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Currently, research on microplastics (MPs) has increased due to their rapid distribution throughout the world and their harmful
effects on the ecosystem. However, a detailed description of their dispersion and the methods for both detection and removal has
not been given. The objective of this research is to carry out a bibliographic review that allows for a multidisciplinary analysis of
microplastic contamination and current detection and removal methods. The method used is PRISMA in which articles from
reliable databases such as Scopus, Web of science, and Google Scholar were collected and analyzed to finally provide details on the
physical and chemical methods for detecting MPs, in addition to presenting the technologies for their removal. As a result of the
analysis, critical information was obtained from the different studies on the impact of MPs on the ecosystem and the variation in
detection and removal efficiency according to the type of pretreatment and methods applied to the sample. It is concluded that this
research is essential to understand the consequences that MPs have on the ecosystem and provide tools to evaluate and improve

current technologies, mainly detection and removal.

1. Introduction

The most frequently used polymers presently are poly-
styrene, nylon, polyurethane, polypropylene, and so on [1].
Polymers accumulate in various environments and break
down into microplastics as they are exposed to environ-
mental stressors [2]. Microplastics are primarily formed by
the fragmentation of larger plastic items under various
environmental factors, as well as fibers and particles from
everyday objects such as clothing and personal care products
[3]. Microbial degradation can cause plastic to fragment into
tiny pieces, which has led to extensive research into
microplastics. These are defined as plastics with a diameter of
less than 5mm. Plastic’s chemical properties, such as its
hydrophobicity and its ability to attract other hydrophobic
particles, also contribute to this issue [4]. MPs found in
urban wastewater typically originate from daily activities

such as using toothpaste, cleaning products, and shower gels
[5]. Microplastics are tiny pieces of plastic that are harmful
to the environment. They can come from a variety of
sources, including the shedding of synthetic fibers from
clothing during washing [6, 7]. Disposable face masks used
to protect against COVID-19 are another source of
microplastics [8]. The COVID-19 pandemic has caused
a massive surge in the use of masks and gloves, estimated to
be around 129 billion and 65 billion, respectively, per month
globally. As a result, the amount of plastics being released
into the environment, including the oceans, has significantly
increased. This has led to a rapid increase in MP production,
making it crucial to evaluate methods for quantifying, re-
moving, and distinguishing microplastics to better un-
derstand the impact of MPs on the environment [9].
Several review articles on MPs have been published, with
most focusing on a single method, such as the study by Rani
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et al. [10] which examined the vibratory spectroscopy
method. Others focus on analyzing MP contamination in
one type of ecosystem such as the one by Manzoor et al. [11]
that focused on the Harike wetland or just on assessing the
interactions of microplastics with existing pollutants [12].
However, very few bibliometric analyses have been carried
out taking into account various methods for the quantifi-
cation and removal of MPs and their impact on different
ecosystems. Therefore, this research presents recent ad-
vances in the understanding of the impacts of MPs on the
environment and humans, as well as the state of the art in the
development of technologies for their quantification and
proper disposal.

2. Methodology

The collection of articles in the Scopus, Web of Science, and
Google Scholar databases published between January 2018
and May 2023 was performed to carry out a systematic
review using the PRISMA method [13]. For best results, we
used Boolean and key words as search criteria: TITLE-
ABS-KEY (Microplastic) AND (TITLE-ABS-KEY (Water)
OR TITLE-ABS-KEY (Rivers) OR TITLE-ABS-KEY (Re-
mote) OR TITLE-ABS-KEY (Detection)). A total of 1261
articles were found, which are distributed in Web of Science,
Scopus, and Google Scholar with 724, 424, and 113 articles,
respectively. The first criterion used to filter the articles was
to eliminate duplicates and articles that were not written in
English. This led to the elimination of 447 articles. Next, 465
articles that had little relevance to the treatment of detection
and elimination of microplastics were removed. After this,
the remaining articles were evaluated based on the quality of
their results, leading to the discarding of 241 articles. Finally,
8 complementary articles were incorporated to provide
updated information that broadens the concepts in a rele-
vant manner. In total, 116 articles were obtained for this
review, of which 43 provided fundamental data on MPs in
various water sources and their global effects, 35 addressed
MP detection methods, and 38 focused on MP removal
techniques (see Figure 1). Further details on these articles are
available in Tables S1-S3, which can be found in the
supplementary file.

3. Results and Discussion

3.1. Origin and Distribution of Microplastic. In recent years,
the demand for plastics has increased globally which has
translated into increased production of plastics, amounting
to approximately 359 million tonnes per year. In addition,
the COVID-19 pandemic in 2020 critically increased the
production of plastic waste due to the use of face masks, face
shields, and surgical gloves which were personal protective
equipment (PPE) [14]. Among the countries with the highest
production of plastics, China is with a production of 30% of
the total produced, followed by the countries belonging to
the North American Free Trade Agreement (NAFTA) such
as the United States, Canada, and Mexico, which together
produce 18% of the total plastics, followed by the African
continent with 7%, Latin America with 4%, and the 9
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countries that make up the Commonwealth of Independent
States (CIS) with 3% of the total production [15]. These
plastics due to poor recycling management end up being
dumped in rivers and oceans; a global estimate estimates that
this waste is between 1.15 and 241 million tonnes of plastic
and that the majority of this material comes from Asian
countries [16].

The durability of these plastics has led to a significant
accumulation of plastic waste that after some time due to
physical or chemical degradation gives rise to MPs, there are
also microplastics that are produced directly for the make-up
industry, medicine, and others, and these MPs are distrib-
uted in different environments such as public roads, busi-
nesses, restaurants, and marine ecosystems such as rivers,
oceans, and seas around the world [17, 18]. It has been
observed that the distribution of MPs is majorly influenced
by either human activities or geographical conditions [19].
The reason behind this is the lightweight nature of MPs,
which enables it to be carried to various locations through
several means such as wind, water currents [20], pre-
cipitation, surface runoff, infiltration, and river transport.
You can refer to Figure 2 for a visual representation of this
phenomenon. Residues of MPs move extensively over large
distances, evidenced by their occurrence in pristine and
remote areas such as the poles [22], deep sea, and oceanic
islands [23].

3.2. Type of Microplastics in the Environment. MPs, or
microplastics, can be divided into primary and secondary
categories. Primary MPs are produced by companies
themselves, mainly in the cosmetic and healthcare industry,
to market them as additives [24]. On the other hand, most
MPs are of secondary origin. This is because plastic articles
are often used in a disposable manner without considering
that they can take over a hundred years to degrade in nature
[25]. This degradation can occur due to several factors such
as ultraviolet radiation, biodegradation, physical erosion, or
chemical oxidation. As a result, smaller plastic particles are
released into the environment from items such as textile
fibers, toys, and car tires [26]. These particles, which have
a diameter of less than 5 mm, are known as MPs. Secondary
MPs are mostly moved to remote areas through tourism, to
lakes and rivers through fishing, and to rivers, groundwater,
and beaches through wastewater and urban runoff, as well as
to residential areas through urban transport [27]. Table 1
shows the two main categories of MPs based on their origin
and sources.

In Figure 3, the types of existing microplastics can be
seen, including some captured in the depths of the sea that
consisted mainly of colored pieces and the others in makeup
microspheres that have already been prohibited in some
countries such as England [38], which are the primary and
secondary microplastics, respectively.

3.3. Route and Destination of Microplastics. MPs are found in
different ecosystems and follow different transport routes on
land, waterways, and rivers, accumulating in soils [39-41],
urban areas, snow, ponds, groundwater [42], river channels,
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FIGURE 2: An illustration of the routes that microplastics follow and their global effect on the ecosystem and marine life [21].
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2.8-0.5mm
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FiGgure 3: Examples of types of microplastics. Elements shown are primary microplastics (A) and secondary microplastics (B) [36, 37].

and supraglacial [43] wastes and eventually becoming widely
distributed causing damage to biotic systems by entering the
food chain through direct or indirect consumption, and
indirect consumption occurs when food is consumed which
transports the MP particles to places further away from their
point of origin [44].

The occurrence and accumulation of MPs occur
worldwide, although the highest production of secondary
MPs occurs in developing and emerging countries; among
the main factors are the lack of recycling policies to raise
awareness among the population and poor wastewater
treatment management [45]. The occurrence of MPs on
agricultural land occurs due to the use of crop fertilizers
made from sludge from wastewater treatment plants, as
industrial, textile, and domestic wastewater flows into these
plants and transports MPs [46]. In rivers, the main sources
of MPs are the discharge of plastic waste directly into rivers,
boil water discharges from urban areas, and surface runoff
[47]. In aquaculture areas, the wear and tear of plastic
materials that are part of working tools such as ropes, nets,
cages, foam floats, and containers cause the appearance of
MPs that pollute the waters of aquaculture ponds [48, 49]. In
groundwater, MPs occur through leaching from the soil
surface, percolation of wastewater through pores, and
ground breaks.

3.4. Microplastic Toxicity. The toxicity of microplastics is
related to the adhesion on their surface of pollutants and the
release of phthalates, bisphenol A, and brominated flame
retardants, the latter being used to enhance the properties of
plastics which, when entering living organisms, have an
impact on their health due to their intrinsic physical
properties [50, 51]. In humans, the entry of MPs into the
body can occur with primary and secondary MPs. Primary
MPs can enter the body through the epidermis by the use of
small plastic particles in cosmetics and orally employing
some capsules and tablets that use MPs to enhance drug
release [52]. In secondary MPs, entry into the body can occur
through airborne particles and textile fibers or the con-
sumption of contaminated food, with indirect consumption
being the main form of MP entry [53]. Ingestion of MPs can
occur through the consumption of fishery products [54]

such as shellfish [55], agricultural products such as fruits and
vegetables [56], condiments such as basil [57] and cooking
salt [58], and other industrial and packaged products such as
bottled water due to inadequate water treatment or the
constant reuse of bottles [59, 60].

The health effects that MPs can have on the human body
are still being studied, and it is not yet fully understood
which diseases they can cause. However, some of the pos-
sible health impacts of the presence of MPs are discussed
below. The presence of microplastics in the body can damage
the intestinal epithelium, alter gene expression and hormone
production, cause oxidative stress in the endocrine system,
and contribute to skin conditions by entering through the
capillary follicles [61]. The bronchioles may also be affected
by the accumulation of MPs, as it can cause inflammatory
injury, oxidative stress, cytotoxicity, translocation [62], and
neurotoxicity which is associated with the release of
chemical additives such as plasticizers and brominated flame
retardants from MPs that interfere with the functioning of
the nervous system, in addition to MPs possibly altering
reproductive function by affecting fertility and embryonic
and transgenerational toxicity [63] (see Figure 4).

3.5. Microplastic Identification Approaches. The identifica-
tion of MPs has now become a priority. However, it remains
a challenge due to the intrinsic properties and varied
physicochemical characteristics of MPs that make accurate
recognition difficult [23]. There are different methods to
identify MPs, among which the physical method of visual
inspection with the help of microscopes is not very accurate
because MPs have a small size and a great variety of shapes,
and in the samples, there is the presence of other materials
that can generate confusion and an incorrect quantification;
the use of this method is recommended when analyzing large
plastic particles (>1 mm) [64]. Another method is the
chemical method which presents more precise results such
as the use of vibrational techniques used in Fourier-
transform infrared (FTIR) spectroscopy and Raman spec-
troscopy together with their microscopic variables (uFTIR or
yRaman) for the identification of MPs based on the ac-
cessible references. Within the chemical method, we also
have the technique of pyrolysis-gas chromatography/
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FIGURE 4: Schematic illustration of exposure of MPs to human health.

pyrolysis-mass spectrometry (Pyr-GC-MS), which combines
two methodologies with pyrolysis [65]. Another technique
to consider for the identification of MPs is scanning electron
microscopy (SEM) which provides high-resolution images
using the area to be studied to reveal morphological details;
this study is usually complemented by energy-dispersive X-
ray spectroscopy (EDS) which uses a high-energy electron
beam to confirm the chemical composition of the particles,
as each chemical element emits X-rays with specific energies
[66]. Apart from traditional methods, various novel tech-
niques have been developed for the detection of MPs. These
techniques include thermogravimetry and differential
scanning calorimetry (TGA-DSC) which analyze the
properties and thermal responses of polymers in the sample,
thermal extraction, desorption, gas chromatography, and
mass spectrometry (TED-GC-MS) among others [67].

The integration of multiple methodologies can com-
plement each other and help overcome the challenges as-
sociated with identifying microplastics [68] (see Figure 5).
Table 2 shows a detailed overview of the primary analytical
techniques used for the detection and quantification of MPs.
The table focuses on various pretreatment methods and
concentration techniques and highlights the advantages and
disadvantages of each method.

3.5.1. Physical Method

(i) Visual inspection method: MPs can be detected
through visual inspection or by microscopy to
quantify their presence in the samples being analyzed.
This method relies on the fact that MPs have distinct
physical characteristics that make them distin-
guishable from other particles [82]. The evaluation of
microplastics (MPs) usually involves identifying their
color and shape, which can be performed without
a complex analysis. This method has several

advantages, such as not requiring extensive training,
expensive equipment, or toxic materials. However, it
may lack precision, especially when analyzing par-
ticles smaller than 500 ym [83]. Therefore, it is ad-
visable to use this method for initial procedures or
educational purposes only. It is worth noting that the
margin of error can be as high as 70% due to the
presence of contaminating particles in the sample
that resemble MPs, making their distinction
difficult [84].

3.5.2. Chemical Methods

(i) Pyr-GC/MS: At first, high-temperature thermal
decomposition of polymers is carried out through
pyrolysis, resulting in smaller particles [69]. The
temperature range for this process can vary be-
tween 500 and 800°C. The material obtained from
pyrolysis can then be separated by using a gas
chromatography column based on their retention
time, which can vary according to their chemical
and physical properties. Finally, mass spectrome-
try is used to compare the results of the samples
with the library of spectra to identify microplastic
particles [85].

(ii) Fourier-transform infrared (FTIR): Fourier-
transform infrared (FTIR) spectroscopy has
three distinctive modes: transmittance, reflectance,
and attenuated total reflection. Each mode is used
to identify different aspects of the sample under
test. In transmittance mode, the infrared spectrum
is compared to identify the functional groups and
chemical components present in the sample. Re-
flectance mode is used when the sample is too
opaque for transmittance mode, and the signal
cannot be measured. Finally, attenuated total
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FIGURE 5: Methods for detection and identification of microplastics in aquatic systems.

reflection mode is used to provide a strong and
easy-to-interpret signal [86]. FTIR is an invaluable
tool that enables us to identify microplastics by
analyzing the vibrations of the chemical bonds in
their polymers and also provides us with crucial
information regarding the aging of the material by
analyzing the carbonyl, hydroxyl, and carbon
oxygen groups. This makes FTIR an essential re-
source for any study or research concerning the
characterization of plastic materials [87].

(iii) Raman spectroscopy (RS): This method is a pow-

erful and noninvasive analytical technique that
provides valuable information about complex
molecular structures. It allows for the evaluation
and identification of different types of materials
without altering their integrity, as a high-energy
laser with a specific wavelength used as the output
source [88]. This makes it an important tool for
analyzing polymers, as each polymer has its own
unique Raman spectrum that can be used for
identification and characterization purposes [89].
According to [90], this technique has been suc-
cessfully utilized to quantify MPs with dimensions
ranging from 20 ym to 50nm even in low con-
centrations and complex environments.

(iv) Attenuated total reflection Fourier-transform in-

frared (FTIR-ATR): This technique is a relatively
fast and nondestructive method that is primarily
used for detecting the presence and characteriza-
tion of MPs through molecular vibration analysis.
To achieve better detection time and precision, it is
recommended to apply a pretreatment tailored to
the specific type of sample and analysis objective
[91]. It is worth noting that despite the advanced
technology used for detecting MPs, the method
still faces several challenges. One such challenge is

detecting tiny particles that are embedded in
various groupings or concealed by a biological
coating [92]. According to Aguirre’s study [81],
FTIR-ATR analysis revealed the presence of two
primary types of polymers: polyester and
polyethylene-vinyl acetate. The correlation rate
was found to be between 0.89 and 0.96 for these
polymers, indicating their identification with high
accuracy.

(v) SEM-EDS: It is a highly effective analytical tech-
nique that combines scanning electron microscopy
(SEM) and energy-dispersive X-ray spectroscopy
(EDS) to identify and characterize microplastics
(MPs). By using SEM to generate high-resolution
images of the sample, this technique allows for the
identification of the surface features and size of
MPs, as well as other residues that may coincide in
the sample. This information can be used to un-
derstand the degradation of MPs and to develop
strategies for mitigating their harmful effects [75].
EDS is capable of providing valuable information
on the chemical composition of microplastics,
allowing for the identification of their types. This is
made possible through the use of X-rays emitted by
each element present in the sample. In addition,
SEM-EDS is a powerful tool that enables visuali-
zation of both morphological and compositional
data of inorganic elements with a significant
amount of carbon [93].

(vi) Micro-Fourier-transform infrared (micro-FTIR):
Infrared microscopy is a powerful technique that
uses infrared radiation to analyze the molecular
vibrations of chemical bonds. This approach allows
for the identification and characterization of mi-
croscopic particles (MPs) in samples placed under
observation, as each bond has its characteristic
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band in the IR spectra. By using a qualitative
method, this technique enables the identification
of chemical components on a microscopic scale in
various ecosystems, making it a valuable tool for
scientific research and analysis [94]. Micro-FTIR is
a highly precise technique for detecting micro-
plastics (MPs) with dimensions less than 100 mm.
However, there is a need for further development
of the technique to enable its use in large-scale
studies.

(vii) Thermogravimetry coupled to differential scan-
ning calorimetry (TGA-DSC): This technique
utilizes thermal analysis and weight loss control in
TGA or phase change in DSC to identify MPs. This
approach facilitates the analysis of small samples
and enables the identification of the thermal de-
composition of parliamentarians [95]. In both
scenarios, there is a possibility of errors when
attempting to distinguish between different types
of polymers. This is particularly true when there
are polymers with similar properties, causing them
to overlap and making it difficult to differentiate
one from the other [96]. Majewski [78] has suc-
cessfully employed this technique in various en-
vironments including wastewater. The study was
able to accurately quantify PP and PE particles, but
it proved challenging to distinguish other com-
munes from MPs.

(viii) Thermal extraction desorption-gas chromatography-
mass spectrometry (TED-GC-MS): The TED-
GC-MS technique has proven to be a reliable method
for analyzing large samples, with a weight of up to
100 mg, and accurately identifying the mass and type
of MPs. This technique has the advantage of being
both efficient and cost-effective as it does not require
prior treatments that consume a lot of time and
money. With these benefits, this method is a prom-
ising solution for identifying and analyzing MPs in
various samples [97]. TED-GC-MS analysis is
a powerful tool for characterizing polymers by de-
termining the relative proportions of different types
of polymers present in various environments. This
information is used to identify and distinguish be-
tween different types of polymers with a high degree
of accuracy [80].

3.6. Emerging Techniques for the Removal of Microplastics.
Over the years, several techniques have been developed to
eliminate particulate matter and contaminants from dif-
ferent environments. These techniques can be divided into
physical, chemical, and biological methods, with each
method having its own advantages and disadvantages based
on the source of the particles to be removed. In this section,
we will discuss the latest solutions in detail, including
physical methods that use magnetic principles for water
purification, such as the magnetic nanoparticle method [66].
Other physical methods include accelerated sand filtration
(CAS) [98], microfiltration (MF), and ultrafiltration [99].

Moreover, various chemical methods have been proposed in
the literature, including electrocoagulation [100, 101] and
photocatalysis [102, 103], which have shown promising
results in different applications. In this section, the biological
methods used for removing microplastics are explained,
with a focus on bacteria and fungi. While these eukaryotic
organisms have been little studied, researchers continue to
investigate their potential to efficiently remove micro-
plastics. While this method may not be as efficient as others,
ongoing research provides valuable information to enhance
their effectiveness [104]. Figure 6 provides visual repre-
sentations of each of the techniques used, and Table 3 offers
expanded information to supplement the visuals.

3.6.1. Physical Methods of Removal. Physical removal
techniques are an effective means of separating contami-
nants from a mixture without altering their chemical
composition. These techniques leverage the physical prop-
erties of components, such as particle size, density, and
morphology, to efficiently filter large amounts of pollutants.
However, the effectiveness of these techniques may vary
depending on the characteristics of the contamination
source and the treatment method used [105]. When it comes
to removing suspended solids from liquids, the sedimen-
tation technique is commonly employed, relying on gravity
to perform separation. However, particle retention-based
methods such as ultrafiltration (UF) and rapid sand filtration
(RSF) can also be used to remove MPs, with varying effi-
ciency depending on their unique physical characteristics
[109]. Last, the article highlights two additional methods:
one that utilizes polyoxometalate magnetic absorbers and
another that employs dissolved air flotation [68].

(i) Rapid sand filtration (RSF): The method exclusively
relies on physical mechanisms to filter MPs by
utilizing two types of force: the intermolecular van
der Waals force and external forces that generate
mechanical deformation. This approach ensures
effective filtration and removal of MPs from the
system [134]. RSF filtration involves the use of
a sand layer that captures and retains solid particles.
This system consists of a layer of coarse sand with
a granular size ranging from 3 to 5 mm. The water
passes through this layer and then goes through
quartz with particles ranging from 0.1 to 0.5mm,
which effectively captures and retains the MP
particles [109].

(ii) Dissolved air flotation (DAF): It is a highly effective
method used for the purification of suspended
particles, including MPs (particulate matter). The
process involves introducing air microbubbles into
water, which come into contact with the suspended
particles and form a layer of sludge that can be easily
removed. However, the effectiveness of the removal
of MPs (microplastics) depends on various factors
such as temperature, mixing speed, and air satu-
ration. By analyzing these variables, the treatment
system can be optimized to achieve better results
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FIGURE 6: Microplastic removal approaches with physical, chemical, and biological methods [105-108].
[135]. The method is not only safe but also highly larger mesh size can filter a greater amount of
effective, as it eliminates the need for direct contact particles, making it an important consideration for
with toxic compounds. In addition, the DAF system optimal filtration [137].
is cost-effective due to its minimal maintenance (iv) Ultrafiltration (UF): UF technology is a cost-
requirements and energy-efficient operations [136]. effective way to purify water and remove contam-
(iii) Disc filter (DF): The filtration system comprises inants without relying on expensive equipment or
a series of circular discs, which are perforated and additives. Recent studies, such as the one mentioned
stacked in an airtight container. Typically, the by [112], have demonstrated high efficiency rates in
meshes are made with high-quality polypropylene, the removal of MPs, ranging from 86% to 97.96%.
polyester, or polyamide, which allow water to pass The efficiency of UF depends on the size of pores,
through while retaining any contaminating par- design, material, operating pressure, and mainte-
ticles. The size of the pores ranges between 10 and nance carried out on the membrane used, since
40 microns, making it highly effective in filtering these factors intervene in the retention of MPs
out impurities. Numerous studies have proven the particles [138], facilitating their electrostatic in-
remarkable efficiency of this filtration system in teraction with each other and the membrane sur-
producing clean and safe water. According to the face. Hence, the correct configuration of the system
research conducted by [110], the DF method is of paramount importance [139].
demonstrated a remarkable retention rate of 89.7% (v) Dynamic membrane (DM): The DM method is
for the particles, effectively capturing a significant designed to minimize the buildup of deposits in the
portion of MP particles from wastewater. Over primary membrane by utilizing a highly permeable
time, the surface of the filter may gradually ac- mesh with tiny holes that are on the scale of mi-
cumulate sediment, which can lead to a decrease in crometers or millimeters. This mesh aids in the
filtration efficiency. To maintain optimal perfor- formation of a sedimentary layer that functions as
mance, it is recommended to periodically clean the a secondary protective layer, thus reducing the
filter by washing away any accumulated sludge pressure in the primary membrane [140]. An in-
using high-pressure counterflow or using sodium novative approach to improve filtration efficiency
hypochlorite. This will help ensure that the filter involves using an additional membrane as a pro-
continues to operate effectively and efficiently tective layer. This method is effective in filtering out
[111]. One key factor that impacts the efficiency of remaining contaminant particles and MPs at

particle removal in a disc filter is the mesh size. A a higher rate. Moreover, this system operates solely
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on gravitational force, eliminating the need for
bombs [141].

(vi) Magnetic nanoparticle method: Magnetic particle
separation is a technique that enables the removal of
MP fragments from water using magnetic particles.
This makes it easier to treat large quantities of water,
making it more advantageous than traditional fil-
tration techniques. Magnetic particles, such as Fe
nanoparticles, have a hydrophobic property, which
makes it easy for them to adhere to their surface and
facilitate their collection using magnetic methods
[121]. According to recent research, magnetic car-
bon nanotubes (M-CNTs) have proven to be ef-
fective in adsorbing various polymers such as
polyethylene (PE), polyethylene terephthalate
(PET), and polyamide (PA). The tests carried out
showed that the total removal of MPs was achieved
in just 300 minutes using 5g-L™" of M-CNTs in
a concentration of Sg-L’1 of MPs [142]. A note-
worthy study on this method was conducted by
[126]. They utilized a superparamagnetic iron oxide
core (Fe,Os, hematite) that was coated with silica
(magPOM-SILPs) on the outer layer. This coating
had a high affinity to interact with various con-
taminants such as organic and inorganic particles,
germs, and MPs in aqueous solutions. The tech-
nique facilitated their extraction using a permanent
magnet, making it easier to separate them from the
solution.

3.6.2. Chemical Methods of Removal. Conglomerates can be
formed through chemical reactions that transform the MPs
in the chemical method. This process can also be utilized to
decompose or make the surface of MPs adherent, which
helps in extracting them from water using filters or other
procedures [116]. When employing the chemical method,
a common approach is to introduce certain chemicals that
can interact with the polymer particles, leading to the for-
mation of flocs. This process facilitates the filtration of MPs,
but it may generate waste or sludge that needs to be collected
afterwards [106]. Scientists are currently conducting studies
to identify the optimal coagulants or parameters that need to
be considered for efficient removal of MPs. These parameters
include the type of coagulant, the appropriate dosage, and
retention time [70].

(1) Coagulation/flocculation: Electrocoagulation is an
effective method for removing microplastics from
aquatic environments due to the negative charge of
MPs. In various studies, the use of iron salts
(Fe5(S04)5.9H,0 and FeCl;.6H,0) and aluminum
salts (KAI(SO4)212H20, A1C136H20, and
Al,(SO,)3.18H,0) has been found to be effective in
adhering to MPs. In addition, flocculants are used
to facilitate the formation of globules that can be
easily precipitated to the base of the coagulation
tank [143]. The process of removing MPs from
water before releasing them into the environment
is imperative in water treatment plants. Recent
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tests conducted by [144, 145] have shown that
coagulants containing aluminum and poly-
acrylamide are highly effective in removing MPs
from water.

(2) Electrocoagulation: This is a potential technique to
remove MPs and has the advantage that it does not
leave sludge residues like coagulation, since it uses
electric current in the sacrificial electrodes for the
release of metal hydroxides, which precipitates MP
particles, avoiding the use of chemical additives
[146]. These electrodes can be made of various
materials, but the most used ones are aluminum and
iron, which after the electrochemical reactions
produce metal ions from the anode and hydroxide
ions from the cathode. The latter adhere to MPs,
obtaining more voluminous conglomerates that can
be filtered more easily [147].

(3) Photocatalysis: This technique for removing MP
particles involves the use of solar energy to acti-
vate photocatalysts. These photocatalysts speed up
chemical reactions that degrade and decompose
MP particles through oxidation. The process of
photocatalysis is cost-effective and does not have
anegative impact on the ecosystem. Therefore, it is
a promising technique for the removal of MPs
[107]. One of the materials used for photocatalysis
in the removal of particulate matter is titanium
dioxide (TiO,). Most studies on MP removal use
TiO, since it can absorb light, particularly ultra-
violet light, and generate pairs of electrons and
holes in its crystalline structure. This occurs due to
the difference in energy between the conduction
and valence regions when TiO, is continuously
exposed to light. As a result, the surface tem-
perature rises, leading to the removal of con-
taminating particles from water [148], Examples
of this are the micromotor and the microrobot,
which will be detailed as follows:

Micromotor: These are materials capable of self-
propulsion through the conversion of energy into me-
chanical motion. Photocatalytic activity can play a role in
this process, as in the case of a study by [149], where the
micromotor was made of titanium dioxide (TiO,) and
utilized the photocatalysis of hydrogen peroxide (H,0,)
with visible light to move itself. In the absence of light, it
used glucose oxidase (GOx) to continue moving. The
movement of the micromotor is a result of photochemical
reactions that occur in water and H,O, due to electron holes
[118]. In a recent study conducted by [117], TiO, was used as
a base material, in combination with other elements, to
eliminate microplastics (MPs) from water. The resulting
material, called (Au@mag@TiO,, mag=Ni, Fe), exhibited
excellent mobility when exposed to UV radiation and H,0,
in water. When tested in river water, it demonstrated a 67%
efficiency in MP removal.

Microrobots: They are a recently developed technique
for eliminating MPs, based on self-propulsion using light,
which allows them to interact with their surroundings. To
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achieve the best results in terms of micromotor speed,
various semiconductors must be tested to identify those
most sensitive to light [150]. For example, the photocatalytic
microrobot propelled by light, constructed with bismuth
vanadate (BiVO,) developed by [119], has the ability to move
efficiently in aquatic environments under visible light
stimulation, adhere to the surface of different polymer
structures such as polylactic acid (PLA), polycaprolactone
(PCL), polyethylene terephthalate (PET), and polypropylene
(PP), and decompose MPs into small organic molecules and
oligomers.

3.6.3. Biological Methods of Removal. The biological ap-
proach utilizes microorganisms like bacteria and fungi to
break down MPs and organic substances in wastewater
through aerobic and anaerobic processes. The research
conducted by [151] suggests that aerobic processes are more
efficient in degrading organic matter and MPs than an-
aerobic processes, which are primarily used for sludge
stabilization. According to [152], after treatment, a total of
2.743 MP/kg (dw) are left in the sludge, indicating that
microorganisms are capable of removing MPs when enzy-
matic activities occur [153].

(1) Oxidation ditches: The oxidation ditch treatment
method is based on the principle of activated sludge.
It is used for treating wastewater and involves aer-
obic biological processes that occur in the oxidation
channel. During these processes, organic substances
and MPs present in water are decomposed [154].
There are four generations in this method. In the first
generation, oxidation ditches are used to combine
oxygenation processes and gradual decantation of
water intermittently. The second generation involves
the addition of a vertical aerator with microorgan-
isms that transform nitrogen compounds into dif-
ferent elements through nitrification and
denitrification. Bacteria are used to transform ni-
trates into gaseous nitrogen (N2). The third gener-
ation achieves significant dephosphorization and
denitrification, enabling the fourth generation to use
a return system to improve MP removal efficiency
[108]. Recent studies have demonstrated that this
method is highly efficient, achieving a 97% removal
rate of MPs [121].

(2) Anaerobic, anoxic, and aerobic (A*0): The technique
includes three phases: the first is anaerobic, which
affects the organic load, followed by the anoxic
phase, and finally the aerobic phase. Denitrification
takes place during these phases, which helps in re-
ducing the amount of nitrates in water, capturing
phosphorus, and oxidizing organic material [142].
The study conducted by [126] demonstrated the
effectiveness of this method in degrading micro-
fibers, achieving a removal efficiency of 98.3%.
Furthermore, another study conducted by [155]
found that the method was highly efficient in re-
moving MPs from wastewater, with a removal
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efficiency of 99.18%. The presence of these pollutants
in the sludge further supports the potential of this
technique for wastewater treatment.

(3) Membrane bioreactors (MBRs): To produce a high-

quality treated effluent, a technique that uses
membranes and microorganisms in an aerobic en-
vironment is employed to remove MPs. The process
involves transferring the contaminated water to the
bioreactor, which then filters MPs from the water
flow through a membrane [156]. Filtering mem-
branes can be classified as microfiltration or ultra-
filtration depending on pore size. Most membranes
have pores with a diameter of 0.1 micrometers, which
easily retains MP particles and microorganisms
[139]. This technique effectively eliminates MPs, but
avoiding membrane fouling is crucial [157].

(4) Sequential batch reactor (SBR): It is a wastewater

treatment system that is configured to work se-
quentially, allowing treated water to pass through all
treatment phases to remove contaminating residues
and fragments of MPs [158]. One of the main ad-
vantages of this system over conventional techniques
is that it can perform the entire treatment in a single
tank [159]. The SBR system has one inlet for
wastewater and an aerator system that uses com-
pressors with a stage for sludge renewal. Further-
more, it has an extraction mechanism to separate
purified water and regulation systems to program the
operating sequence [160].

(5) Conventional activated sludge (CAS): The system is

designed to treat wastewater by utilizing microor-
ganisms that break down organic matter. This system
is composed of two phases. In the first phase, air is
mixed with boiled water to facilitate the bio-
degradation of particulate matter by creating bio-
films generated by microorganisms. In the second
phase, decantation is performed to separate the bi-
ological sludge from the treated water, which ef-
fectively removes MPs [161]. This technology
efficiently removes MPs with a 95 to 99.9% success
rate, particularly from microfibers [126].

(6) Role of microalgae in the degradation of micro-

plastics: There are certain organisms, such as the
green alga Scenedesmus dimorphus, the diatom
Navicula pupula, and the blue-green alga Anabaena
that can decompose microplastics through bio-
degradation processes. Both high- and low-density
polyethylene can be decomposed by these organisms.
In fact, the degradation of low-density polyethylene
(LDPE) has been noted to be particularly efficient
[131]. Microalgae degrade polymeric substrates on
plastic surfaces in wastewater using ligninolytic
enzymes and exopolysaccharides [162].

(7) Fungal degradation of microplastics: Biodegrading

plastics can be challenging due to their chemical and
physical properties, which include a high molecular
mass, hydrophobic nature, and low solubility.
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However, using filamentous fungi in bioremediation
processes presents a viable solution to tackle this
issue [129]. Fungi possess the ability to trigger the
creation of different chemical bonds in microplastics.
These bonds include functional groups like carboxyl,
carbonyl, and ester. Fungi’s filamentous structures,
called hyphae, are widely distributed and can pen-
etrate the surface of polymeric materials effectively.
As a result, they can establish connections and ini-
tiate the degradation process of plastics [163]. Fungi
belonging to the genus Aspergillus, such as Asper-
gillus niger, Aspergillus flavus, and Aspergillus oryzae,
are mainly used in biodegrading low-density poly-
ethylene. This is because of their natural ability to be
produced abundantly and grow extensively [164].

(8) Bacterial degradation of microplastics: Most of the
bacteria that are capable of decomposing plastic
materials through enzymatic processes belong to
Gram-negative bacilli. Specifically, Pseudomonas
bacteria have proven to be highly effective in bio-
degrading various plastics, including polyethylene
variants of both natural and synthetic origins [165].
According to research conducted by [114], high-
impact  polystyrene  emulsions  containing
nanometer-scale plastic particles showed a signifi-
cant reduction in turbidity within four days of ex-
posure to Bacillus spp. and Pseudomonas spp. strains.
The study observed a decrease of 94.0% and 97.0%,
respectively. According to a study conducted by
[133], polyethylene sheets of 30um and 40um
thickness were exposed to various types of bacteria
including Bacillus, Brevibacillus, Cellulosimicrobium,
Lysinibacillus, Ochrobactrum, and Pseudomonas. The
study found that Bacillus cereus and Brevibacillus
borstelensis had the highest biodegradation rates,
with percentages of 35.7% and 20.4%, respectively.

4. Conclusions

The lack of policies that raise awareness among the pop-
ulation about the management of plastic waste and the poor
recycling of products, together with the environmental
factors that degrade them and the cosmetic and medical
industry, have generated an increase in the production of
MPs, which are distributed in the most remote places be-
cause they are easily transported through the air, sewage, and
food, affecting the flora and fauna of the places where they
are deposited. Strategies to reduce the impact of MPs on the
ecosystem have focused primarily on wastewater treatment
plants because the channels through which water passes
make it easier to control the detection and removal of MPs.
The technologies shown in this study for the detection and
removal of MPs have limitations when applied, especially if
applied individually, since efficiency could be reduced. So,
a solution will be to combine different techniques based on
their advantages and disadvantages to improve efficiency
and their application in real situations, since if MP particles
are too small or the water is too turbid, their identification or
removal becomes more complex. Therefore, it is very
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important to focus on improving the detection and removal
technologies of MPs, taking into account that in this study,
with the aforementioned techniques, a higher concentration
of MPs was detected in wastewater with concentrations that
have reached up to 100 ym, and the technique with the best
removal efficiency has been membrane bioreactors with an
efficiency of 99.9%.
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