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Phenotypic plasticity was once seen primarily as a constraint on adaptive evolution or merely a nuisance by geneticists. However,
some biologists promote plasticity as a source of novelty and a factor in evolution on par with mutation, drift, gene flow, and
selection. These claims are controversial and largely untested, but progress has been made on more modest questions about effects
of plasticity on local adaptation (the first component of ecological speciation). Adaptive phenotypic plasticity can be a buffer
against divergent selection. It can also facilitate colonization of new niches and rapid divergent evolution. The influence of non-
adaptive plasticity has been underappreciated. Non-adaptive plasticity, too can interact with selection to promote or inhibit genetic
differentiation. Finally, phenotypic plasticity of reproductive characters might directly influence evolution of reproductive isolation
(the second component of ecological speciation). Plasticity can cause assortative mating, but its influence on gene flow ultimately
depends on maintenance of environmental similarity between parents and offspring. Examples of plasticity influencing mating and
habitat choice suggest that this, too, might be an underappreciated factor in speciation. Plasticity is an important consideration
for studies of speciation in nature, and this topic promises fertile ground for integrating developmental biology with ecology and

evolution.

1. Introduction

Phenotypic plasticity has often been seen primarily as an
alternative to genetic divergence and a feature making popu-
lations less responsive to natural selection [1-3]. For exam-
ple, those studying adaptation and speciation have often used
phrases like “merely plastic” to contrast environmentally
induced variation against geographic or species differences
with strong genetic bases [4-8]. However, others suggested
that phenotypically plastic traits can promote adaptive evo-
lution and the origin of species [9-16]. The general issue of
plasticity and adaptation has been reviewed extensively in the
last decade (e.g., [15, 17-26]). Adaptive plasticity’s impact on
speciation was recently reviewed by Pfennig et al. [27], and I
do not attempt to duplicate their efforts. Instead I make a few
points that have not been emphasized in the recent literature.
In particular, nonadaptive plasticity and environmentally
induced barriers to gene flow deserve greater attention.
After making explicit my working definitions of key
terms, I argue that the “developmental plasticity hypothesis

of speciation” [13—15] is a special case of ecological specia-
tion, and I review the subject by breaking down the effects
of plasticity on the two components of ecological speciation:
adaptive divergence and the evolution of reproductive isola-
tion [28]. I close with a few suggestions for future work.

By any definition, speciation requires genetic divergence.
Therefore, integration of ecological developmental biology
with the well-developed body of fact and theory on the
genetics of speciation [29-31] will be more productive than
attempting to replace this population genetic foundation.
Recent reviews and models support this perspective [27, 32—
37].

2. Definitions

Understanding the relationship between environmental
induction and speciation requires a set of consistent def-
initions. Terms like “environment,” “speciation,” “plastic-

ity and “natural selection” are sometimes assumed by



different workers to have different definitions, and this can
affect communication [38]. The definitions that follow are
intended to clarify what I mean by certain words and phrases
within this paper; they are not intended to challenge or
replace alternative definitions. I believe I have followed recent
convention in all cases [39, 40].

Adaptation. Genetic change in response to natural selection
and resulting in organisms with improved performance with
respect to some function or feature of the environment.

Countergradient Variation. Pattern of geographic variation
in which genetic differences between populations affect
their phenotypes in the opposite way from environmental
differences between populations. For example, if the mean
phenotype of population i is given by the sum of genetic
and environmental effects P; = G; + E;, and the effect of
environment 2 tends to increase the phenotypic value relative
to environment 1 (E; > E; ), countergradient variation would
exist if G, < G,. Without genetic differentiation the expected
difference in phenotype would be P, — P, = E, — Ej, but
countergradient variation reduces that difference and might
even make P, < P;. More formally, countergradient variation
is negative covariance between genetic and environmental
effects on phenotype [41].

Environment. Here, I consider environment to include any-
thing external to a given individual organism. Environment
includes other organisms (siblings, mates, competitors,
predators, prey, etc.) in addition to the physical and chemical
surroundings. Given this definition, different individuals in
the same place might experience different environments.
Neither ecological speciation nor environmentally induced
variation require environmental differences to be associated
with geography. To put it another way, the effects of environ-
ment on fitness and on development might differ among co-
occurring individuals for a variety of reasons, often involving
feedbacks between phenotype and environment [42]. For
example, small tadpoles in a pond might experience food
shortages or attacks from predators while large tadpoles in
the same pond have access to more food and experience less
predation (or a different set of predators).

Environmental Induction. Any effect of environment on trait
expression is environmental induction. Environmental
induction usually refers to an event (developmental outcome
or process) caused by an environmental condition, whereas
plasticity (see below) refers to the propensity of an organism
or trait to respond to environmental change.

Genetic Assimilation. Evolutionary reduction in the degree
of plasticity such that a character state or trait value that was
once conditionally expressed depending on the environment
becomes expressed constitutively (unconditionally, regard-
less of environment).

Natural Selection. Natural selection refers to any nonrandom
difference between entities in survival or reproduction.
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To put it another way, natural selection exists whenever
phenotypic variation causes covariance between phenotype
and fitness [43, 44]. Fitness is metaphorical shorthand for
the ability to survive and reproduce. It is important to
emphasize that natural selection, under this definition, can
exist without genetic variation and can recur over many
generations without causing evolution [15, 17].

Plasticity. The ability of a single genotype to express different
phenotypic values or states under different environmental
conditions, that is, in response to environmental induction.
Plasticity can include developmental plasticity, physiological
acclimation, or behavioral flexibility. Plasticity might be
adaptive or not. Adaptive plasticity is a tendency for a
genotype to express a phenotype that enhances its ability
to survive and reproduce in each environment. Nonadaptive
plasticity includes any response to environmental induc-
tion that does not enhance fitness (including maladaptive
responses). Noisy plasticity is effectively unpredictable phe-
notypic variation owing, for example, to developmental
instability or random perturbations within environments
[45]. Phenotypic plasticity and environmental induction are
twin concepts; plasticity emphasizes an organismal property
(the propensity to express different phenotypes in different
environments), and environmental induction emphasizes
the action of the environment. Phenotypic plasticity might
exist even in a homogeneous population in a homogeneous
environment. Environmental induction happens when envi-
ronmental heterogeneity causes phenotypic heterogeneity.

Polyphenism. Expression of more than one discrete pheno-
typic state (alternative phenotypes) by a single genotype (a
special case of phenotypic plasticity).

Reaction Norm [or Norm of Reaction]. The set of expected
phenotypic states or values expressed by a genotype over a
range of environments.

Speciation. Speciation is any process in which an ancestral
species gives rise to two or more distinct descendant species.
There is some disagreement about whether “speciation”
should be synonymous with the evolution of reproductive
isolation [30, 46, 47] or broadened to include anagenesis or
phyletic speciation [48-50]. In any case, speciation is usually
a gradual, continuous process of genetic divergence resulting
in a discontinuous pattern of variation (species taxa). Ecolog-
ical speciation is the evolution of reproductive isolation as a
consequence of divergent ecological adaptation [28, 51, 52].
Without reproductive isolation, this is local adaptation. This
definition is based on the biological species concept [53],
which emphasizes genetically based reproductive isolation as
the primary explanation for the existence of distinct kinds
of organisms (i.e., those recognized as species taxa). I am
not making a recommendation about taxonomic practice.
Rather, from the perspective of evolutionary biology, the
evolution of reproductive isolation is what distinguishes spe-
ciation from more general phenomena of genetic divergence
(30, 40].
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3. The Developmental Plasticity
Hypothesis of Speciation

Matsuda [54] hypothesized that phenotypic plasticity was
a crucial first step in the adaptive evolution of distinct,
ecologically specialized lineages. As an example, Matsuda
[54] suggested that major differences in life history, such as
presence or absence of metamorphosis prior to reproduc-
tion in salamanders (Figure 1), likely began as nongenetic
polyphenisms and evolved via genetic assimilation in habi-
tat specialists. Widespread generalists such as Ambystoma
tigrinum and A. velasci show conditional expression of
metamorphosis from aquatic larva to terrestrial adult in
small temporary ponds versus a fully aquatic life cycle with
no metamorphosis in more permanent water bodies. This
polyphenism likely represents the ancestral state of the tiger
salamander clade [55]. In several isolated lakes in Mexico,
permanently aquatic endemics such as A. mexicanum and
A. dumerilii no longer express metamorphosis in nature
owing to genetic changes in the thyroid hormone system
[54-56].

Along the same lines, West-Eberhard [13-15] proposed
a generalized “developmental plasticity hypothesis of speci-
ation” in which the evolution of ecologically distinct forms
in different environments depends on the initial appearance
of those distinct forms as alternative phenotypes in a phe-
notypically plastic ancestor. She argued that when adaptive
phenotypic plasticity results in strong associations between
phenotypes and environments, rapid speciation could occur
in three steps. First, alternative phenotypes become fixed in
different populations owing to environmental differences,
but with little or no genetic change. Then, genetic assimila-
tion and/or other adaptive modifications of each phenotype
occur owing to divergent selection. Finally, reproductive
isolation evolves as a byproduct of adaptive divergence or
via reinforcement if there is contact between the diverging
populations.

Clearly, West-Eberhard’s [13—15] hypothesis is a kind of
ecological speciation in which developmental plasticity pro-
motes genetic divergence in response to ecologically based
selection. In the absence of plasticity, divergence might be
prevented entirely if the single expressed phenotype cannot
establish a viable population in the alternative environment
[22, 27, 36] or might be much slower if phenotypic diver-
gence must await new mutations and their gradual fixation
[13-15].

West-Eberhard’s developmental plasticity hypothesis of
speciation is focused on adaptive phenotypic plasticity and
its influence on one component of ecological speciation:
the evolutionary response to divergent selection. How-
ever, nonadaptive plasticity might be equally if not more
influential in promoting an evolutionary response [18].
Further, the other component of ecological speciation, the
evolution of reproductive isolation [28, 62, 63], also can
be directly influenced by phenotypic plasticity. In the next
sections, I examine how plasticity can interact with these two
components of ecological speciation.
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FiGure 1: The tiger salamander radiation exemplifies the develop-
mental plasticity hypothesis of ecological speciation [13-15, 54].
(a) Environmentally induced alternative phenotypes of the tiger
salamander (Ambystoma tigrinum) include terrestrial metamorphs
and aquatic paedomorphs. (b) The California tiger salamander
(A. californiense) is an obligate metamorph derived from a devel-
opmentally plastic common ancestor with A. tigrinum [55]. (c)
The Mexican axolotl (A. mexicanum) is one of several obligate
paedomorphs, independently derived from plastic ancestors within
the last few million years [55, 57, 58].

4. Phenotypic Plasticity and
Ecological Divergence

Phenotypic plasticity can slow or enhance genetic divergence.
How plasticity affects divergence depends to some extent on
whether plasticity is adaptive or not.

4.1. Adaptive Plasticity. Adaptive plasticity can dampen or
eliminate divergent selection. If any individual can express
a nearly optimal phenotype in whatever environment it
finds itself, then there is little or no variation in the ability
to survive and reproduce, hence little or no divergent
selection [64]. This has long been an intuitive reason to
regard plasticity as a constraint on genetic evolution and
to discount the evolutionary potential of environmentally
induced variation [1]. Models have supported the prediction
that adaptive plasticity can effectively take the place of genetic
divergence between environments [65-67]. And a large
number of empirical studies are consistent with increased
plasticity in species with high dispersal rates [68]. However,
the extent to which plasticity prevents or slows genetic
divergence depends on several factors explored by Thibert-
Plante and Hendry [36] in individual-based simulations.
First, is development sufficiently flexible that an individ-
ual can express traits near either environmental optimum?
Given alternative environments or niches with divergent
fitness functions, the only way environmental induction can
completely eliminate divergent selection is to cause the mean
expressed trait of a single gene pool to match the optimum
in each environment [22] (Figure 2). If adaptive plasticity is
less than perfect, divergent selection might still exist. Then
the question is whether plasticity quantitatively dampens
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Figure 2: Effects of adaptive plasticity on colonization and
adaptation to a new niche. A population well adapted to its niche
is illustrated in (a) by coincidence of the mean trait value (black
line) with the peak of the fitness function (dashed line). If the
fitness function is dramatically different in a new environment, a
population with trait values favored in the old environment (b)
might have such low fitness as to have little chance of survival.
If environmental induction produces a shift in trait values toward
higher fitness phenotypes (c), the population might persist but still
experience selection. If phenotypic plasticity results in a perfect
match between mean trait value and fitness optimum (d), then there
is no effect of selection on the population mean.

the fitness tradeoff enough to substantially slow or prevent
divergent evolution [36].

Second, how much dispersal occurs between environ-
ments? In the absence of gene flow, almost any amount
of divergent selection will eventually cause evolutionary
divergence. When there is gene flow between populations,
the effect of divergent selection depends on the relative
magnitudes of selection and gene flow [1, 69-73], in addition
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to demographic factors [74-76]. Therefore the impact of
adaptive plasticity on the potential for genetic divergence
depends on how it affects the tension between divergent
selection and gene flow [36, 77, 78]. Moreover, plasticity itself
is adaptive only to the extent that individuals have a reason-
able chance of experiencing alternative environments. If the
populations expressing alternative phenotypes are isolated
in their respective environments, the ability to express the
alternative phenotype is likely to be lost owing to selection
for efficient development or simply because loss of function
mutations are likely to accumulate neutrally in genes that
are never expressed [79]. This process of a conditionally
expressed trait becoming constitutively expressed is genetic
assimilation [11, 16, 80].

Third, are the systems sensing the environment and
regulating trait expression sufficiently accurate that the
best phenotype is reliably expressed in each environmental
context? There are two components to this, first is simply the
question of how well developmental or behavioral systems
are able to sense and react to environmental stimuli [81].
Again, if adaptive plasticity is less than perfect, divergent
selection can exist. Second is the question of whether the tim-
ing of key developmental and life history events is such that
future environmental conditions can be correctly predicted
[36]. For example, if individuals disperse and settle before
completing development (e.g., seeds or planktonic larvae),
they might be able to accurately tune their adult phenotypes
to the environment in which they settle. However, if a
substantial number of individuals disperse after completing
development (e.g., animals with extended parental care
(82]), then developmental plasticity would do little to help
them accommodate new environmental challenges because
their phenotypes are adjusted to their natal habitat rather
than their new habitat. In this case, there might be strong
selection against immigrants before any genetic differences
arise between populations [36].

Finally, is there any cost to plasticity? Several modeling
studies have confirmed the idea that plasticity is less likely
to evolve if there are fitness costs to maintaining multiple
developmental pathways or changing expression during
development [36]. Empirical tests for costs of plasticity itself
are rare [83], but it is conceivable that some pathways might
have inherent tradeoffs between efficiency and plasticity
(84, 85], and adaptive plasticity probably always comes with
some potential for error; that is, the best developmental
“decision” might not be made every time [64, 81]. When
plasticity is costly enough to outweigh its fitness benefits,
possible alternative outcomes are the evolution of a single
“compromise” or generalist phenotype, evolution of a simple
genetic “switch” enabling coexistence of alternative specialist
phenotypes [14, 15, 86], or divergent evolution of specialist
populations (local adaptation) [45, 67, 87]. In general we
know very little about the prevalence or influence of costs
of plasticity in nature.

The potential for adaptive plasticity to evolve as a re-
sponse to ecological tradeoffs instead of genetic divergence is
well supported. The dampening effect of plasticity is reduced
but not eliminated by reduction in the extent and precision
of plasticity, reduction in gene flow between environments,
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FiGUre 3: Adaptive and nonadaptive reaction norms. These hypothetical examples suppose that the optimum expression level for some
gene increases with temperature and that increased temperature induces increased expression of the gene. (a) Plasticity is adaptive when
it keeps expression closer to the optimum than it would be if expression, were constant across temperatures. (b) Plasticity is nonadaptive
(maladaptive, in this case) when induced changes in a new environment take expression further from the optimum than it would be if it
had remained constant. (b) is an example of countergradient variation, in which genetic differences cause cool-adapted genotypes to have
higher gene expression than warm-adapted genotypes at the same temperature. The result is overexpression by cool-adapted genotypes

transplanted to warm environments.

and increased costs of plasticity [36]. However, plasticity can
actually promote genetic divergence under some conditions.
In particular, when development is completed after dispersal
(e.g., sessile organisms), adaptive plasticity might make
successful colonization of new environments more likely
(Figure 2). In West-Eberhard’s [14, 15] conceptual model
and Thibert-Plante and Hendry’s [36] mathematical model,
individuals are able to colonize a radically new environment
by adjusting developmentally, behaviorally, and/or physi-
ologically. This adaptive plasticity allows a population to
persist in the new environment, continually exposed to
divergent selection. If instead all individuals entering the new
environment die or leave, there is no divergent selection.
Thus, without adaptive plasticity, there might simply be
suitable and unsuitable environments, with little opportunity
for divergent evolution. Successful colonization of a new
environment can initiate divergent selection, not only on
the plastic trait, but possibly also on other traits, which
might then cause ecological speciation. This to some extent
reconciles the conflicting effects of plasticity. In other cir-
cumstances, when dispersal occurs after development (e.g.,
animals with extended parental care), individuals settling in
new environments are especially likely to express suboptimal
phenotypes, which might accentuate the effects of selection
and spatial separation once a new habitat has been colonized
[36]. This effect is similar to effects of nonadaptive plasticity
discussed below.

4.2. Nonadaptive Plasticity. The potential for adaptive plas-
ticity to promote colonization and adaptation to alter-
native environments has been promoted by advocates of

developmental evolutionary biology [14, 15, 17, 88] and
treated extensively in recent reviews and models [22, 27,
32, 36]. The effects of nonadaptive phenotypic plasticity
have received less attention. However, any environmental
effect on phenotypes can affect the strength and direction of
selection in addition to the genetic variances and covariances
of important traits [18, 22, 42]. Some kinds of nonadaptive
environmental induction might affect the probability of
ecological speciation. In particular, suboptimal develop-
ment or noisy plasticity [45] in stressful environments
could inhibit adaptation by decreasing the fitness of local
relative to immigrant individuals. However, it would also
increase the strength of selection and potentially result
in cryptic adaptive divergence (countergradient variation)
(18, 41].

Countergradient variation is negative covariance be-
tween genetic and environmental effects on phenotype [41].
Classic examples are poikilotherms such as fish and molluscs
[89], flies [90], or frogs [91] that grow more slowly in cold
climates, but cold-adapted populations have higher growth
rates than warm-adapted populations when raised at the
same temperature. The best explanation for this pattern is
that genetic differences have evolved to compensate for diver-
gent effects of environmental induction, resulting in popula-
tions that appear similar when measured each in their native
habitat but show maladaptive plasticity when transplanted
(Figure 3). Note that negative covariance between genetic
and environmental effects is not necessarily maladaptive, but
environmental effects will tend to be maladaptive if the opti-
mum phenotype is roughly constant across the environment
range.



When countergradient variation exists, we expect immi-
grants to have a fitness disadvantage owing to under- or
overexpression of an environmentally sensitive trait relative
to a local optimum (Figure 3). This might well promote evo-
lution of restricted or nonrandom dispersal; hence intrinsic
barriers to gene exchange as a result of divergent ecological
selection. However, countergradient variation will evolve
only if selection is stronger than gene flow and if reaction
norms are genetically constrained (otherwise, we might
expect adaptive evolution to flatten the reaction norm). At
least in the early stages of colonization of a challenging new
habitat, nonadaptive plasticity (such as stunted growth or
suboptimal metabolic rates) might make resident individuals
less viable and fecund than healthy immigrants from a
less stressful habitat [22]. This potential fitness asymmetry
could offset effects of adaptive genetic changes on the
relative fitness of immigrants and residents. That is, offspring
of immigrants might have lower fitness than offspring of
native genotypes with locally adaptive alleles. However,
offspring of immigrants might nevertheless outnumber
offspring of natives if immigrants come into the stressful
habitat with substantial viability and fertility advantages
from being raised in a higher quality habitat. Parental
care and physiological maternal effects could further extend
those environmentally induced advantages to the offspring.
The net effect could be a tendency for locally adapted
genotypes to be replaced (“swamped”) by immigrants owing
to a negative covariance between environmental and genetic
effects. This effect of nonadaptive plasticity is synergistic with
the potential for demographic swamping, a well-known con-
straint on local adaptation to novel habitats [74, 76, 87, 92].

For now, it appears that the impact of nonadaptive plas-
ticity on the probability of ecological speciation cannot be
predicted without additional detailed knowledge. Just as gene
flow can constrain or facilitate local adaptation [74, 76], and
adaptive plasticity can inhibit or promote adaptive genetic
divergence [22, 27, 36], nonadaptive plasticity might impede
genetic divergence by accentuating fitness advantages of
immigrants and/or promote divergence by increasing the
intensity of selection.

5. Phenotypic Plasticity and the Evolution
of Reproductive Isolation

Plasticity of a different sort might directly affect repro-
ductive compatibility between populations developing in
different environments. Environmental induction might
generate differences in preference, reproductive phenology,
or expression of secondary sexual characteristics. Coinci-
dence of environmentally induced reproductive barriers and
potentially divergent selection can be genetically equivalent
to a geographic barrier between divergent environments
[59, 93, 94]. A key element of the developmental plasticity
model of ecological speciation is the establishment of a
consistent relationship between the environment of parents
and that of their offspring. Similarity of parent and offspring
environments maintains shared environmental effects on
phenotype, consistency of selection, and reduces gene flow.
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FiGure 4: Effects of phenotypic plasticity of flowering time on
ecological speciation. The lines illustrate flowering periods for
plants on two soil types (dashed and solid) based on initial
conditions in the simulations of Gavrilets and Vose [59] for
ecological speciation based on the Howea palm tree study [60].
I illustrate the case where flowering time is affected by 8 loci,
and the environmental effect of soil type is either 0, 2, or 4
weeks difference. In the simulations [59], changing the number of
loci has confounding effects on the initial environmental variance
component and the fitness effects of mutations, so a single genetic
scenario is illustrated here for simplicity. I calculated the initial rate
of gene flow between soil types as m = 0.5 (% time overlap), based
on the assumption that any tree is equally likely to receive pollen
from any other currently flowering tree. %speciation is based on
the number of simulations ending in speciation, given in Table 2 of
Gavrilets and Vose [59].

Environmental similarity can be a byproduct of geographic
isolation or might be promoted by environmentally induced
variation in habitat choice, phenology, or other aspects
of mating behavior. Whether or not ecological speciation
ensues depends on whether genetic reproductive barriers
evolve and whether that evolution can be attributed to
divergent selection.

A seemingly commonplace example of environmentally
induced barriers to gene flow is flowering time in plants.
Flowering time is often accelerated or delayed when a given
genotype is grown on different substrates [34]. For example,
grasses and monkey flowers colonizing contaminated soils
around mines show environmentally induced shifts in flow-
ering [95, 96], and palm trees on Lord Howe Island show
soil-dependent flowering times [60]. These examples are also
widely recognized cases of ecological speciation. Gavrilets
and Vose [59] used simulations to explore the impact of
environmentally induced shifts in flowering time on the
probability of adaptive divergence and ecological speciation
and confirmed that this instantaneous barrier to gene flow
between habitats can markedly increase the probability and
rate of divergence (Figure 4).

A similar effect arises owing to behavioural imprinting
[97, 98]. Many animals, such as birds and anadromous fishes,
are known for imprinting on their natal habitat [99-101].
When this is a direct matter of memorizing where home is
(as might be the case in Ficedula flycatchers [101]), it simply
accentuates the relationship between geography and gene
flow. Slightly different implications emerge from imprinting
on a kind of habitat, host, or resource because then the
environmental influence on gene flow is independent of
geography. Some phytophagous insects imprint on their
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host plant species based on chemical cues [102], and nest-
parasitic indigobirds imprint on their hosts [103]. In these
examples, phenotypic plasticity helps maintain similarity
between maternal and offspring environments, which is
important both for maintaining phenotypic similarity and
consistency of selection on parents and offspring. However,
it is not always obvious that habitat or resource imprinting
should directly affect mating preferences. In the Vidua
indigobirds, there is an imprinting effect of host song, such
that nest parasites raised by the same host species tend to
mate assortatively owing to learned elements of their own
songs and preferences [103, 104]. In many phytophagous
insects, mating occurs on or near the host plant [102, 105],
making plant choice a “magic trait” simultaneously effecting
ecological and sexual differentiation [31]. As with genetically
determined traits, phenotypic plasticity of traits directly
linked to both ecological adaptation and assortative mating
is most likely to contribute to ecological speciation.

Environmental effects on traits directly involved in sex-
ual selection are not unusual. Expression of pigments,
pheromones, and other displays can depend on diet, condi-
tion, or experience [19, 106]. For example, premating isola-
tion is induced by larval host plant differences in Drosophila
mojavensis, because the chemical properties of their cuticular
hydrocarbons (important contact pheromones) are strongly
influenced by diet [107, 108]. Sharon et al. [109] recently
showed that mate choice in D. melanogaster can be modified
by symbiotic gut bacteria. Flies raised on a high-starch
medium had microbiota dominated by Lactobacillus plan-
tarum, which was only a minor constituent of the microbiota
of flies raised on a standard cornmeal-molasses medium.
Sharon et al. [109] found that the differences in bacterial
composition can affect cuticular hydrocarbon levels, provid-
ing a probable mechanism affecting mate choice.

In Sockeye Salmon (Oncorhynchus nerka), postmating
isolation might be caused by sexual selection on diet-derived
coloration. Anadromous sockeye sequester carotenoids from
crustaceans consumed in the ocean and use them to express
their brilliant red mating colors. The nonanadromous
morph (kokanee) expresses equally bright red mating color
on a diet with much less carotenoids, an example of
countergradient variation [110]. Anadromous morphs and
hybrids raised in the freshwater habitat of the kokanee (low-
carotenoid diet) underexpress the red pigment and probably
suffer reduced mating success as a consequence [111, 112].

The actual effect of phenotypic plasticity on gene flow
depends on environmental similarity between parents and
offspring. Environmentally induced mate discrimination
will have little or no hindrance on gene flow unless it
also affects the phenotypes and/or environments of the
offspring. For example, imagine a phytophagous insect
with environmentally induced contact pheromones causing
perfect assortative mating between individuals raised on the
same host plant. If there are no differences in host choice,
then the offspring of each mating type are equally likely
to grow up on each plant and therefore have no tendency
to develop the same pheromone profile as their parents
(Figure 5). In this hypothetical case, there is free gene flow
despite assortative mating of phenotypes.

Environmentally induced differences in habitat choice
reduce gene flow when individuals are more likely to mate
with other individuals using the same habitat, and offspring
are more likely to grow up in habitats similar to those of
their parents. If habitat choice is entirely determined by
the individual’s environment (i.e., if there is no tendency
for the offspring of immigrants to return to their parent’s
original habitat), then the effect is genetically identical to a
geographic barrier. Either way we can describe the system
in terms of populations of individuals or gametes with some
probability (m) of “moving” from their natal population to
breed in a different population. In the simple case of two
environments and nonoverlapping generations, the expected
frequency of an allele in generation ¢ in environment i is a
weighted average of the frequencies in environments i and j
in generation t — 1 [113]:

Piy = (1 = m)pie—1y + mpje—1). (1)

It makes no difference whether m is determined by geography
or environmental induction as long as there are not heritable
differences in m among individuals within a habitat. More
generally, geographic or spatial covariance is a special case
of environmental similarity, and the extensive knowledge
from decades of conceptual and mathematical modeling
of gene flow’s effects on adaptation and speciation [30,
31, 87, 114, 115] can be extended directly to include
this kind of phenotypic plasticity. In particular, we might
expect environmentally induced restrictions on gene flow to
facilitate the evolution of postzygotic incompatibilities (both
environment-dependent and -independent selection against
hybrids) and genetic assimilation of behavioral reproductive
barriers (habitat and mate choice), but also to lessen the
potential for selective reinforcement of assortative mating
(just as adaptive plasticity lessens divergent selection on
ecological phenotypes).

6. Conclusions and Future Directions

Opinions still seem to outnumber data about the impact
of environmental induction and plasticity on evolution, but
substantial progress has been made in the last 20 years
[23, 64]. Plasticity appears to be a common if not universal
feature of developmental systems and should not be ignored.
Plasticity and environmental effects were once black boxes,
ignored by some, uncritically promoted as threats to evo-
lutionary theory by others. But theoretical and empirical
investigations have increasingly shed light on how plasticity
evolves and interacts with natural selection. Whether devel-
opmental plasticity rivals mutation as a source of quantitative
or qualitative change (the evolution of “novelty”) remains
contentious [17, 80, 116]. However, to the extent that
speciation is defined by genetic divergence, genes will not be
displaced from their central role in the study of speciation.
Phenotypic plasticity can promote or constrain adaptive
evolution and ecological speciation. The effects of plasticity
in a particular case, and whether there is an overall trend, are
empirical questions.

Important theoretical challenges for understanding the
importance of plasticity for adaptation and speciation



. 1st generation: Larvae on different host
plants develop environmentally induced
mating cues represented by red and
blue.

. Random dispersal results in equal
frequencies on each host plant.
Association between genotype and
mating phenotype persists.

. 2nd generation: Larvae produced by
assortative mating deviate from Hardy-
Weinberg, but develop environmentally
induced mating cues.

. Random dispersal maintains equal
frequencies. There is no association
between genotype and mating
phenotype

. 3rd generation: Hardy-Weinberg
genotype proportions are expected for
larvae on each host despite assortative
mating by environmentally induced
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Host 1 Host 2
100% AA 100% aa
P AA, gaa P AA, qaa
pAA, gaa P AA, qaa
plp AA, q aal plp AA, q aal
+q[p AA, q aa] +qlp AA, q aa]

plp? AA, 2pq Aa, ¢° aa]
+qlp? AA, 2pq Aa, g° aa]
= p? AA, 2pq Aa, g% aa

plp® AA, 2pq Aa, g aa
+qlp® AA, 2pq Aa, g° aa]
= p? AA, 2pq Aa, g% aa

phenotype.

F1GURE 5: Free gene flow despite assortative mating. If mating cues are environmentally induced but there is no habitat choice, host-associated
populations will not be genetically differentiated, and it takes two generations to establish Hardy-Weinberg equilibrium. If the host densities
are pand 1 — p = g, alocus that is fixed for different alleles on different hosts has allele frequencies p and q. At first, genotypes are perfectly
associated with the host-induced mating cue, but random dispersal eliminates that association in one generation if there are no other factors
maintaining covariance between parent and offspring phenotype (e.g., maternal effects or divergent selection). Once genotype frequencies
are equalized between phenotypes, mating within phenotypes establishes Hardy-Weinberg genotype proportions [61]. Although imagining a
locus with complete differentiation makes for the simplest illustration, the result is completely general for any allele frequency. If we somehow
know what alleles have ancestors in each habitat in generation 0, the result is that it takes just two generations to completely randomize that
ancestry, regardless of whether or not the alleles are actually different by state.

include the extension of models (such as [36]) to incorporate
nonadaptive plasticity and countergradient variation, further
investigation of how costs of plasticity affect genetic assim-
ilation and reproductive isolation, and careful examination
of what kinds of environmental effects on phenotype can
be considered equivalent to geographic restrictions of gene
flow (environmental effects on dispersal) [59, 93, 94, 114].
Not all environmental effects on mate choice will affect gene
flow (Figure 5). However, maternal effects and factors that
promote environmental similarity between relatives seem
particularly likely to reduce gene flow and promote adaptive
divergence. Incorporation of such effects into the classic
models of local adaptation [87] and ecological speciation
[31] might bring substantial clarification to the subject.
Moreover, how environmentally induced barriers to gene
flow might affect the evolution of constitutive genetic bar-
riers has not been explored. Should we expect environmental
effects on assortative mating to slow the evolution of genetic
barriers to gene flow? Finally, virtually no attention has been

given to the relationship between plasticity and postzygotic
isolation. Key questions include how might plasticity affect
ecologically based selection on hybrids, and are highly
plastic developmental pathways good or bad candidates for
involvement in postzygotic developmental incompatibilities?

Addressing empirical challenges might best begin by
establishing criteria for recognizing plasticity as a causal fac-
tor in speciation or adaptive radiation. West-Eberhard [15]
and Pfennig and McGee [117] suggested that associations
between intraspecific plasticity and species diversity support
a role for plasticity in promoting adaptive radiation. Exam-
ples like the tiger salamander radiation (Figure 1) and oth-
ers [117], where an intraspecific polyphenism parallels a
repeated pattern of interspecific divergence, are consistent
with adaptive plasticity as an origin of ecological divergence
between species. More confirmatory evidence for a causal
role of plasticity in adaptive divergence (the first component
of ecological speciation) would come from testing the
strengths of tradeoffs, costs of plasticity, and selection against
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immigrants and hybrids. Effects of plasticity on reproductive
isolation (the second component of ecological speciation)
are illustrated in studies like those of parasitic indigobirds
[103, 104] and Drosophila [107-109] on environmentally
induced barriers to gene flow. We presently know little of
the prevalence of this phenomenon or whether it is often
strong enough to facilitate substantial genetic differentiation.
Field studies are needed to document the prevalence and
strength, in nature, of costs of plasticity, evolvability of
reaction norms, and environmental effects on reproductive
isolation. The principle illustrated in Figure 5 should be
considered in the design and interpretation of experiments.
In order for plasticity of mating behaviour to directly impact
gene flow, there must be some factor maintaining similarity
of environmental effects across generations. Finally, devel-
opmental genetic studies are needed to assess whether genes
causing postzygotic or prezygotic isolation are often involved
in highly plastic developmental pathways.

The theoretical and empirical foundations of speciation
research are very strong in terms of genetics and geography
[29-31, 115]. The roles of ecology, environment, and
development are prominent among the remaining frontiers
[27, 36, 52]. Further research integrating genetics, ecology,
and development promises great gains in understanding the
origins of biological diversity.

Acknowledgments

The author thanks A. Hendry and two reviewers for their
very helpful comments on an earlier draft of this paper. His
knowledge and ideas on the subject, and their presentation
herein, were greatly improved by discussions with J. Fordyce
and X. Thibert-Plante. Research relevant to this paper
has been supported by the United States National Science
Foundation (DEB-0516475 and DEB-1011216).

References

>

[1] S. Wright, “Evolution in Mendelian populations,” Genetics,
vol. 16, no. 2, pp. 97-159, 1931.

[2] S. C. Stearns, “The role of development in the evolution of
life histories,” in Evolution and Development, ]. T. Bonner, Ed.,
pp. 237-258, Springer, Berlin, Germany, 1982.

[3] D. A. Levin, “Plasticity, canalization and evolutionary stasis
in plants,” in Plant Population Ecology, A. J. Davy, M. J.
Hutchings, and A. R. Watkinson, Eds., pp. 3545, Blackwell
Scientific, 1988.

[4] J. Clausen, “Principles for a joint attack on evolutionary
problems,” in Proceedings of the 6th International Congress of
Genetics, D. E. Jones, Ed., vol. 2, pp. 21-23, Brooklyn Botanic
Garden, Ithaca, NY, USA, 1932.

[5] R. K. Clements, J. M. Baskin, and C. C. Baskin, “The com-
parative biology of the two closely-related species Penstermon
tenuiflorus Pennell and P. hirsutus (L.) Willd. (Scrophu-
lariaceae, section Graciles): 1. Taxonomy and geographical
distribution,” Castanea, vol. 63, no. 2, pp. 138-153, 1998.

[6] P. B. Reich, I. J. Wright, J. Cavender-Bares et al., “The
evolution of plant functional variation: traits, spectra, and
strategies,” International Journal of Plant Sciences, vol. 164,
no. 3, pp. S143-S164, 2003.

[7] U. Dieckmann and M. Heino, “Probabilistic maturation
reaction norms: their history, strengths, and limitations,”
Marine Ecology-Progress Series, vol. 335, pp. 253-269, 2007.

[8] M. G. Palacios, A. M. Sparkman, and A. M. Bronikowski,
“Developmental plasticity of immune defence in two life-
history ecotypes of the garter snake, thamnophis elegans
- a common-environment experiment,” Journal of Animal
Ecology, vol. 80, no. 2, pp. 431-437, 2011.

[9] J. M. Baldwin, “A new factor in evolution,” American
Naturalist, vol. 30, pp. 441-451, 1896.

[10] C. H. Waddington, “Canalization of development and the
inheritance of acquired characters,” Nature, vol. 150, no.
3811, pp. 563-565, 1942.

[11] C.H. Waddington, “Genetic assimilation of acquired charac-
ters,” Evolution, vol. 7, no. 4676, pp. 118-126, 1953.

[12] Schmalhausen II, Factors of Evolution, Blakiston, Philadel-
phia, Pa, USA, 1949.

[13] M. J. West-Eberhard, “Alternative adaptations, speciation,
and phylogeny,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 83, no. 5, pp.
1388-1392, 1986.

[14] M. J. West-Eberhard, “Phenotypic plasticity and the origins
of diversity,” Annual review of Ecology and Systematics, vol.
20, pp. 249-278, 1989.

[15] M.]J. West-Eberhard, Developmental Plasticity and Evolution,
Oxford University Press, Oxford, UK, 2003.

[16] C. D. Schlichting, “The role of phenotypic plasticity in
diversification,” in Phenotypic Plasticity: Functional and Con-
ceptual Approaches, T. J. DeWitt and S. M. Scheiner, Eds., pp.
191-200, Oxford University Press, 2004.

[17] M. J. West-Eberhard, “Developmental plasticity and the
origin of species differences,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 102,
no. 1, pp. 6543-6549, 2005.

[18] G.E Grether, “Environmental change, phenotypic plasticity,
and genetic compensation,” The American Naturalist, vol.
166, no. 4, pp. E115-123, 2005.

[19] T. D. Price, “Phenotypic plasticity, sexual selection and
the evolution of colour patterns,” Journal of Experimental
Biology, vol. 209, no. 12, pp. 2368-2376, 2006.

[20] E. Crispo, “The Baldwin effect and genetic assimilation:
revisiting two mechanisms of evolutionary change mediated
by phenotypic plasticity,” Evolution, vol. 61, no. 11, pp. 2469—
2479, 2007.

[21] E. Crispo, “Modifying effects of phenotypic plasticity on
interactions among natural selection, adaptation and gene
flow,” Journal of Evolutionary Biology, vol. 21, no. 6, pp. 1460—
1469, 2008.

[22] C. K. Ghalambor, J. K. McKay, S. P. Carroll, and D. N.
Reznick, “Adaptive versus non-adaptive phenotypic plasticity
and the potential for contemporary adaptation in new
environments,” Functional Ecology, vol. 21, no. 3, pp. 394—
407, 2007.

[23] S. E. Gilbert and D. Epel, Ecological Developmental Biology:
Integrating Epigenetics, Medicine, and Evolution, Sinauer
Associates, 2009.

[24] G. Fusco and A. Minelli, “Phenotypic plasticity in devel-
opment and evolution: facts and concepts,” Philosophical
Transactions of the Royal Society B, vol. 365, no. 1540, pp.
547-556, 2010.

[25] T. Schwander and O. Leimar, “Genes as leaders and followers
in evolution,” Trends in Ecology and Evolution, vol. 26, no. 3,
pp. 143-151, 2011.



10

(26]

[34]

(35]

(36

(37]

(38]

T. Uller and H. Helantera, “When are genes ‘leaders’ or
‘followers’ in evolution?” Trends in Ecology and Evolution, vol.
26, no. 9, pp. 435-436, 2011.

D. W. Pfennig, M. A. Wund, E. C. Snell-Rood, T. Cruick-
shank, C. D. Schlichting, and A. P. Moczek, “Phenotypic
plasticity’s impacts on diversification and speciation,” Trends
in Ecology and Evolution, vol. 25, no. 8, pp. 459-467, 2010.
H. D. Rundle and P. Nosil, “Ecological speciation,” Ecology
Letters, vol. 8, no. 3, pp. 336-352, 2005.

M. Turelli, N. H. Barton, and J. A. Coyne, “Theory and
speciation,” Trends in Ecology and Evolution, vol. 16, no. 7,
pp. 330-343, 2001.

J. A. Coyne and H. A. Orr, Speciation, Sinauer Associates,
Sunderland, Mass, USA, 2004.

S. Gavrilets, Fitness Landscapes and the Origin of Species,
Princeton University Press, Princeton, NJ, USA, 2004.

T. D. Price, A. Qvarnstrom, and D. E. Irwin, “The role of phe-
notypic plasticity in driving genetic evolution,” Proceedings of
the Royal Society B, vol. 270, no. 1523, pp. 1433-1440, 2003.
R. Lande, “Adaptation to an extraordinary environment by
evolution of phenotypic plasticity and genetic assimilation,”
Journal of Evolutionary Biology, vol. 22, no. 7, pp. 1435-1446,
2009.

D. A. Levin, “Flowering-time plasticity facilitates niche shifts
in adjacent populations,” New Phytologist, vol. 183, no. 3, pp.
661-666, 2009.

R. Svanbick, M. Pineda-Krch, and M. Doebeli, “Fluctuating
population dynamics promotes the evolution of phenotypic
plasticity,” American Naturalist, vol. 174, no. 2, pp. 176-189,
2009.

X. Thibert-Plante and A. P. Hendry, “The consequences of
phenotypic plasticity for ecological speciation,” Journal of
Evolutionary Biology, vol. 24, no. 2, pp. 326-342, 2011.

M. D. Herron and M. Doebeli, “Adaptive diversification
of a plastic trait in a predictably fluctuating environment,”
Journal of Theoretical Biology, vol. 285, pp. 58—68, 2011.

D. J. Funk, “Of ‘host forms” and host races: terminological
issues in ecological speciation,” International Journal of
Ecology, vol. 2012, Article ID 506957, 8 pages, 2012.

J. K. Conner and D. L. Hartl, A Primer of Ecological Genetics,
Sinauer Associates, Sunderland, Mass, USA, 2004.

D. J. Futuyma, Evolution, Sinauer Associates, Sunderland,
Mass, USA, 2nd edition, 2009.

D. O. Conover and E. T. Schultz, “Phenotypic similarity and
the evolutionary significance of countergradient variation,”
Trends in Ecology and Evolution, vol. 10, no. 6, pp. 248-252,
1995.

J. A. Fordyce, “The evolutionary consequences of ecological
interactions mediated through phenotypic plasticity,” Journal
of Experimental Biology, vol. 209, no. 12, pp. 2377-2383,
2006.

G. R. Price, “Selection and covariance,” Nature, vol. 227, no.
5257, pp. 520-521, 1970.

J. A. Endler, Natural Selection in the Wild, Princeton Univer-
sity Press, Princeton, NJ, USA, 1986.

S. Via, “The evolution phenotypic plasticity: what do we
really know?” in Ecological Genetics, L. A. Real, Ed., pp. 35—
57, Princeton University Press, 1994.

G. L. Bush, “Reply [to M. Claridge] from G. L. Bush,” Trends
in Ecology & Evolution, vol. 10, no. 1, p. 38, 1995.

M. Claridge, “Species and speciation,” Trends in Ecology ¢
Evolution, vol. 10, no. 1, p. 38, 1995.

(48]
(49]

(50]

(51]

(52]

(53]

(54]

(55]

(56]

(57]

(58]

(59]

[60]

[61]
(62]

[63]

(64]

[65]

[66]

[67]

International Journal of Ecology

G. G. Simpson, Tempo and Mode in Evolution, Columbia
University Press, New York, NY, USA, 1944.

S. J. Gould, The Structure of Evolutionary Theory, Harvard
University Press, Cambridge, Mass, USA, 2002.

T. E. Stuessy, G. Jakubowsky, R. S. Gomez et al., “Anagenetic
evolution in island plants,” Journal of Biogeography, vol. 33,
no. 7, pp. 1259-1265, 2006.

A. P. Hendry, “Ecological speciation! or the lack thereof?”
Canadian Journal of Fisheries and Aquatic Sciences, vol. 66,
no. 8, pp. 13831398, 2009.

D. Schluter, “Evidence for ecological speciation and its
alternative,” Science, vol. 323, no. 5915, pp. 737-741, 2009.
E. Mayr, Systematics and the Origin of Species from the
Viewpoint of a Zoologist, Columbia University Press, New
York, NY, USA, 1942.

R. Matsuda, “The evolutionary process in talitrid amphipods
and salamanders in changing environments, with a discus-
sion of “genetic assimilation” and some other evolutionary
concepts,” Canadian Journal of Zoology, vol. 60, no. 5, pp.
733-749, 1982.

H. B. Shaffer and S. R. Voss, “Phylogenetic and mechanistic
analysis of a developmentally integrated character complex:
alternate life history modes in ambystomatid salamanders,”
American Zoologist, vol. 36, no. 1, pp. 24-35, 1996.

S. R. Voss and H. B. Shaffer, “Adaptive evolution via a
major gene effect: paedomorphosis in the Mexican axolotl,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 94, no. 25, pp. 14185-14189, 1997.

H. B. Shaffer, “Evolution in a paedomorphic lineage. I.
An electrophoretic analysis of the Mexican ambystomatid
salamanders,” Evolution, vol. 38, pp. 1194-1206, 1984.

H. B. Shaffer and M. L. Mcknight, “The polytypic species
revisited: genetic differentiation and molecular phylogenetics
of the tiger salamander Ambystoma tigrinum (Amphibia:
Caudata) complex,” Evolution, vol. 50, no. 1, pp. 417-433,
1996.

S. Gavrilets and A. Vose, “Case studies and mathematical
models of ecological speciation. 2. Palms on an oceanic
island,” Molecular Ecology, vol. 16, no. 14, pp. 2910-2921,
2007.

V. Savolainen, M. C. Anstett, C. Lexer et al., “Sympatric
speciation in palms on an oceanic island,” Nature, vol. 441,
no. 7090, pp. 210-213, 2006.

G. H. Hardy, “Mendelian proportions in a mixed popula-
tion,” Science, vol. 28, no. 706, pp. 49-50, 1908.

D. Schluter, “Ecology and the origin of species,” Trends in
Ecology and Evolution, vol. 16, no. 7, pp. 372-380, 2001.

K. Résdnen and A. P. Hendry, “Disentangling interactions
between adaptive divergence and gene flow when ecology
drives diversification,” Ecology Letters, vol. 11, no. 6, pp. 624—
636, 2008.

T. J. DeWitt and S. M. Scheiner, “Phenotypic variation
from single genotypes: a primer,” in Phenotypic Plasticity:
Functional and Conceptual Approaches, T.]. DeWitt and S. M.
Scheiner, Eds., pp. 1-9, Oxford University Press, New York,
NY, USA, 2004.

S.Viaand R. Lande, “Genotype-environment interaction and
the evolution of phenotypic plasticity,” Evolution, vol. 39, no.
3, pp. 505-522, 1985.

L. Zhivotovsky, M. Feldman, and A. Bergman, “On the evo-
lution of phenotypic plasticity in a spatially heterogeneous
environment,” Evolution, vol. 50, no. 2, pp. 547-558, 1996.

S. Sultan and H. G. Spencer, “Metapopulation structure
favors plasticity over local adaptation,” American Naturalist,
vol. 160, no. 2, pp. 271-283, 2002.



International Journal of Ecology

[68] J. Hollander, “Testing the grain-size model for the evolution
of phenotypic plasticity,” Evolution, vol. 62, no. 6, pp. 1381—
1389, 2008.

[69] J. B. S. Haldane, “A mathematical theory of natural and
artificial selection—part VI. Isolation,” Proceedings of the
Cambridge Philosophical Society, vol. 26, pp. 220-230, 1930.

[70] M. G. Bulmer, “Multiple niche polymorphism,” American
Naturalist, vol. 106, pp. 254-257, 1972.

[71] M. Slatkin, “Gene flow and the geographic structure of
natural populations,” Science, vol. 236, no. 4803, pp. 787-792,
1987.

[72] W. R. Rice and E. E. Hostert, “Laboratory experiments on
speciation: what have we learned in 40 years?” Evolution, vol.
47, no. 6, pp. 1637-1653, 1993.

[73] S. Gavrilets, “Models of speciation: what have we learned in
40 years?” Evolution, vol. 57, no. 10, pp. 2197-2215, 2003.

[74] R. D. Holt, “On the evolutionary ecology of species’ ranges,”
Evolutionary Ecology Research, vol. 5, no. 2, pp. 159-178,
2003.

[75] D. Garant, S. E. Forde, and A. P. Hendry, “The multifarious
effects of dispersal and gene flow on contemporary adapta-
tion,” Functional Ecology, vol. 21, no. 3, pp. 434-443, 2007.

[76] T. J. Kawecki, “Adaptation to marginal habitats,” Annual
Review of Ecology, Evolution, and Systematics, vol. 39, pp. 321—
342, 2008.

[77] S. Via, “Genetic constraints on the evolution of phenotypic
plasticity,” in Genetic Constraints on Adaptive Evolution, V.
Loeschcke, Ed., pp. 47-71, Springer, Boston, Mass, USA,
1987.

[78] S. Via, R. Gomulkiewicz, G. de Jong, S. M. Scheiner, C. D.
Schlichting, and P. H. Van Tienderen, “Adaptive phenotypic
plasticity: consensus and controversy,” Trends in Ecology and
Evolution, vol. 10, no. 5, pp. 212-217, 1995.

[79] A.Romero and S. M. Green, “The end of regressive evolution:
examining and interpreting the evidence from cave fishes,”
Journal of Fish Biology, vol. 67, no. 1, pp. 3-32, 2005.

[80] M. Pigliucci, C. J. Murren, and C. D. Schlichting, “Phe-
notypic plasticity and evolution by genetic assimilation,”
Journal of Experimental Biology, vol. 209, no. 12, pp. 2362—
2367, 2006.

[81] R. B. Langerhans and T. J. DeWitt, “Plasticity constrained:
over-generalized induction cues cause maladaptive pheno-
types,” Evolutionary Ecology Research, vol. 4, no. 6, pp. 857—
870, 2002.

[82] E. C. James, “Environmental component of morphological
differentiation in birds,” Science, vol. 221, no. 4606, pp. 184—
186, 1983.

[83] T. Steinger, B. A. Roy, and M. L. Stanton, “Evolution
in stressful environments II: adaptive value and costs of
plasticity in response to low light in Sinapis arvensis,” Journal
of Evolutionary Biology, vol. 16, no. 2, pp. 313-323, 2003.

[84] P. H. Van Tienderen, “Evolution of generalists and specialists
in spatially heterogeneous environments,” Evolution, vol. 45,
no. 6, pp. 1317-1331, 1991.

[85] T. J. DeWitt, A. Sih, and D. S. Wilson, “Costs and limits of
phenotypic plasticity,” Trends in Ecology and Evolution, vol.
13, no. 2, pp. 77-81, 1998.

[86] T. B. Smith and S. Skulason, “Evolutionary significance of
resource polymorphisms in fishes, amphibians, and birds,”
Annual Review of Ecology and Systematics, vol. 27, pp. 111-
133, 1996.

[87] T. Lenormand, “Gene flow and the limits to natural selec-
tion,” Trends in Ecology and Evolution, vol. 17, no. 4, pp. 183—
189, 2002.

11

[88] C. D. Schlichting and M. Pigliucci, Phenotypic Evolution: A
Reaction Norm Perspective, Sinauer Associates, 1998.

[89] T. H. Bullock, “Compensation for temperature in the meta-
bolism and activity of poikilotherms,” Biological Reviews, vol.
30, pp. 311-342, 1955.

[90] R. Levins, “Thermal acclimation and heat resistance in
Drosophila species,” American Naturalist, vol. 103, pp. 483—
499, 1969.

[91] K. A.Berven, D. E. Gill, and S. J. Smithgill, “Countergradient
selection in the green frog, rana clamitans,” Evolution, vol. 33,
pp. 609-623, 1979.

[92] M. Kirkpatrick and N. H. Barton, “Evolution of a species’
range,” American Naturalist, vol. 150, no. 1, pp. 1-23, 1997.

[93] B. M. Fitzpatrick, J. A. Fordyce, and S. Gavrilets, “What, if
anything, is sympatric speciation?” Journal of Evolutionary
Biology, vol. 21, no. 6, pp. 1452—1459, 2008.

[94] B. M. Fitzpatrick, J. A. Fordyce, and S. Gavrilets, “Pattern,
process and geographic modes of speciation,” Journal of
Evolutionary Biology, vol. 22, no. 11, pp. 2342-2347, 2009.

[95] J. Antonovics, “Evolution in closely adjacent plant popula-
tions. X. Long-term persistence of prereproductive isolation
at a mine boundary,” Heredity, vol. 97, no. 1, pp. 33-37, 2006.

[96] M. C. Hall and J. H. Willis, “Divergent selection on flowering
time contributes to local adaptation in Mimulus guttatus
populations,” Evolution, vol. 60, no. 12, pp. 2466—2477, 2006.

[97] J. B. Beltman and P. Haccou, “Speciation through the
learning of habitat features,” Theoretical Population Biology,
vol. 67, no. 3, pp. 189-202, 2005.

[98] J. Beltman and J. A. Metz, “Speciation: more likely through a
genetic or through a learned habitat preference?” Proceedings
of the Royal Society B, vol. 272, no. 1571, pp. 1455-1463, 2005.

[99] J. M. Davis and J. A. Stamps, “The effect of natal experience
on habitat preferences,” Trends in Ecology and Evolution, vol.
19, no. 8, pp. 411-416, 2004.

[100] A. P. Hendry, V. Castric, M. T. Kinnison, and T. P. Quinn,
“The evolution of philopatry and dispersal: homing versus
straying in salmonids,” in Evolution illuminated: Salmon and
their relatives, A. P. Hendry and S. C. Stearns, Eds., pp. 52-91,
Oxford University Press, Oxford, UK, 2004.

[101] N. Vallin and A. Qvarnstrom, “Learning the hard way:
imprinting can enhance enforced shifts in habitat choice,”
International Journal of Ecology, vol. 2011, Article ID 287532,
7 pages, 2011.

[102] E. A. Bernays and R. F. Chapman, Host-Plant Selection by
Phytophagous Insects, Chapman and Hall, New York, NY,
USA, 1994.

[103] M. D. Sorenson, K. M. Sefc, and R. B. Payne, “Speciation by
host switch in brood parasitic indigobirds,” Nature, vol. 424,
no. 6951, pp. 928-931, 2003.

[104] C. N. Balakrishnan, K. M. Sefc, and M. D. Sorenson,
“Incomplete reproductive isolation following host shift in
brood parasitic indigobirds,” Proceedings of the Royal Society
B, vol. 276, no. 1655, pp. 219-228, 2009.

[105] S. H. Berlocher and J. L. Feder, “Sympatric speciation in
phytophagous insects: moving beyond controversy?” Annual
Review of Entomology, vol. 47, pp. 773-815, 2002.

[106] H. Kniittel and K. Fiedler, “Host-plant-derived variation in
ultraviolet wing patterns influences mate selection by male
butterflies,” Journal of Experimental Biology, vol. 204, no. 14,
pp. 2447-2459, 2001.

[107] M. D. Stennett and W. J. Etges, “Premating isolation is deter-
mined by larval rearing substrates in cactophilic Drosophila
mojavensis. I11. Epicuticular hydrocarbon variation is deter-
mined by use of different host plants in Drosophila mojavensis



12

(108]

(109]

(110]

[111]

(112

[113]

(114]

[115]

[116]

(117]

and Drosophila arizonae,” Journal of Chemical Ecology, vol. 23,
no. 12, pp. 28032824, 1997.

W. J. Etges, C. L. Veenstra, and L. L. Jackson, “Premating
isolation is determined by larval rearing substrates in cac-
tophilic Drosophila mojavensis. VII. Effects of larval dietary
fatty acids on adult epicuticular hydrocarbons,” Journal of
Chemical Ecology, vol. 32, pp. 2629-2646, 2006.

G. Sharon, D. Segal, J. M. Ringo, A. Hefetz, 1. Zilber-
Rosenberg, and E. Rosenberg, “Commensal bacteria play
a role in mating preference of Drosophila melanogaster,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 107, no. 46, pp. 20051-20056, 2010.

J. K. Craig and C. J. Foote, “Countergradient variation
and secondary sexual color: phenotypic convergence pro-
motes genetic divergence in carotenoid use between sym-
patric anadromous and nonanadromous morphs of sockeye
salmon (Onchorhynchus nerka),” Evolution, vol. 55, pp. 380—
391, 2001.

C. J. Foote, G. S. Brown, and C. W. Hawryshyn, “Female
colour and male choice in sockeye salmon: implications for
the phenotypic convergence of anadromous and nonanadro-
mous morphs,” Animal Behaviour, vol. 67, no. 1, pp. 69-83,
2004.

J. K. Craig, C. J. Foote, and C. C. Wood, “Countergradient
variation in carotenoid use between sympatric morphs of
sockeye salmon (Oncorhynchus nerka) exposes nonanadro-
mous hybrids in the wild by their mismatched spawning
colour,” Biological Journal of the Linnean Society, vol. 84, no.
2, pp. 287-305, 2005.

D. L. Hartl and A. G. Clark, Principles of Population Genetics,
Sinauer Associates, Sunderland, Mass, USA, 3rd edition,
1997.

M. Kirkpatrick and V. Ravigné, “Speciation by natural
and sexual selection: models and experiments,” American
Naturalist, vol. 159, pp. S22-S35, 2002.

D. L. Bolnick and B. M. Fitzpatrick, “Sympatric speciation:
models and empirical evidence,” Annual Review of Ecology,
Evolution, and Systematics, vol. 38, pp. 459-487, 2007.

G. de Jong, “Evolution of phenotypic plasticity: patterns of
plasticity and the emergence of ecotypes,” New Phytologist,
vol. 166, no. 1, pp. 101-117, 2005.

D. W. Pfennig and M. McGee, “Resource polyphenism
increases species richness: a test of the hypothesis,” Philosoph-
ical Transactions of the Royal Society B, vol. 365, no. 1540, pp.
577-591, 2010.

International Journal of Ecology



Journal of - Journal of
Waste Management Environmental and

The Scientific Wit
WQrId Journal §g§ptiﬁca

Journal of

Ecosystems

International Journal of

Oceanography

Hindawi

Submit your manuscripts at
http://www.hindawi.com

International Journal of

Atmospheric Sciences

Applied &
International Journal of Journal of Inter Environmental Journal of

Biodiversity Geological Research Forestry Soil Science Climatology

g Advances in
Journal of e Advances in Environmental
Farthquakes wironr Sciences Meteorology Chemistry



