy of thyroid nodules still needs to be explored. Objective. To clarify the accuracy
of AI-based thyroid nodule US images for di�erentiating benign and malignant thyroid nodules. Methods. A search strategy of
“subject terms + key words” was used to search PubMed, Cochrane Library, Embase, Web of Science, China Biology Medicine
(CBM), and China National Knowledge Infrastructure (CNKI) for studies on AI-assisted diagnosis of thyroid nodules based on
US images.�e summarized receiver operating characteristic (SROC) curve and the pooled sensitivity and speci�city were used to
assess the performance of the diagnostic tests. �e quality assessment of diagnostics accuracy studies-2 (QUADAS-2) tool was
used to assess the methodological quality of the included studies. �e Review Manager 5.3 and Stata 15 were used to process the
data. Subgroup analysis was based on the integrity of data collection. Results. A total of 25 studies with 17,429 US images of thyroid
nodules were included. AI-assisted diagnostic techniques had better diagnostic e¤cacy in the diagnosis of benign and malignant
thyroid nodules: sensitivity 0.88 (95% CI: (0.85–0.90)), speci�city 0.81 (95% CI: 0.74–0.86), diagnostic odds ratio (DOR) 30 (95%
CI: 19–46).�e SROC curve indicated that the area under the curve (AUC) was 0.92 (95% CI: 0.89–0.94).�reshold e�ect analysis
showed a Spearman correlation coe¤cient: 0.17< 0.5, suggesting no threshold e�ect for the included studies. After a meta-
regression analysis of 4 di�erent subgroups, the results showed a statistically signi�cant e�ect of mean age ≥50 years on het-
erogeneity. Compared with studies with an average age of ≥50 years, AI-assisted diagnostic techniques had higher diagnostic
performance in studies with an average age of <50 years (0.89 (95% CI: 0.87–0.92) vs. 0.80 (95% CI: 0.73–0.88)), (0.83 (95% CI:
0.77–0.88) vs. 0.73 (95% CI: 0.60–0.87)). Conclusions. AI-assisted diagnostic techniques had good diagnostic e¤cacy for thyroid
nodules. For the diagnosis of <50 year olds, AI-assisted diagnostic technology was more e�ective in diagnosis.

1. Introduction

�yroid nodules (TN) are lumps in the thyroid gland that
move up and down with the thyroid gland with swallowing
movements and are a common clinical condition that can be
caused by a variety of causes [1]. �ere are also a variety of
disease types that may occur in clinical TN, for example,
thyroid degeneration, in¬ammation, autoimmunity, and

new organisms can all appear in the form of nodules [2, 3]. It
can be single or multiple. Multiple nodules have a higher
incidence than individual nodules, but single nodules ac-
count for a greater proportion of thyroid cancer [4]. Fur-
thermore, TN are common in iodine-de�cient areas, in
women, and patients receiving neck irradiation [5]. High-
de�nition thyroid ultrasonography (US) is the most sensitive
method for evaluating TN [6]. It can determine the nature of
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TN, such as the location, morphology, size, number, nodule
marginal state, internal structure, echo form, blood flow
status, and cervical lymph node conditions. However, the
diagnostic performance of the US depends heavily on the
clinical experience of radiologists, and secondly, the data
generated by US examination is large and complex, the
workload of manual analysis is huge, and it is susceptible to
environmental, instrumental, and human subjective factors
[7–10].

Artificial intelligence (AI) is the science of applying
intelligent machines and systems to mimic the ability of
human intelligent activity, and image recognition using AI
methods is one of the most developed branches of AI. Many
AI-assisted diagnostic techniques have been widely used for
the differential diagnosis of TN. With the advent of various
TI-RADS, the goal of applying AI to TN reflects the goal of
TI-RADS: to improve reporting consistency and enhance
diagnostic performance [11]. Commonly used AI-aided
diagnostic techniques include computer-aided diagnostic
systems (CAD), machine learning (ML), deep learning (DL),
and so on [12]. AI processes a variety of holographic in-
formation in parallel to easily identify and simulate complex
nonlinear relationships in images [13, 14]. In addition, AI
can extract and quantify critical image information, trans-
forming image diagnostics from subjective qualitative tasks
into objective quantitative analysis. Based on this, the
combination of AI and medical big data has led to a new
diagnostic method, namely, CAD technology. On the one
hand, the application of objective and stable, easy to operate,
high accuracy CAD software helps to speed up the diagnosis
and treatment process of US doctors and shorten the waiting
time; on the other hand, it improves the accuracy and
consistency of TI-RADS classification and avoids excessive
fine-needle aspiration (FNA) caused by subjective factors
and diagnostic techniques. Since the initial reporting of the
diagnostic performance of the CAD system for thyroid le-
sions [15], several studies have shown that CAD methods
have improved the diagnostic performance of thyroid US
[16, 17].

In addition, there have been many studies through meta-
analysis CAD systems for the diagnosis of TN which had
high efficacy [18–20], but there was no meta-analysis for AI-
assisted diagnostic technology, this system not only includes
studies containing CAD systems but also includes some ML
and DL AI models for systematic review and meta-analysis,
aiming to evaluate the accuracy of AI-assisted diagnostic
techniques in diagnosing malignant TN.

2. Methods

2.1. Search Strategy and Selection Criteria. PubMed,
Cochrane Library, Embase, Web of Science, China Biology
Medicine (CBM), and China National Knowledge Infra-
structure (CNKI) databases were searched until April 27,
2022. A study evaluated the performance of AI-assisted
diagnostic techniques in distinguishing malignant from
benign TN on US. 'ere was no limit to the kinds of lan-
guages published. 'e following thematic terms were used:
“ultrasonography,” “diagnostic ultrasound,” and

“ultrasound imaging;” “thyroid nodules,” “thyroid gland,”
and “thyroid cancer;” “artificial intelligence,” “deep learn-
ing,” “computer-assisted,” “machine learning,” and “neural
network.”

'e inclusion criteria were as follows: (1) patients with
TN were diagnosed by high-definition thyroid US; (2) FNA
or surgical biopsy as the “gold standard” for diagnosing
malignant TN; (3) sensitivity and specificity should be
provided. 'ese studies were excluded: (1) the article types
were reviewed, including animal experiments and meta-
analysis; (2) the full text was not obtained; (3) the data
provided were incomplete.

When multiple algorithms are involved, only the one
with the highest accuracy or the largest area under the curve
(AUC) was selected for analysis. When evaluating the
performance of AI-assisted diagnostics through multiple
external validation groups, only the largest cohort was se-
lected for analysis.

2.2. Data Extraction and Quality Assessment. 'e two re-
searchers (Yu Xue and Ying Zhou) independently com-
pleted the selection process and resolved their differences
through discussion. Two other researchers (Tingrui Wang
and Huijuan Chen) independently extracted detailed data
from the identified literature and cross-examined them to
ensure that the information collected was accurate. Any
disputes in the extraction or evaluation of the data were
resolved through panel discussion or arbitration by the
head of the study. 'e specific information extracted from
each study included the following: first author, study
country, publication year, study design, study methodol-
ogy, number of cases, number of US images, age, sex,
nodule diameter, sensitivity, and specificity. 'e method-
ological quality of each study was assessed using the quality
assessment of diagnostics accuracy studies-2 (QUADAS-2)
tool [21].

2.3. Statistical Analysis. Statistical analysis was performed
using Review Manager 5.3 and STATA 15.0 software. By
constructing the hierarchically summarized ROC (SROC)
curve, the diagnostic efficacy was evaluated by pooled
sensitivity, specificity, diagnostic odds ratio (DOR), and
AUC of 95% CI. 'e DOR reflects the degree to which the
results of a diagnostic test are linked to the disease.When the
DOR value >1, the larger the value, the better the dis-
crimination effect of the diagnostic test; when the value <1,
normal people are more likely to be judged positively by the
diagnostic test than the patient; when the value� 1, it means
that the diagnostic test cannot distinguish between normal
people and patients.

Publication bias was assessed using Deek’s funnel chart
asymmetry test. 'e Spearman correlation coefficient was
used to evaluate threshold effects between studies. Het-
erogeneity assessment was performed by Cochran’s Q-test
and the I-square (I2) statistic. When the I2≥ 50%, the p value
of the Cochran Q test was less than 0.1, the results showed
that there was heterogeneity in the results, meta-regression
was used to find the source of heterogeneity, and subgroup
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analysis was performed on the variables that produced
heterogeneity. A p-value <0.05 was considered statistically
significant.

3. Results

3.1. Literature Search and Study Characteristics. After a
comprehensive computer search and extensive cross-
checking of reference lists, a total of 162 records were ob-
tained. 27 studies were excluded for repetitive reasons. 21
reviews were removed. After a comprehensive review of the
remaining 114 studies, a total of 25 studies that met the
selection criteria were eventually included in the meta-
analysis. 'is meta-analysis was planned and performed
following the Preferred Reporting Items for Systematic
Reviews and Meta-Analysis Guideline (Figure 1).

Of the 25 included studies, 7 were prospective (28%) and
18 retrospective studies (72%); 12 were conducted in CAD
(48%), 13 were conducted in DL or ML (52%); 13 studies
were from China (52%), 8 studies from Korea (32%),
Australia (4%), Poland (4%), Italy (4%) and the United States
(4%) each had 1 study. In addition, the average age of
participants in 19 studies were <50 years (76%), and the
average age of participants in 6 studies were ≥50 years (24%).
A total of 17 429 US images of TN were included (Table1).

3.2. Study Quality Assessment. 'e evaluation results for
QUADAS-2 indicated that the overall quality of the studies
included in the analysis ranged from medium to high
(Figures 2 and 3). 'e quality of the included studies was
considered satisfactory.

3.3. Diagnostic Accuracy and Heterogeneity Evaluation.
Of the 25 studies included in the meta-analysis, the results of
the diagnostic performance of AI-assisted diagnostic tech-
niques on TN showed that pooled sensitivity, specificity,
positive likelihood ratio (PLR), negative likelihood ratio
(NLR) and DOR were 0.88 (95% CI: 0.85–0.90), 0.81 (95%
CI: 0.74–0.86), 4.5 (95% CI: 3.4–6.1), 0.15 (95% CI:
0.12–0.19) and 30 (95% CI: (19–46)) (Table 2). 'e SROC
curve showed that the AUC was 0.92 (95% CI: (0.89–0.94))
(Figure 4). Although these results indicated that AI-assisted
diagnostic techniques had good diagnostic efficacy for TN,
there was a high heterogeneity when analyzing the pooled
sensitivity and specificity. 'e pooled sensitivity and specific
heterogeneity of AI-assisted diagnostic techniques in meta-
analysis were I2 � 88.75% (95% CI: 85.26%–92.24%) and
I2 � 97.41% (95% CI: 96.89%–97.92%) (Figure 5). To explore
the sources of heterogeneity, we analyzed the effect of
threshold effects.

'e effect of threshold effects on heterogeneity was
assessed by calculating the Spearman correlation coefficient.
'e result showed that the Spearman correlation coefficient
was 0.17 (p � 0.418), and indicated that there was no
threshold effect. After excluding the effects of threshold effects
on heterogeneity, based on the completeness of the collected
data, we performed analyses of 4 subgroups (study design,
methodology, sample size and mean age) to determine the

source of heterogeneity. 'e study design was divided into
prospective and retrospective studies, with research methods
divided into CAD and DL (including ML), sample sizes were
divided into ≥500 and <500, and the average age was divided
into ≥50 years and <50 years. Meta-regression analysis of 4
subgroups found that the effects of 4 subgroups on sensitivity
heterogeneity were statistically significant, the effect of study
methods and sample size on specific heterogeneity was not
statistically significant (Figure 6), and the results of the
combined model showed that only the mean age subgroup
had statistical significance for sensitivity and specificity
(Table 3). AI-assisted diagnostic systems had high sensitivity
and specificity for people aged <50 years (0.89 (95% CI:
0.87–0.92) vs. 0.80 (95% CI: 0.73–0.88)), (0.83 (95% CI:
0.77–0.88) vs. 0.73 (95% CI: 0.60–0.87)).

Considering the large number of included studies, there
may be some other factors that have an impact on the
combined results, so we conducted a further sensitivity
analysis (Figure 7). 'e goodness of fit (a) and bivariate
normality (b) show the degree of fitting of the regression line
to the observed value. As shown, the observed value was
distributed around the reference line. 'e observed values
were stable. 'e influence analysis (c) indicated that 3
studies may overestimate the pooled results. 'e outlier
detection test indicated (d) that 3 studies were out of the
detection range. After excluding these studies, the pooled
specificity did not change. 'e pooled sensitivity changed
from 0.88 (95% CI: 0.85–0.90) to 0.85 (95% CI: 0.83–0.88)
without significant changes. 'e sensitivity analysis results
showed that the meta-analysis had good robustness.

Assessment of the clinical applicability of AI-assisted
diagnostic techniques for diagnosis on TN founded that
when the pretest probability was set at 20%, the post-test
probability for a positive test result was 53%. When the
NLR was set at 0.16, the post-test probability reduced to 4%
for a negative test result (Figure 8). 'e diagnostic per-
formance was visualized by the likelihood ratio scattergram
and PLR> 10 and NLR< 0.1 represented a high diagnostic
accuracy (Figure 9). 'e Deek’s funnel asymmetry test
showed p � 0.18 with no publication bias (Figure 10). All of
these results suggested that the degree of diagnostic ac-
curacy of AI-assisted diagnostic techniques for detecting
malignant TN was relatively high. Figure 1 showed the flow
chart of our literature search and screening based on the
PRISMA statement of systematic reviews. Figures 2 and 3
showed the methodological quality assessment of all the
included studies. Figure 2 shows the overall quality as-
sessment, and Figure 3 showed the quality assessment of
each study. Figure 4 shows the summary receiver operating
characteristic (SROC) curves of AI-aided diagnostic
techniques for the diagnosis of TN. Figure 5 showed the
forest plot of the comprehensive sensitivity and specificity
of AI-aided diagnostic techniques for diagnosing TN.
Figure 6 showed the results of the meta-regression analysis
for different subgroups. Figures 8 and 9 showed the results
of evaluation of clinical applicability of AI-assisted diag-
nostic techniques in TN diagnosis. Figure 10 showed the
assessment of publication bias for all studies included in the
analysis
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Table 1: Basic characteristics of included studies.

References Year Country Design Methodology Sample size Mean age B M Sen Spec
Gild et al. [22] 2022 Australia R ML 91 60.10 55 36 0.82 0.59
Zhu et al. [23] 2021 China R DL 600 55.20 300 300 0.82 0.81
Han et al. [24] 2021 Korea R CAD 454 49.50 287 167 0.95 0.30
Zhong Liu [25] 2021 China R DL 175 44.34 67 96 0.89 0.91
Fengying Ye [26] 2021 China P CAD 565 54.10 270 295 0.76 0.60
Chong-Ke Zhao [27] 2021 China R ML 223 48.85 136 80 0.89 0.77
G.R. Kim [28] 2021 Korea P DL 760 51.00 584 176 0.82 0.86
Xi Wei [29] 2020 China R DL 7 216 45.29 2712 4504 0.89 0.86
Yichun Zhang [30] 2020 China R CAD 365 46.40 179 186 0.72 0.86
Marcin Barczyński [31] 2020 Poland P CAD 50 47.50 40 10 0.90 0.80
Heng Ye [32] 2020 China R DL 1 601 45.16 861 740 0.87 0.86
Daniele Fresilli [33] 2020 Italy R CAD 107 55.00 80 27 0.70 0.88
Hui Zhou [34] 2020 China R DL 1097 47.30 669 428 0.90 0.83
Chao Sun [35] 2020 China R DL 550 43.00 128 422 0.96 0.83
Lei Wang [36] 2019 China R DL 351 45.76 109 242 0.91 0.90
Hye Lin Kim [37] 2019 Korea R CAD 218 48.00 132 86 0.80 0.83
Xia et al. [38] 2019 China P CAD 180 47.20 85 95 0.91 0.41
Jeong et al. [39] 2019 Korea P CAD 100 46.00 56 44 0.89 0.84
Zhang et al. [40] 2019 China R ML 1 238 45.25 788 450 0.97 0.95
Park et al. [41] 2019 Korea R DL 286 47.18 130 156 0.91 0.80
Ko et al. [42] 2019 Korea R DL 439 46.70 143 296 0.84 0.90
Buda et al. [43] 2019 USA R DL 99 52.20 84 15 0.87 0.52
Yoo et al. [44] 2018 Korea P CAD 117 43.20 67 50 0.80 0.96

Records identified through
database searching (n = 257)

Additional records identified
through other sources (n = 0)

Se
ar

ch
in

g

Records a�er duplicates removed
(n = 224)

Records screened
(n = 131)

Pr
im

ar
y 

sc
re

en
in

g

Abstracts browsed a�er meeting the
included literatures (n = 61)

In
clu

sio
n

C
om

pr
eh

en
siv

e

Studies included in quantitative 
synthesis (meta-analysis) (n = 5)

Exclusion of studies with inconsistent
studies or inconsistent interventions/

controls (n = 70) 

Exclusion of non-RCTs or literatures
with inconsistent study methods (n = 8)

Exclusion of literature with inconsistent
outcome indicators (n = 48) 

Exclusion of studies with inconsistent
studies or inconsistent interventions/

controls (n = 70) 

Literature incorporated a�er full-text
browsing (n = 53)

Figure 1: PRISMA diagram for the systematic review.
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Figure 2: Methodological quality of the included studies: the summary of risk of bias and applicability concerns for the included studies.

Table 1: Continued.

References Year Country Design Methodology Sample size Mean age B M Sen Spec
Choi et al. [45] 2017 Korea P CAD 102 45.30 59 43 0.91 0.75
Zhu et al. [46] 2013 China R DL 464 47.70 187 277 0.85 0.79
P, prospective; R, retrospective; B, benign; M, malignant; Sen, sensitivity; Spec, specificity.
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Figure 3: Methodological quality of the included studies: the quality of individual studies.
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4. Discussion

As the main method for diagnosing TN, the US has the
characteristics of easy operation, affordable price and no
radioactivity hazards [47]. 'e US also is an important means
of helping radiologists assist in diagnosing TN [48]. At the
same time, the accuracy and reliability of the diagnosis de-
pend on the quality of the image and the expertise of the
radiologist, so there is a certain instability and inaccuracy in
the diagnosis based on the radiologist [49]. In addition,
different types of TN have different features in the US images,
further affecting the accuracy of the radiologist’s diagnosis
[50]. FNA and pathological biopsy are currently the “gold
standard” for identifying malignant TN, but compared to the
US, FNA and pathological biopsies are not only expensive but
also have some damage to the patient itself [51]. 'e appli-
cation of AI in imaging provides good help for the diagnosis
of malignant TN based on the US, and many AI-assisted
diagnostic techniques have been used to diagnose TN, but the
accuracy of these techniques varies greatly [52–54].

AI is a technology used to extract and quantify key image
information by simulating complex human functions and
can extract and quantify key image information, whereby
image diagnosis converts from a subjective qualitative task to
objective quantitative analysis [51]. 'is more detailed and
precise information is conducive to special risk stratification
and propels tailored management to transit from the surface
(population-based) to a point (individual-based) [14, 55].
Interestingly, the AI model appears to be a promising tool to
facilitate a better knowledge of TN via quantitative analysis
of typical US features and introduction of texture features. In
this meta-analysis, we were the first to summarize studies on
the diagnostic accuracy of the AI-assisted diagnostic sys-
terms based on US images for TN, and 25 studies from 6
different countries were included in the pooled analysis. In
all the studies included in the analysis, it was suggested that
the AI-assisted diagnostic systems had a good diagnostic
efficiency for TN. 'e results of pooled analysis showed that
the pooled sensitivity, specificity, PLR, NLR and DOR were
0.88 (95% CI: 0.85–0.90), 0.81 (95% CI: 0.74–0.86) and 4.5

Table 2: Summary performance estimates.

Parameter Estimates 95% CI
Sensitivity 0.88 0.85–0.90
Specificity 0.81 0.74–0.86
PLR 4.5 3.4–6.1
NLR 0.15 0.12–0.19
DOR 30 19–46
PLR, positive likelihood ratio; NLR, negative likelihood ratio; DOR, diagnostic odds ratio.
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(95% CI: 3.4–6.1), 0.15 (95% CI: 0.12–0.19) and 30 (95% CI:
19–46), and the AUC of SROC curve was 0.92 (95% CI:
0.89–0.94). 'e heterogeneity of sensitivity and specificity
between studies was high. First, considering the effect of the
threshold effect onmeta-analysis heterogeneity in diagnostic
experiments, the effect of the threshold effect was analyzed
using the Spearman correlation coefficient, and the result
showed that there was no threshold effect; then, due to the
completeness of the included study data, the meta-regres-
sion analysis of 4 different subgroups was performed in this
study and the effect of whether the mean age ≥50 years on
heterogeneity was statistically significant. In addition, this
study also found that AI-assisted diagnostic technology was
less effective in diagnosing the ≥50-year-old age group than
the <50-year-old age group. Advanced age is a risk factor for
the development of TN [56–58]. For TN with complex
characteristics, not only the diagnostic effect of AI-assisted
diagnosis technology was poor, but also the diagnostic level
of radiologists was relatively low.

Although there is evidence that CAD systems and some
ML and DL models in AI-assisted diagnostic techniques can
improve the accuracy of malignant TN [59–63], the evidence
is limited and there has been no systematic evaluation.
Compared with the previous research, some ML, DL models
and CAD systems that assist diagnosis are uniformly clas-
sified into AI-assisted diagnostic technologies, and the di-
agnostic efficacy is meta-analyzed. 'is study found that AI-
assisted diagnostic techniques have high sensitivity and

specificity, which is consistent with the results of Zhao WJ
et al. to evaluate the diagnostic efficacy of CAD systems
[64, 65]. At the same time, this study also found that whether
this prospective study has a certain impact on the diagnostic
efficacy of AI-assisted diagnostic technology, and retro-
spective studies have better sensitivity and specificity than
prospective studies. In addition, Xu et al. evaluated caddy
systems to meta-analyze the diagnosis of TN and found that
the CAD system was more effective in diagnosis, but ex-
perienced radiologists may still have advantages over CAD
systems during real-time diagnosis [66]. Combined with the
results of this study, AI-assisted diagnostic technology still
needs to be improved for prospective and real-time diag-
nosis of TN.

'is study also had some limitations. First, various AI
models were incorporated in this meta-analysis, which may
introduce statistical heterogeneity. Secondly, because some
basic features of TN, such as nodule diameter, echo form,
and internal structure, were not included, the influence of
these basic features of heterogeneous sources on diagnostic
efficacy cannot be further explored. Finally, different types of
TI-RADS, such as ATA-TIRADS, ACR-TIRADS, and
K-TIRADS, were included in this study, but some studies did
not indicate specific TI-RADS, no further analysis of dif-
ferent types of TI-RADS was carried out.

In summary, this meta-analysis investigated the diag-
nostic efficacy of AI-assisted diagnostic technology based on
the US images on TN, including different ML, DL models
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Figure 5: Forest plot of the comprehensive sensitivity and specificity of AI-aided diagnostic techniques for diagnosing TN.
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Figure 6: Meta-regression analysis of different study designs, methodologies, sample sizes and mean ages.

Table 3: Meta-regression for heterogeneity within studies.

Parameter Number of
studies

Sensitivity estimates
(95% CI) p value Specificity estimates

(95% CI) p value I 2 in joint model estimates
(95% CI) p value

Design
P 7 0.85 (0.79–0.92) <0.001 0.78 (0.66–0.90) 0.02 0% (0%–100%) 0.55
R 18 0.88 (0.85–0.91) 0.82 (0.75–0.88)

Methodology
DL 15 0.89 (0.87–0.92) <0.001 0.84 (0.77–0.90) 0.14 60% (11%–100%) 0.08
CAD 10 0.84 (0.79–0.90) 0.75 (0.65–0.86)

Sample size
≥500 8 0.89 (0.85–0.93) <0.001 0.84 (0.77–0.92) 0.09 0% (0%–100%) 0.38
<500 17 0.87 (0.83–0.90) 0.78 (0.71–0.86)

Mean age
≥50 6 0.80 (0.73–0.88) <0.001 0.73 (0.60–0.87) 0.01 75% (46%–100%) 0.02
<50 19 0.89 (0.87–0.92) 0.83 (0.77–0.88)

P, prospective; R, retrospective; DL, deep learning and machine learning; CAD, computer-aided diagnostic systems.
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Figure 8: Evaluation of clinical applicability of AI-assisted diagnostic techniques in TN diagnosis: Fagan nomogram.
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and CAD systems, and it had good diagnostic efficacy. For
the diagnosis of <50 year olds, AI-assisted diagnostic
technology was more effective in diagnosis. Given the
limitations of this analysis, further research is needed to
explore better AI-assisted diagnostic techniques.
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