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Climate change impacts are posing greater risks to biodiversity, food security, and livelihood in Africa, specifcally in arid and
semi-arid environments. In Ethiopia, the genus Balanites Del., which belongs to the monogeneric family called Balanitaceae, has
the multipurpose B. aegyptiaca and B. rotundifolia. However, these species are overlooked and endangered by climate change, and
their species distributions are not well documented and understood in Ethiopia. Terefore, this study aimed to model the habitat
suitability of these two species using current occurrence data, climate, and landscape data and predict their distribution under
climate change. Occurrence points of B. aegyptiaca (n= 224) and B. rotundifolia (n= 80) were collected from feld surveys and
herbarium. Bioclimatic (WorldClim.v2), soil, and landscape variables were used in the ensemble species distribution models
(SDMs) using six algorithms (GLM, GAM, BRT, RF, MARS, and SVM). Te ensemble SDMs under the current climate showed
that the Central Ethiopian Rift Valley is highly suitable habitats for B. aegyptiaca accounting for an area of 114,517 km2, and the
Southern Ethiopian Rift Valley is highly suitable habitats for B. rotundifolia accounting for an area of 41,373 km2.Te performance
of ensemble SDM under the current climate for B. aegyptiaca showed 0.95 AUC, 0.80 TSS, 0.79 COR, and 0.87 deviance; and that
of B. rotundifolia with 0.90 AUC, 0.80 TSS, 0.80 COR, and 0.50 deviance. Temperature annual range (Bio07) and precipitation
seasonality (Bio15) for B. aegyptiaca; and precipitation of driest quarter (Bio17) and annual precipitation (Bio12) for
B. rotundifolia are the most key bioclimatic variables that afect their distributions. Te ensemble SDMs under SSP2-45 and SSP5-
85 (HadGEM3-GC31-LL) climates showed that the highly suitable areas will remain suitable for both species (B. aegyptiaca with
116,934 km2 area cover (ΔA=+2.1%) and 125,757 km2 area cover (ΔA=+7.5%) and B. rotundifolia with 29,547 km2 area cover
(ΔA=−28.6%) and 50, 894 km2 area cover (ΔA=+23%), respectively).Te fndings of this study implicated that the Ethiopian Rift
Valley region in general for B. aegyptiaca and the Southern Rift Valley of Ethiopia for B. rotundifolia are suitable areas for
conservation and sustainable use of the species.

1. Introduction

Temain drivers of biodiversity loss include habitat loss and
fragmentation, overharvesting, invasive alien species, and
climate change [1, 2]. It is anticipated that in the 21st,
century, climate change, characterized by an increasing
atmospheric CO2 concentration, will pose a serious threat to

the biodiversity, abundance, and distribution of most species
[1–3]. Te vulnerability of a species to efects of climate
change depends on its exposure, sensitivity, and adaptive
capacity [3]. For instance, a species with low sensitivity and
high adaptive capacity (i.e., thermophilic species) is more
likely to cope with climate change. On the other hand,
a species with high sensitivity and low adaptive capacity is
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more likely to face the risk of extinction due to climate
change [3]. Previous studies have indicated that prolonged
habitat reduction resulting from climate change has sig-
nifcantly altered the structure and species composition of
various ecosystems [4]. In this regard, endemic species with
limited habitat ranges are prone and vulnerable to the
changing climate [5, 6]. For that reason, it is predicted that
over 5000 plant species in Africa will lose their ideal habitat
ranges by 2085 [6, 7].

Dryland areas, especially semi-arid regions, have been
expanding over past 60 years and are projected to continue
expanding in the future [8–11]. Climate predictions suggest
that both the warming temperature and drought frequency
in drylands will increase at a faster rate than the global
average [12]. Te expansion of dryland ultimately decreases
carbon sequestration and exacerbates local warming [11].
Tus, the efect of climate change on the drylands is posing
greater risks to biodiversity, food security, and livelihoods in
Africa [13, 14]. In this regard, Ethiopia is considered one of
the most vulnerable countries in climate change [6, 15]. Te
majority of the Ethiopian landmass (ca. 70%) is arid and
semi-arid, with erratic and low rainfall patterns [16], and
bizarre biodiversity resources supporting large numbers of
communities [17]. In recent years, dramatic climate change
has been witnessed in Ethiopia, generally manifested by
increasing temperatures and decreasing rainfall [18, 19].
Similarly, we expect that climate change will have an impact
on the distribution and abundance of Balanites species in
Ethiopia. Terefore, it is crucial to understand the distri-
bution of Balanites in relation to the climate change in
Ethiopia. Tis understanding will allow for appropriate
actions to be taken towards the conservation and man-
agement of the species.

Balanites Del. is a genus in the family Balanitaceae that
includes multipurpose species distributed in dryland eco-
systems in Ethiopia mainly in arid and semiarid areas.
Diferent species of Balanites were reported for their use as
sources of medicine, wild edible fruit, and fuel wood, and so
on [20]. Balanites aegyptiaca is a multibranched, spiny shrub
or tree up to 10m tall and distributed in a wide ecological
range. It occurs in the altitudinal range from below 500 to
2,000meters above sea level [21]. Balanites rotundifolia is
multistemmed, spiny, evergreen shrub or small tree (2–5m
tall), drought resistant, and grows on a variety of soils. In
tropical African countries, including Ethiopia, B. aegyptiaca
and B. rotundifolia give crucial ecological services including
frewood, charcoal, human and veterinary medicine, forage
for animals including bees. It also gives ecological services
such as shade and soil conservation [20, 21]. In Ethiopia,
B. aegyptiaca is commonly used as a medicinal plant in the
Ada’ar District of the Afar region [22] to treat wounds [23],
as well as infant sickness, herpes zoster, blackleg, breast
cancer, lung infection, mumps, dysentery, and other diseases
[24]. In Ethiopia, B. rotundifolia is also reported to be used as
a medicinal plant in the Ada’ar District of the Afar region
[22] and to treat malaria [23]. Personal observation also
proves that many fauna and primate species also feed on the
fruits of B. aegyptiaca and B. rotundifolia. However, these
important species are not well understood with regards to

their habitat suitability in the interface of climate change in
Ethiopia. Tus, apart from impacts of concurrent climate
changes, the utilization of Balanites for multipurpose use
could aggravate the pressure on the population of species
across a wide range of ecological areas. In Ethiopia, no
proper areas are designated to promote the plantation,
cultivation and domestication, and conservation of Bal-
anites. Hence, it is very essential to model the species dis-
tribution of Balanites using emerging mathematical
algorithms. Tis will help in identifying the best suitable
habitat (i.e., niche) for the species. Also, Balanites is con-
sidered one of the best candidate species in dryland forestry
programs, and by identifying their suitable habitat, it is
possible to delineate areas that are appropriate for conser-
vation and promotion of dryland rehabilitation.

Species distribution models (SDMs) are used as a tool to
better understand the occurrence, ecology, and vulnerabil-
ities of species and environmental factors that are linked to
species distribution [25–28]. SDMs are mathematical
models that simulate species’ distributions in reference to
observed environmental variables (e.g., climatic, landscape,
soil, and so on) making spatial predictions of the species in
a given time [29]. Species distribution models are classifed
into three main groups: profle models (e.g., Bioclim), sta-
tistical regression models (e.g., general linear model), and
machine-learning models (e.g., random forest). Recently,
SDMs are steadily employed in ecological studies, such as
habitat suitability studies, and climate change impacts [30].
Tey are widely used methods to predict the spatial and
temporal distribution based on species occurrences and
environmental variables that limit species habitats [31].
SDMs have variable performances [32] so that selection and
implementation of models require great care to avoid model
uncertainty that could mislead policymakers [29]. Conse-
quently, many studies used more than one model in
comparison [32].

Despite having a wider distribution and much eco-
logical and economic importance, however, the habitat
suitability of B. aegyptiaca and B. rotundifolia under cli-
mate change in Ethiopia is not well known. In other words,
the distribution and conservation status of B. aegyptiaca
and B. rotundifolia is not well documented in Ethiopia.
Hence, understanding the potential distributions of the
species fosters the future conservation and sustainable uses
of the species. Te objectives of this study are (i) to model
the current potential distributions of B. aegyptiaca and
B. rotundifolia under the current climatic conditions, (ii) to
predict the future potential distributions of these species
using SSP2-45 and SSP5-85 scenarios for years 2061–2080,
and (iii) to identify the major climatic variables de-
termining their distributions. Terefore, it was hypothe-
sized that B. aegyptiaca and B. rotundifolia would change
their species distributions under the changing climate in
Ethiopia. Te fndings of this study provide important
information for policy makers and conservation frms
regarding the potential distribution of Balanites in Ethiopia
as the climate changes. Results of this study could also be
valuable for other African and Middle Eastern countries
where Balanites is commonly found.
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2. Materials and Methods

2.1. Study Area. Tis study area is based on the arid and
semi-arid ecosystems of Ethiopia, i.e., the Ethiopian Rift
Valley, and the drylands of Northeastern, Northwestern,
Northern, Southern, and Eastern Ethiopia (Figure 1). In
other words, the study focuses on the arid and semi-arid
ecosystems (up to 2,000meters above sea level) that include
the Vachellia-Commiphora woodland and bushland proper,
Vachellia wooded grassland of the Ethiopian Rift Valley, and
Combretum-Terminalia woodland wooded grassland eco-
systems of Ethiopia [33]. However, this study ultimately
aimed to produce model outputs for the whole country (i.e.,
Ethiopia) located between 3.3° to 14.9° North and 32.99° to
47.99° East.

2.2. Species Occurrence Data. Te current occurrence points
of Balanites were collected mainly from feld surveys and
specimen records (1990s to present) of the National Her-
barium of Ethiopia (ETH), Addis Ababa University.
Terefore, a total of 224 and 80 occurrence points were
gathered for B. aegyptiaca and B. rotundifolia, respectively.
Occurrence points from felds were gathered randomly at
a distance of 5–10 km, 50–100m of the roadside, across the
Ethiopian Rift Valley region and other dryland areas. Te
work of gathering occurrence points from the feld was done
in two phases: (i) between January 2019 and October 2020
(collection during this period was made by Dr. Tigist
Wondimu for the purpose of phylogeography study by
herself ) and (ii) between January and June 2022. Moreover,
background points for B. aegyptiaca (n� 224) and
B. rotundifolia (n� 80) were generated at random points
using occurrence data as domains in R4.1.3 (Figure 2).

2.3. Environmental Variables. Te 30s resolution raster data
of bioclimatic variables (i.e., Bio01–Bio19), elevation, solar
radiation, and topographic index (all averaged for
1970–2000), and CMIP6’s future climate were downloaded
from https://www.worldclim.com/version2, the Worldclim
database [34], and downscaled to the study area (i.e.,
Ethiopia) using ArcGIS 10.8. Moreover, the data for soil
variables at 30–60 cm rootable soil depth (e.g., clay, silt, and
sand in g/100 g (%), and soil pH, cation exchange capacity
(CEC) in cmol(c)/kg, soil organic carbon content (SOC) in
g/kg, and bulk density (BD) in kg/dm3) from https://fles.
isric.org/soilgrids/latest/data_aggregated/1000m/ [35], and
as well as landscape variables (e.g., aspects and slopes) from
https://www.fao.org/soils-portal/data-hub/soil-maps-and-
databases/harmonized-world-soil-database-v12/en/ [36]
were downloaded and downscaled using ArcGIS 10.8
(Figure 2). All predictor variables were adjusted to have
a similar spatial scale (i.e., 30 s resolution) and projection
(i.e., GCS/WGS/1984). All predictor variables were adjusted
to have a similar spatial scale (i.e., 30 s resolution). Te
Intergovernmental Panel on Climate Change (IPCC) equally
treated all global climate models (GCMs) for their accuracy
[37, 38]. However, for this study, therefore, one of the better-
performing GCMs in Ethiopian environments [6, 39–41],

namely, the third Hadley Centre Global Environmental
Model run in the Global Coupled Confguration 3.1
(HadGEM3-GC31-LL), was downloaded and selected for the
year 2061–2080 under SSP2-45 and SPP5-85 [42]. Te SSPs
are a new set of CO2 emission scenarios driven by diferent
socioeconomic assumptions. Te SSP2-45 and SSP5-85
projections represent global temperature anomalies of 2.4°C
(or around 3°C) and 4.9°C above preindustrial levels by 2100
with atmospheric CO2 equivalents of 650 and 1370 ppm,
respectively [43–45].

2.4. Collinearity Analysis of Environmental Variables.
Collinearity among predictors decreases the efciency and
increases the uncertainty of species distribution models
[46, 47]. Hence, it is very essential to partially exclude
collinear and less important variables to increase efciency
and decrease the uncertainty of models’ projections.
Terefore, following De Marco and Nóbrega [47] and Cruz-
Cárdenas et al. [48], principle component analysis was
computed for 42 environmental variables based on their
correlation matrix. Ten, using the frst four principal
components (PCA1‒4) that explained the largest pro-
portions (>80%) of the total variance and less collinearity
(r≤ 0.6) most important variables infuencing species dis-
tribution were fnally selected (Figure 2). Finally, 14 and 13,
the most important but less collinear variables, were selected
to generate SDMs of B. aegyptiaca and B. rotundifolia, re-
spectively (Table 1).

2.5. Extracting Values from Rasters, Model Fitting, and
Prediction. Te present background data records for the
selected environmental predictor variables corresponding to
the present occurrence and background points for
B. aegyptiaca (n� 224) and B. rotundifolia (n� 80) were
extracted and generated using the SDM package [49] with
the support of other required packages such as Raster
package [50]. Te data model was partitioned into the
training dataset (75%) and testing dataset (25%) for model
ftting and validation, respectively. Hence, the training data
was used to ft (or train) the models, and the testing data
were used to evaluate (or test) the models [26]. Te models
were ftted to the data model using SDM and SP packages in
R 4.1.3 [50–52] using the cross-validation partitioning
method with 10 replication runs.Temodels were optimized
with the same feature classes (fc� linear, quadratic, hinge,
and product), regularization multiplier (reg� 1), and iter-
ations (iter� 500) using the SDMtune package in R4.1.3 [53].
Terefore, two regression-based models, i.e., generalized
linear model (GLM) and general additive model (GAM), and
four machine learning modeling tools, such as boosted
regression tree (BRT), random forests (RF), multivariate
adaptive regression splines (MARS), and support vector
machines (SVM) were used for both the current and future
climates (HadGEM3-GC31-LL). Ten, predictions using
models for habitat suitability were done using the predictor
variables and the models’ objects as domains (a combination
of independent variables). Accordingly, the ensemble SDMs
were computed from the weighted means of individual
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models under both current and future climates based on their
performances. Future projections of species distribution were
based on the premise that only climate variables would change
while soil and topographical variables would remain un-
changed.Te SDMswere then converted to raster tif fles using
the Raster packages in R 4.1.3 [50] for further analysis using
ArcGIS 10.8. Te relative importance of predictors in the
ensemble models’ performance was also computed in R 4.1.3
based on Pearson correlation and AUC metrics for test data
(averaged for 6 models after 10 permutations of each model).
Te relative variable importance measures either the per-
centage (not probability) that the prediction error increases
when the variable is removed or the change in the purity of
each node when the variable is removed.

2.6. Model Performance Evaluation. Four performance
evaluation metrics, namely, area under curve (AUC), cor-
relation (COR), true skill statistic (TSS), and deviance were
used to evaluate the performance and validity of individual
and ensemble SDMs.Te AUC (which ranges from 0 to 1) is
mainly used to determine the performance of models
[26, 54]. It is simply the proportion of the true presence rate
(sensitivity related to presence data) and the true absence
rate (specifcity related to absence data). AUC values ranging
between 0.5 and 0.7 are considered weak models, values
between 0.7 and 0.9 show good performance, and values
greater than 0.9 indicate high model performance [26, 54].
TSS ranges between −1 and 1, where values below 0.4 and
above 0.8 are considered “poor” and “excellent,” respectively
[32, 54]. A correlation (COR) also has a value ranging from
−1 to 1. Deviance is also one of a goodness-of-ft used, and so
the lower the deviance, the better the goodness-of-ft of the
model. Terefore, as a rule of thumb, a comparison of the
accuracy of individual models was done by taking into
consideration the overall performance of each model under
each evaluation metric. Te performances of ensemble
SDMs were also evaluated based on their weighted mean
scores (and standard deviations) under each evaluation
metric. In addition, spatial autocorrelations among indi-
vidual SDMs were also computed in R4.1.3.

2.7. ArcGIS Analysis of Habitat Suitability Classes.
Moreover, based on the probability of occurrence, the en-
semble SDMs were reclassifed into four suitability classes
following Hamid et al. [55]: (i) unsuitable (0.0–0.25), (ii)
low-suitable (0.25–0.50), (iii) moderately suitable
(0.50–0.75), and (iv) highly suitable (0.75–1.00). Hence, the
change in the habitat area (ΔA) between current and
CMIP6’s climate conditions was predicted using two in-
dicators [56] using the formula: ΔA� ((Af−Ac)/Ac) ∗ 100;
where ΔA is the percentage change of suitable habitat area;
Af is the predicted area of suitable habitat for species of
Balanites in the future, and Ac is the predicted area of
suitable habitat under current conditions. Here, highly
suitable, moderately suitable, low-suitable, and unsuitable
areas were combined while calculating habitat area changes
along the temporal scales of current and future climatic
change.

3. Results

3.1.Model Performance and Spatial Autocorrelation under the
Current Climate. Tis study indicated that the random
forest (RF) is the most robust model under both
B. aegyptiaca (0.99 AUC, 0.91 TSS, 0.9 COR, and 0.23 de-
viance) and B. rotundifolia (0.97 AUC, 0.87 TSS, 0.84 COR,
and 0.17 deviance), followed by SVM for B. aegyptiaca (0.97
AUC, 0.85 TSS, 0.82 COR, and 0.33 deviance) and
B. rotundifolia (0.96 AUC, 0.85 TSS, COR� 0.77, and 0.21
deviance), and BRT for B. rotundifolia (0.96 AUC, 0.85 TSS,
0.79 COR, and 0.25 deviance) (Table 2). Under the current
climate, analysis of the performance of ensemble SDM for
B. aegyptiaca resulted 0.95 AUC, 0.80 TSS, 0.79 COR, and
0.87 Ddeviance; and that of B. rotundifolia with 0.90 AUC,
0.80 TSS, 0.80 COR, and 0.50 deviance (Table 2). Similarly,
the receiver operating characteristic (ROC) curves of en-
semble SDMs of each species under the current climate
showed that the AUC for the training and testing data is
generally above 0.85 (Figures 3 and 4).

Spatial autocorrelations of models produced for
B. aegyptiaca under the current climate (Figure 5) showed
that the highest correlation was observed between RF and
SVM (77%), followed by between BRT and RF (76%), BRT
and SVM (73%), GLM and BRT (68%), RF and MARS
(66%), BRT and MARS (66%), and GLM and SVM (63%).
However, the lowest correlations were observed between
GLM and GAM (25%).

Similarly, for B. rotundifolia, the highest spatial auto-
correlation among SDMs under the current climate
(Figure 6) was observed between RF and BRT (75%), fol-
lowed by between BRT and GLM (67%), BRT and SVM
(64%), and BRT and MARS (59%). However, the lowest
correlations were observed betweenMARS and GAM (34%),
followed by GLM and GAM (36%).

3.2. Potential Distribution of Balanites aegyptiaca. Te spe-
cies distribution models (SDMs) computed under the cur-
rent climate predicted that mainly the Ethiopian Rift Valley
and a few dryland ecosystems of Ethiopia are the most
suitable habitats for B. aegyptiaca. Te ensemble SDM
showed that the Central Ethiopian Rift Valley is the most
suitable habitat area for B. aegyptiaca (Figure 7). Moreover,
parts of Gambella, parts of Hararge, Bale, and Borena in
Oromia, and parts of the Somali region are identifed as low-
to moderately-suitable habitats for the species.

In this regard, the areas identifed as unsuitable habitats
for B. aegyptiaca accounted for 1,213,366 km2 area cover in
Ethiopia, while 85,255 km2 is a low-suitable habitat,
24,424 km2 is a moderately suitable habitat, and 4,838 km2 is
a highly suitable habitat (Table 3). Overall, the total area
projected to be suitable for B. aegyptiaca under the current
climate accounts for 114,517 km2 (Tables 3 and 4).

Furthermore, analysis of the habitat suitability of
B. aegyptiaca under SSP2-45 (HadGEM3-GC31-LL) showed
that the Ethiopian Rift Valley region, East Oromia, Gam-
bella, and North East Ethiopia will remain the suitable
habitat for B. aegyptiaca (Figure 8). On the other hand, the
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ensemble SDM for B. aegyptiaca under SSP5-85 indicated
that the Ethiopian Rift Valley region, East Oromia, and
North and North East Ethiopia, and parts of the Somali
region will remain suitable habitats for B. aegyptiaca
(Figure 9).

Terefore, analysis of the habitat area changes in habitat
suitability indicated that 116,934 km2 and 125,757 km2 area
cover in Ethiopia are predicted to be suitable for
B. aegyptiaca under SSP2-45 and SSP5-85 in 2061–2080,
respectively (Tables 3 and 4). In other words, analysis of the
habitat changes between the current and future climate of
HadGEM3-GC31-LL for years 2061–2080 showed that
B. aegyptiaca will likely expand its habitat ranges by 2.1%
and 7.5% of its current area under SSP2-45 and SSP5-85,
respectively (Table 4).

Te relative importance of predictor variables averaged for
all SDMs of B. aegyptiaca indicated that Bio07 (temperature
annual range) is the most important variable with 53.1%
contribution based on the correlation matrix and 29.4% con-
tribution based on the AUC matrix for the “training data,” and
53.8% contribution based on the correlation matrix and 29.1%
contribution based on the AUC matrix for the “testing data,”
followed by Bio15 (precipitation seasonality) with 29.5% con-
tribution based on the correlation matrix and 22.4% contri-
bution based on the AUC matrix for the “training data,” and
34.3% contribution based on the correlation matrix and 22.6%
contribution based on the AUCmatrix for the “testing data.” In
other words, the results showed that temperature and
precipitation-related environmental variables were the ones that
highly infuenced the distribution of B. aegyptiaca (Table 5).
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Figure 3: Te receiver operator characteristics (ROC) curves of SDMs for B. aegyptiaca under the current climate. Sensitivity (true positive
rate for presence data) of the vertical line and 1-specifcity (false positive rate for absence data) of the horizontal line describe the proportion
of correctly and incorrectly classifed samples. Te red and blue curves represent the mean of AUC using training and testing data,
respectively.

Table 2: Model performance under the current climate (x �mean and SD� standard deviation).

Species Model AUC TSS COR Deviance

B. aegyptiaca

GLM 0.93 0.70 0.68 0.53
GAM 0.92 0.83 0.8 3.14
BRT 0.95 0.8 0.77 0.55
RF 0.99 0.91 0.9 0.23

MARS 0.96 0.82 0.8 0.42
SVM 0.97 0.85 0.82 0.33

x ± SD 0.95± 0.02 0.80± 0.06 0.79± 0.06 0.87± 1.02

B. rotundifolia

GLM 0.93 0.78 0.67 0.28
GAM 0.9 0.77 0.72 1.97
BRT 0.96 0.85 0.79 0.25
RF 0.97 0.87 0.84 0.17

MARS 0.93 0.81 0.73 0.39
SVM 0.96 0.85 0.77 0.21

x ± SD 0.90± 0.2 0.80± 0.4 0.80± 0.6 0.50± 0.7
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However, it was observed that Bio07 is positively correlated
(nonlinear) with the habitat suitability of B. aegyptiaca, while
Bio15 is negatively correlated (nonlinear) with the habitat
suitability of B. aegyptiaca (Figure 10).

3.3. Potential Distribution of Balanites rotundifolia. Te
projected SDMs for B. rotundifolia under the current
climate indicated that the southern Ethiopian Rift Valley

region, mainly South Omo, and areas of the Omo River
watershed system are identifed as the most important
habitat areas for B. rotundifolia. Moreover, analysis of the
ensemble SDM under the current climate showed that the
southern Ethiopian Rift Valley regions, particularly the
South Omo, are still the most suitable habitat for
B. rotundifolia. Moreover, some arid and semi-arid areas
of Gamo and Wolaita, Sidama and Guji areas, and a few
areas of the northern Ethiopian Rift Valley (northern Afar
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Figure 5: Spatial autocorrelation coefcients among diferent SDMs for B. aegyptiaca under the current climate.
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Figure 4:Te receiver operator characteristics (ROC) curves of SDMs for B. rotundifolia under the current climate. Sensitivity (true positive
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region) are identifed as low-suitable habitat areas for
B. rotundifolia (Figure 11).

Moreover, under the current climate, the ensemble SDM
estimated that unsuitable habitat for B. rotundifolia
accounted for 1,286,510 km2 area cover in Ethiopia, while
29,689 km2 is low-suitable habitat, 9,683 km2 is moderately
suitable habitat, and 2,001 km2 is highly suitable habitat
(Table 6). Overall, the total area projected to be suitable for
B. rotundifolia under the current climate accounts for
41,373 km2 (Tables 6 and 7).

Te projected SDMs for B. rotundifolia under SSP2-45 of
the HadGEM3-GC31-LL climate model indicate that the
Southern Ethiopian Rift Valley regions, particularly the
South Omo and South Oromia, will remain suitable for the
species in years between 2061 and 2080. Except some area
shifting, under both SSP2-45 and SSP5-85, the ensemble
SDMs showed that the Southern Ethiopian Rift Valley,
mainly the South Omo region, and North eastern Ethiopia,
will remain the most suitable habitat for B. rotundifolia in
years 2061–2080 (Figures 12 and 13).
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Furthermore, analysis of the area changes in habitat
suitability indicated that 29,547 km2 and 50,894 km2 area
cover in Ethiopia are predicted to be suitable for
B. rotundifolia under SSP2-45 and SSP5-85 in 2061–2080,
respectively (Tables 6 and 7). In other words, analysis of the
habitat changes between the current and future climate of
HadGEM3-GC31-LL for years 2061–2080 showed that
B. rotundifolia will likely decrease its habitat range by 28.6%
(↓) under SSP2-45 and increase by 23% (↑) of its current area
under SSP5-85 (Table 7).

Analysis of the relative contributions of predictor var-
iables averaged for all SDMs for B. rotundifolia showed that
Bio17 (precipitation of the driest quarter) is highly con-
tributing to the models’ performance of B. rotundifolia,

accounting for 79.6% and 40.6% based on correlation and
AUC matrices for the “training data,” respectively, and
82.3% and 42.5% based on correlation and AUCmatrices for
the “testing data,” respectively, followed by Bio12 (Annual
Precipitation) with 64.8% and 36.2% contribution based on
correlation and AUC matrices for the “training data,” re-
spectively, and 61.4% and 29.3% contribution based on
correlation and AUC matrices for the “testing data,” re-
spectively (Table 8).

However, it was observed that Bio17 is positively cor-
related (nonlinear) with the habitat suitability of
B. rotundifolia, while Bio12 is negatively correlated (non-
linear) with the habitat suitability of B. rotundifolia
(Figure 14).
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Figure 8: Projected changes of habitat suitability of B. aegyptiaca under SSP2-45 of HadGEM3-GC31-LL climate in Ethiopia (reproduced
using raster calculator (subtraction operator) and reclassify tools in ArcGIS10.8).

Table 4: Analysis of habitat area changes for B. aegyptiaca between the current and projected under SSP2-45 and SSP5-85 (HadG-
EM3-GC31-LL) in 2061–2080.

SSP Not suitable (km2) Estimated area (km2) of suitability� LS +MS+HS Area
changes (ΔA� ((Af−Ac)/Ac) ∗ 100)

SSP2-45 1,210,949 116,934 (Af) +2.1%↑, increasing
SSP5-85 1,202,126 125,757 (Af) +7.5%↑, increasing
Current average 1,213,366 114,517 (Ac)

Table 3: Average aerial extent of habitat classes of B. aegyptiaca under current and future climate scenarios.

Habitat suitability class
Areas in km2

Current SSP2-45 SSP5-85
Highly suitable (HS) 4,838 4,854 7,799
Moderately suitable (MS) 24,424 24,200 22,246
Low suitable (LS) 85,255 87,880 95,712
Unsuitable 1,213,366 1,210,949 1,202,126
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4. Discussion

4.1. Habitat Suitability of Balanites aegyptiaca under Climate
Change in Ethiopia. In the present study, the performance
evaluation tools such as AUC, TSS, COR, deviance as well as
the receiver operating characteristic (ROC) curves
(AUC> 0.85) calculated to the ensemble SDMs indicate that
models are accurate in simulating the habitat suitability of
B. aegyptiaca. Under the current climate, the ensemble SDM
predicted that 114,517 km2 of the total area of Ethiopia
mainly distributed in the Ethiopian Rift Valley and a few
areas of Gambella, Hararge, Bale, and Borena in Oromia and

Somalia regions are identifed as potential suitable habitats
for B. aegyptiaca. Tis fnding partly agreed with the pre-
liminary modeling reported by Kindt et al. [57] on the
habitat distribution of B. aegyptiaca in Ethiopia inferred
from the ensemble modeling with BiodiversityR. Similarly,
Bekele-Tesemma [58] also reported that in Ethiopia,
B. aegyptiaca normally occurs up to 1,800m altitude in the
arid and semi-arid agroclimatic zones of the Rift Valley in
Gamo, Gofa, and in Sidama, Tigray, Wollo, Shewa, Gojam,
Ilu Ababora, Arsi, and upland Hararge regions. Tese
suitable areas will remain suitable in the future under both
SSP2-45 and SSP5-85 of HadGEM3-GC31-LL with

Table 5: Relative variable importance (%) for the distribution of B. aegyptiaca based on two metrics.

Variable

Relative variable importance (RVI)
Training data Test data

Based
on correlation matrix Based on AUC matrix Based

on correlation matrix Based on AUC matrix

Bio07 53.1 29.4 53.8 29.1
Bio08 1.8 0.8 1.7 0.7
Bio14 0.3 0.1 0.3 0.1
Bio15 29.5 22.4 34.3 22.6
Bio16 0.6 0.4 0.7 0.1
Bio18 3.8 1.9 3.6 3.7
Tpi 17.8 15 19.9 14.4
AspectClE 5 2.1 6.2 3
AspectClS 3.5 1.5 3.6 0.4
AspectClU 0.3 0.2 0.3 0.1
AspectClW 3.3 2 4 2.8
Clay 0.01 0.01 0.01 0.01
Silt 5.3 2.5 6.5 4.4
SlopesCl4 1.8 0.6 2.1 0.7
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increasing areas to 116,934 km2 and 125,757 km2 of Ethiopia
in 2061–2080, respectively. A recent projection of the
maximum entropy distribution of B. aegyptiaca for Tigray
region of Ethiopia by Guf et al. [59] showed that the habitat
suitability of the species will increase by 2070 under RCP4.5
scenarios, while decreasing in mid- and end-century under
RCP8.5. A study by Chérif et al. [60] also indicated that
B. aegyptiacamay decrease its habitat suitability by 2055 but

a signifcant habitat increase by 2085 beyond its current
habitat in the Republic of Chad under CMIP5’s RCP8.5
emission scenario. Te increasing in habitat suitability for
B. aegyptiaca is possibly due its morphological and physi-
ological responses and adaptive strategies to cope with
drought and increasing temperature, including a signifcant
reduction of biomass, early stomatal closure with small
changes in photosynthesis activities [61].
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Te temperature annual range (Bio07) and precipitation
seasonality (Bio15) are the most important variables infu-
encing the distribution of B. aegyptiaca in Ethiopia. A recent
projection of the maximum entropy distribution of
B. aegyptiaca for Tigray region of Ethiopia (i.e., untruncated
niche) by Guf et al. [59] showed that temperature sea-
sonality (Bio04), mean diurnal range (Bio02), and tem-
perature annual range (Bio07) are reported as most
important variables determining the distribution of the
species. However, for species with wider global distribution
(e.g., B. aegyptiaca), species distribution models of truncated
niche, i.e., models based on data pools from wider geo-
graphical areas such as regional or global, are more accurate
than models of untruncated niche, i.e., models based on data
from restricted geographical ranges [62]. Another study of

the maximum entropy of B. aegyptiaca by Chérif et al. [60]
for the republic of Chad under the changing climate using
CMIP5’s RCP8.5 indicated that precipitation of the wettest
month (Bio13) was the most important variable in model
predictions. Tis showed that variable selection and en-
semble models’ approach are very essential in the model
calculation to increase model accuracy. In this regard, De
Marco and Nóbrega [47] advised that PCA-derived variable
selection was an efective approach for species modeling
both to control negative efects of collinearity and as a more
objective solution for the problem of variable selection. In
this sense, the current study had the merit of proper variable
selection for the modeling purpose of the subject species.
Moreover, in addition to bioclimatic variables, in-
corporating soil and landscape parameters would also result
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Figure 12: Projected changes of habitat suitability of B. rotundifolia under SSP2-45 of HadGEM3-GC31-LL climate in Ethiopia (reproduced
using raster calculator (subtraction operator) and reclassify tools in ArcGIS10.8).

Table 7: Analysis of habitat area changes for B. rotundifolia between current and projected under SSP2-45 and SSP5-85 (HadG-
EM3-GC31-LL) in 2061–2080.

SSP Not suitable (km2) Estimated area (km2) of
suitability� LS +MS+HS

Area changes
(ΔA� ((Af−Ac)/Ac) ∗ 100)

SSP2-45 1,298,336 29,547 (Af) ‒28.6%↓, decreasing
SSP5-85 1,276,989 50,894 (Af) +23.0%↑, increasing
Current average 1,286,510 41,373 (Ac)

Table 6: Average aerial extent of habitat classes of B. rotundifolia under current future climate change scenarios.

Habitat suitability class
Areas in km2

Current SSP2-45 SSP5-85
Highly suitable (HS) 2,001 2,574 4,181
Moderately suitable (MS) 9,683 5,120 13,126
Low suitable (LS) 29,689 21,853 33,587
Unsuitable 1,286,510 1,298,336 1,276,989
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in diferent but more sounding models, as these variables are
determinant factors for plant growth and geographical dis-
tribution [63, 64]. A report by Orwa et al. [21] also indicated
that the ecosystem of B. aegyptiaca is predominantly charac-
terized by soil particles of deep sands, sandy clay, loam, sandy
loam, or clay with a physical limit of 0–2000m altitude,
20–30°C mean annual temperature, and 250–1200mm mean
annual rainfall.

4.2.HabitatSuitabilityofBalanites rotundifoliaunderClimate
Change in Ethiopia. Te performance evaluation tools such
as AUC, TSS, COR, deviance as well as the receiver operating
characteristic (ROC) curves (AUC> 0.85) calculated to the

ensemble SDMs indicate that models are accurate in sim-
ulating the habitat suitability of B. rotundifolia. Te en-
semble SDM for B. rotundifolia under the current climate
indicated that 41,373 km2 of the total area of Ethiopia is
a suitable habitat for B. rotundifolia and distributed mainly
in the Southern Ethiopian Rift Valley region.Tese areas will
remain suitable in the future under both SSP2-45 and SSP5-
85 of HadGEM3-GC31-LL with decreasing areas to
29,547 km2, and increasing to 50,894 km2 of Ethiopia in
2061–2080, respectively. Tis indicates that the high emis-
sion scenario (i.e., SSP5-85) likely helps B. rotundifolia to
slightly increase its habitat ranges compared to its current
ranges. Unlike B. aegyptiaca, te lower AUC values resulted
for SDMs of B. rotundifolia could be infuenced by smaller

Table 8: Relative variable importance (%) for the distribution of B. rotundifolia based on two metrics.

Variable

Relative variable importance (RVI)
Training data Test data

Based
on correlation matrix Based on AUC matrix Based

on correlation matrix Based on AUC matrix

Bio02 15.7 6 11.8 0.01
Bio12 64.8 36.2 61.4 29.3
Bio17 79.6 40.6 82.3 42.5
AspectClS 0.01 0.01 0.01 0.01
AspectClW 0.1 0.1 0.1 0.01
CEC 27.9 8.4 20 2.4
pH 8.6 2.7 6.7 2.4
Silt 0.01 0.01 0.01 0.2
SlopesCl2 1.5 0.4 1.2 0.3
SlopesCl3 15.3 4.3 10.9 0.6
SlopesCl4 2.1 0.7 0.2 0.01
SlopesCl6 2.1 0.6 1.6 0.7
SlopesCl8 5.1 6.6 4.3 0.7
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Figure 13: Projected changes of habitat suitability of B. rotundifolia under SSP5-85 of HadGEM3-GC31-LL climate in Ethiopia (reproduced
using raster calculator (subtraction operator) and reclassify tools in ArcGIS10.8).
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sample size of occurrences of B. rotundifolia. Nevertheless,
B. rotundifolia has a restricted distribution in Ethiopia that
was also proved by the SDM as well as personal feld ob-
servations. In this regard, the actual feld survey also proved
the presence of a higher density of the population of
B. rotundifolia across the designated areas than any other
areas surveyed in the study area. Previously, no studies were
reported that dealt with the habitat suitability of
B. rotundifolia in Ethiopia. Hence, no credible fndings were
available that could be validated with the current study.
Terefore, the current study could be taken as a break-
through in habitat modeling for B. rotundifolia in Ethiopia
and even be inferred to further habitat modeling of the
species in other countries or on a global scale. Nevertheless,
this study indicated suitable areas that should be strategically
delineated for the conservation and management of the
species for sustainable use.

In this study, precipitation of the driest quarter (Bio17)
and annual precipitation (Bio12) share the largest contri-
bution to the model’s prediction for B. rotundifolia. In other
words, the distribution of B. rotundifolia was mainly
infuenced by both precipitation and temperature-related
environmental variables and by CEC to some extent. In
Kenya, B. rotundifolia was also reported to be often seen as
the only tree on dunes in northern Kenya and observed
between 50m and 1350m altitude and a 150mm to 400mm
rainfall range [65, 66]. In Uganda, B. rotundifolia was re-
ported to grow on a variety of soils, often found in sandy, dry
river beds, as well as frequently occurring in very dry
savannah [66].

Overall, this study presents valuable information on the
distribution of Balanites species in Ethiopia in the context of
climate change.Te fndings can be utilized by policy makers
and conservation organizations to inform the development

and implementation of conservation plans for Balanites
species in the country. In addition, the study’s outputs can
serve as crucial inputs for the scientifc community, par-
ticularly those interested in conducting further research on
various aspects of Balanites. However, it is important to note
that this study has few potential limitations. For example, (i)
with the uncertain nature of absence data and its importance
in SDM [67], this research did not incorporate absence data
as an additional input variable; (ii) this research, despite
being the frst SDM for B. rotundifolia, used a smaller sample
size of occurrence data to model the habitat suitability for
B. rotundifolia due to its rarity; (iii) this study was conducted
using only one global climate model (GCM), and thus needs
further research studies by incorporating other GCMs such
as the second generation Euro-Mediterranean Centre on
Climate Change Earth System Model (CMCC-ESM2) and
the Goddard Institute for Space Studies Model version E2.1-
H (GISS-E2-1-H) (NASA-GISS) that are also thought to
have good performance in Ethiopian environments
[6, 39–41]. Modeling the habitat suitability of Balanites
based on a broadly truncated niche at a regional scale (e.g.,
East Africa) is recommended for the period between 2081
and 2100 besides the use of these research fndings for
decision-making and policy development.

5. Conclusions

Te current study on modeling the habitat suitability for
B. aegyptiaca and B. rotundifolia under climate change in
Ethiopia has yielded signifcant results. Tese fndings
highlight potential habitat areas that should be given priority
for the long-term conservation and sustainable utilization of
each species in Ethiopia. Generally, the Ethiopian Rift Valley
region and the dryland ecosystems in the broader areas of
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Figure 14: Te variability of responses (i.e., habitat suitability) of B. rotundifolia to environmental predictor variables.
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the country, including arid and semi-arid regions, are
considered suitable for B. aegyptiaca and B. rotundifolia.
Teir distribution is highly infuenced by temperature and
precipitation-related environmental variables (Bio07 and
Bio15 for B. aegyptiaca, and Bio17 and Bio12 for
B. rotundifolia). It was also noticed that B. aegyptiaca tends
to increase its habitat ranges under both future-forcing
scenarios (SSP2-45 and 5–85). However, it is observed
that B. rotundifolia tends to have two future possibilities, i.e.,
decreasing its habitat ranges under SSP2-45 and increasing
under SSP5-85.Terefore, the current trends of land use and
land cover changes, coupled with worsening efects of cli-
mate change, would potentially depopulate the species, es-
pecially that of B. rotundifolia. Hence, developing
management strategies for protecting and conserving wild
populations of this valuable species is crucial. In other
words, conservation eforts should focus on maintaining
large populations to counter potential negative efects of
climate change and to promote and maintain the genetic
diversity and viable populations of Balanites in Ethiopia.
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[49] B. Naimi and M. B. Araújo, “SDM: a reproducible and ex-
tensible R platform for species distribution modelling,”
Ecography, vol. 39, no. 4, pp. 368–375, 2016.

[50] R. J. Hijmans, “Raster: geographic data analysis and model-
ing,” R Package, no. Version 2, pp. 4–15, 2015, http://CRAN.
R-project.org/package%3draster.

[51] E. J. Pebesma and R. S. Bivand, “Classes and methods for
spatial data in R,” R News, vol. 5, no. 2, pp. 9–13, 2005, https://
CRAN.R-project.org/doc/Rnews/.

[52] R. S. Bivand, E. Pebesma, and V. Gomez-Rubio, “Applied
spatial data analysis with R, Second edition,” Springer, NY,
2013, https://asdar-book.org/.

[53] S. Vignali, A. G. Barras, and V. Braunisch, “SDMtune: species
distribution model selection,” R package, 2020.

[54] O. Allouche, A. Tsoar, and R. Kadmon, “Assessing the ac-
curacy of species distribution models: prevalence, kappa and
the true skill statistic (TSS),” Journal of Applied Ecology,
vol. 43, no. 6, pp. 1223–1232, 2006.

[55] M. Hamid, A. A. Khuroo, B. Charles, R. Ahmad, C. P. Singh,
and N. A. Aravind, “Impact of climate change on the dis-
tribution range and niche dynamics of Himalayan birch,

International Journal of Ecology 17

https://apps.worldagroforestry.org/treedb/AFTPDFS/Balanites_aegyptiaca.PDF
https://apps.worldagroforestry.org/treedb/AFTPDFS/Balanites_aegyptiaca.PDF
https://ethnobiomed.biomedcentral.com/articles/10.1186/1746-4269-9-8
https://ethnobiomed.biomedcentral.com/articles/10.1186/1746-4269-9-8
https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://CRAN.R-project.org/package=raster
http://CRAN.R-project.org/package=raster
https://CRAN.R-project.org/doc/Rnews/
https://CRAN.R-project.org/doc/Rnews/
https://asdar-book.org/


a typical treeline species in Himalayas,” Biodiversity &
Conservation, vol. 28, no. 8-9, pp. 2345–2370, 2019.

[56] R. Y. Duan, X. Q. Kong, M. Y. Huang, S. Varela, and X. Ji,
“Te potential efects of climate change on amphibian dis-
tribution, range fragmentation and turnover in China,” PeerJ,
vol. 4, Article ID e2185, 2016.

[57] R. Kindt, L. Graudal, J. B. Lillesø, A. Abiyu, S. Moestrup, and
P. van Breugel, “Habitat distribution of Balanites aegyptiaca
inferred from ensemble modelling with BiodiversityR,” in
Posters, pp. 1–9, 2019.

[58] A. Bekele-Tesemma, “Useful trees of Ethiopia: identifcation,
propagation and management in 17 agroecological zones,” in
Nairobi, RELMA, ICRAF Project, 2007.

[59] Y. Guf, A. Manaye, B. Tesfamariam, H. Abrha, T. Gidey, and
K. M. Gebru, “Modeling climate change impact on distri-
bution and abundance of Balanites aegyptiaca in drylands of
Ethiopia,” Modeling Earth Systems and Environment, vol. 9,
no. 3, pp. 3415–3427, 2023.
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