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Anisotropic and heterogeneous solids, comprising a minimum of two or more elements with different properties, appear
pervasively in rock materials including the pore structure and mineral composition of quartz and granite and usually have
extensive applications in construction aggregates, dimension stone, geotechnical engineering, and petrology/geology. The elastic
stress fields of inhomogeneous materials or composites inevitably change due to the presence of heterogeneous microstructure
under applied external conditions, and hence the total mechanical and physical properties are affected by the temperature and
pore pressure fluctuations beneath the surface. In this paper, the thermoporoelastic (TPE) approach on the basis of eigenstrain
concept is introduced to predict the stress fields in fluid-saturated porous geologic materials like hydrocarbon reservoirs or
aquifers by accounting for the coupling between thermal, poroelastic, and mechanical effects. It is an extension of the
micromechanical theory that also incorporates thermal effects like pore pressure changes and temperature alternations. In
addition, the TPE approach provides an important multiphysical modeling tool for understanding subsurface fluid-rock
interactions and stress states in applications like unconventional oil/gas and geothermal energy.

1. Introduction

Eshelby was a pioneer in micromechanics who insightfully
introduced the concept of transformation strains to describe
the effect of point defects and dislocations on the elastic
field. The Eshelby inclusion problem was addressed to solve
the elastic fields with respect to the stresses and strains
around an ellipsoidally shaped region that undergoes a
spontaneous change of form inside a full media. He pre-
sented the thought experiment involving imaginary cutting,
straining, and welding operations [1] and developed his the-
ory to explore the problem of matrix and inclusion with dif-
ferent elastic constants via the harmonic potential functions
[2]. His highly influential works have applications in a spec-
trum of engineering fields which encompass materials sci-
ence, continuum mechanics, and geological engineering.
His model can be utilized to investigate the deformation of

rock systems and minerals due to inherent cracks, pores,
and grains. Later, Mura extended Eshelby’s theory on the
concept of eigenstrains to study the mechanical behaviors
of materials at the microscopic level and handled various
problems relating to inclusions, dislocations, cracks, com-
posites, and polycrystals [3]. Biot, who is the founder of
the theory of poroelasticity, and Willis discussed how to
choose a suitable combination of measurements including
shear modulus, jacketed and unjacketed compressibility,
coefficient of fluid content, and porosity to determine the
coefficients for an isotropic system and established the mea-
surement and interpretation of the elastic coefficients of
Biot’s theory of deformation in a porous elastic solid con-
taining a compressible fluid [4]. This paper also contains
extension methods to deal with anisotropic systems, linear
systems, and nonlinear systems with proper stress defini-
tions. The analytical and numerical solutions are developed
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to deal with the issues of gas-water production, geothermal
system, and low-permeability reservoir in the petroleum
industries and related engineering fields [5–7].

Oil, gas, and geothermal production can induce earth-
quakes by altering pore pressures, temperatures, and stresses
within and around reservoirs. Near reservoir margins or in
high-pore pressure gradient areas, dilatant fracturing and
normal faulting are always promoted in extensional settings,
which can enhance fracture permeability in adjacent tight
rocks [8]. Rudnicki generalized the Walsh method of the
pore pressure alternation expressed in terms of the transfor-
mation strains [9]. The results can be widely applied in com-
puting the stress, strain, and surface displacement fields
produced by fluid mass or extraction and pore pressure
alternation within a resource beneath the ground for the
purposes of hydrocarbon production and underground
storage, aquifer management, and carbon sequestration.
The interaction mechanism between two ellipsoidal poroe-
lastic inhomogeneities, whose methodology is devised by
Moschovidis and Mura [10], was provided to elucidate the
stress perturbations around the inhomogeneities with the
assistance of the equivalent inclusion method and the higher
rank of Eshelby’s tensors [11]. The proposed solution is
applied in calculating the stress and strain fields around
the arbitrarily orientated hydrocarbon resources caused by
fluid injection or withdrawal [12]. An extension problem
related to the poroelastic damage to the brittle rock failure
was addressed under the framework of microstructural and
hydromechanical methods [13]. The randomly distributed
spheroidal microcracks with oblate shapes and nanopores
were considered within the computational model. This pro-
vides a systematic approach to incorporating microstruc-
tural mechanisms in brittle fractures. Furthermore, the
nonlinear and heterogeneous problem of layered cylindrical
inhomogeneity in the field of depleting resource system with
concerning the caprock formation was solved through
Kelvin’s solution and the discrete collocation fixed point
iteration approach [14]. The stress evolution with consider-
ing 4D analysis of strain-dependent elasticity and applica-
tion in subsalt carbonates was investigated in comparison
with FEM results. The special geometry of a thin disk-
shaped resource subject to depressurization was explored
via the thermoporoelastic inclusion model [15]. In addition,
the related topics on the stress response to pore pressure
fluctuations around resources [16, 17] and the nonprobabil-
istic model to solve the effect of crack size uncertainty [18]
were analytically evaluated. In our previous study [19], the
induced stress redistributions of the penny-shaped reservoir
were investigated via the classical Eshelby inclusion approach.
The solved full-space problem on the specific shape of the
resource can be extended to treat the associated half-space
geostructural problem.

A continuum damage mechanics model was developed
to describe the elastic, plastic, and damage behavior of
porous rocks [20]. Microcrack and microvoid nucleation
and coalescence were introduced within the fracture
mechanics framework, and the developed model can be used
for hydraulic fracturing simulations in reservoir rocks by
eliminating stress singularities and simulating progressive

failure without remeshing. The transitions of failure mode
on the rock cutting with considering the rock heterogeneities
with respect to the microcracks, intergrain cracks, tempera-
ture variations, and confining pressure were investigated
via numerical methods [21–23]. Furthermore, the well integ-
rity of inclusion-matrix systems with concerning the effects
of pressurized cracks which are randomly distributed
around a rigid inclusion or inclusion-matrix interface was
theoretically solved via the theory of eigenstrains [24]. The
suggested solution can be applied to a hollow cylindrical
casing-cement sheath-formation rock system for corrosion-
related problems. Moreover, the ultrasonic application on
the basis of the Eshelby-Cheng effective medium theory for
porous vertically transversely isotropic media [25], the geo-
mechanical effect of low-temperature CO2 injection via the
coupled thermoporoelastic model [26], and the stress analy-
sis and pore pressure variations of hydrocarbon-bearing for-
mation by the reservoir geomechanical model [27] were
theoretically investigated.

The fundamental solution for a continuous line source
injecting into a poroelastic reservoir bounded by imperme-
able elastic layers was derived, which can model subsurface
fluid injection or production through a vertical well [28].
The pore pressure field is decoupled and governed by the
classical diffusion equation solution for an infinite line
source, while the mechanical fields are resolved by an elastic-
ity problem with a body force dependent on the time-
varying pore pressure gradient. The Eshelby inclusion theory
can be applied to simulate fluid extraction and injection-
induced stress perturbations in a porous matrix for half-
space-related problems. Employing this theory, approximate
analytical solutions for finite-depth resources with rectangu-
lar and elliptical geometries under a plane strain condition
are derived [29]. The Coulomb failure stress change technique
is then utilized to evaluate the fault reactivation potential
resulting from the induced stress alternations. Normalized
stress change factors and stress variations with different reser-
voir shapes and depths were determined via the proposed
approach. The porothermoelastic problems on the single-
and double-inclusions [30] and hydraulic fractures [31]
beneath the surface were addressed by using semianalytical
and analytical solutions. The fracturing and fault reactivation
of the caprock system can also be solved through Eshelby’s
theory and the Monte Carlo simulation framework [32]. The
closed-form solution for the geometry-simplified reservoir
was provided to predict the stress and critical pressure changes
due to porosity modulation in conjunction with the Coulomb
failure criterion. The related issues of stress concentrations at
fault tips and fault length effects of the caprock formation
[33] and six strains isolated in the low-permeability layers to
examine the influence of the consortium strains [34] were
addressed.

2. Fundamental Equations

2.1. Stress State of a Dilatationally Eigenstrained Inclusion
beneath the Surface. The materials and methods section
should contain sufficient detail so that all procedures can
be repeated. It may be divided into headed subsections if

2 International Journal of Energy Research



several methods are described. A semi-infinitely extended
elastic solid, x3 ≥ 0, containing an ellipsoidally shaped inclu-
sion with prescribed porothermal eigenstrain, ε∗ij = 1 − 2v/
2μ 1 + v δij 1 Cs/C ΔP + δijλΔT (simplified as ε∗) is con-
sidered. The shear modulus and Poisson’s ratio are denoted
as μ and ν, and δij represents Kronecker’s delta. The coeffi-
cients of linear thermal expansion λ and Biot α = 1 − Cs/C ,
the corresponding local fluctuations of temperature ΔT and
pore pressure ΔP are involved within the equation. The ellip-
soidal domain is expressed in terms of semiaxes a1, a2, and a3
and depth location c (Figure 1).

x21
a21

+ x22
a22

+ x3 − c 2

a23
1

The elastic moduli for both matrix and inclusion are
denoted as Cijkl. The stress distributions due to a half-space
inclusion can be expressed as follows [35]:

σij x = Cijkl εkl x − ε∗ij x , 2

where the total strains are

εij x = ε∗ 1 + v
4π 1 − v

−ψ,ij + 3 − 4v δ3i + δ3j − 1 ϕ,ij δ3i + δ3j ϕ,ij − 2x3ϕ,3ij

3

The potentials are defined as

ψ = πa1a2a3
∞

λ

1 − y21/ a21 + s + y22/ a22 + s + y23/ a23 + s

a21 + s + a22 + s + a23 + s
ds,

ϕ = πa1a2a3
∞

λ

1 − z21/ a21 + s + z22/ a22 + s + z23/ a23 + s

a21 + s + a22 + s + a23 + s
ds,

4

wherein the term y21/ a21 + λ + y22/ a22 + λ + y23/ a23 + λ = 1
and z21/ a21 + λ + z22/ a22 + λ + z23/ a23 + λ = 1 for the exterior
points of subdomain,Ω, and for the interior points when λ = 0.
The corresponding coordinate transformations related to the x,
y, and z are detailed in [35]. The terms ψ,ij, ϕ,ij, and ϕ,ijk mean
the derivatives with respect to x, i.e., ψ,ij = ∂ ψ/xixj, ϕ,ij = ∂ ϕ/
xixj, and ϕ,ijk = ∂ϕ/xixjxk.

With the help of the above expressions, the stresses for
the interior field are

ϕ,ij x = ε∗ 1 + v μ

2π 1 − v
−4πδij − ψ,ij + 4vδijϕ,33

+ 3 − 4v δ3i + δ3 j − 1 ϕ,ij

− δ3i + δ3j ϕ,ij − 2x3ϕ,ij

5

When the ε∗kl = 0, the stress components for the exterior
field may be obtained from Eq. (2).

σij x = ε∗ 1 + v μ

2π 1 − v
−ψ,ij + 4vδijϕ,33 + 3 − 4v δ3i + δ3j − 1 ϕ,ij

− δ3i + δ3j ϕ,ij − 2x3ϕ,ij
6

2.2. Flowchart of Poro-Thermo-Geomechanical Modeling.
The presented study outlines a computational approach to
model the elastic stress field caused by a porothermo-
Eshelby inclusion beneath the surface. The flowchart summa-
rizes the key steps involved in implementing the proposed
solution (Figure 2). First, the geometrical parameters defining
the shape of the ellipsoidal inclusion are specified. These
include the three semiaxes a1, a2, and a3 which characterize
the size of the ellipsoid. Additionally, the depth location c of
the inclusion center beneath the surface is input as a model
parameter. With the geometry established, the elastic proper-
ties of the homogeneous matrix surrounding the inclusion
are defined. Young’s modulus, shear modulus, and Poisson’s
ratio for the matrix need to be provided. Together, these con-
stants characterize the isotropic elastic behavior of the matrix
medium. Next, the porothermal eigenstrains within the
inclusion domain account for the changes induced by the tem-
perature variation ΔT and pore pressure fluctuation ΔP. The
linear thermal expansion behavior and the change in fluid
content which are related to the interior pore pressure are
governed by the thermal expansion coefficient λ and the
Biot coefficient α = 1 − Cs/C . The porothermal strains are
thus obtained by combining the thermoelastic and poroelas-
tic effects.

To find the displacement field produced by the eigen-
strained inclusion, a set of elliptic and potential functions
must be solved. This is accomplished analytically using
explicit equations with proper outward unit normal vectors.
The solution provides the three components of the displace-
ment vector at each point in the model domain. From the
displacement field, the total strain tensors are calculated at
each point by taking the derivatives of the displacement vec-
tor. The strain accounts for both the imposed eigenstrains
within the inclusion as well as the induced elastic strains in
the surrounding matrix. In order to solve the corresponding
stress field, the position of the point of interest relative to the
inclusion domain must be determined. For interior points,
the stress is evaluated directly from Eq. (5) which is derived

Inclusion

Surface

Interior fieldExterior field

X3

a2

a3

a1

X2

X1

Figure 1: Exterior and interior fields of an inclusion beneath the
surface.
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through the strain and elastic stiffness tensor. For the points
outside the inclusion, the stress is obtained from Eq. (6). The
stress distribution along any desired line can then be
obtained by querying the stress tensor components at a
sequence of points along the line. This provides the model
output, showing how the porothermal inclusion distorts
the stress state along a target line through the domain.

The proposed computational methodology provides an
efficient analytical solution to predict the elastic stress field
generated by an porothermo-Eshelby inclusion situated
within a semi-infinite homogenous, isotropic, linear elastic
solid. The technique can be outlined in a nine-step workflow
as follows: Step 1 (geometrical definition of inclusion)—the
geometry and location of the buried inclusion are defined.
The inclusion is modeled as an ellipsoidal domain with an
arbitrary shape embedded at a finite depth in the semi-
infinite matrix. The major and minor axes of the ellipsoid
and its burial depth serve as key input parameters that influ-
ence the near-field stresses. Step 2 (property specification of
inclusion and matrix)—the mechanical properties of inclu-
sion and matrix material are specified by defining their Pois-
son’s ratio and Young’s modulus. The homogeneous matrix
properties are assumed to be constant. Step 3 (porothermal
eigenstrain calculation)—the mismatch strains induced
within the inclusion by thermal expansion and pore pressure
effects are quantified through an eigenstrain term. This
inelastic strain drives the evolution of the elastic stress field.
The porothermal eigenstrains are calculated based on inclu-
sion properties. Step 4 (definition of potential func-
tions)—the analytical form of the potential functions is
introduced to describe the elastic field induced by the eigen-
strain. These potentials satisfy the governing equilibrium
equations for the defined problem.

In addition, Step 5 (displacement field solution)—the dis-
placement components throughout the matrix are derived
from the potential functions. The displacements quantify the
deformations of the inclusion andmatrix arising from the bur-
ied inclusion. Step 6 (total strain computation)—with the dis-
placement field solution, the total strain tensors are computed
by evaluating spatial derivatives. The strain tensors describe
the state of localized, multidirectional deformation. Step 7
(interior/exterior point designation)—the spatial location of
interest is assessed relative to the domain of the inclusion.
Interior points within the ellipsoid and exterior points in the
far-field matrix satisfy different equilibrium conditions. Step
8 (stress evaluation at the point of interest)—using the consti-
tutive equations of isotropic linear elasticity, the stress tensors
are computed at the designated point based on the interior or
exterior field solution. Step 9 (stress distributions output)—by
performing steps 7 and 8 at numerous points, the full stress

Start

Form the geometrical
parametersShape and location

Input the clastic
moduli of matrix

Linear thermal expansion
and biot coefficients

Temperature and pore
pressure changes

Establish poro-thermal
eigenstrains

Solve the elliptic
functions

Determine the
potential functions

Compute the
displacement

Calculate the total
strain (Eq. 3)

Determine the position point

Solve the stress at
interior field (Eq. 6)

Solve the stress at
exterior field (Eq. 7)

Output

Figure 2: Flowchart describing the proposed solution: (1) define inclusion shape and location, (2) specify matrix elastic properties, (3)
calculate porothermal eigenstrains, (4) determine the elliptic and potential functions, (5) solve the displacement field, (6) compute total
strain, (7) check the point location inside or outside the region, (8) calculate the stress at the interior or exterior field, and (9) output
stress distribution.
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Figure 3: The rock formation and resource system undergo a
change in temperature and fluid pressure.
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Figure 4: Continued.
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distributions are mapped. The perturbation in the stress field
caused by the buried inclusion is visualized over the spatial
domain, providing insight into the near-domain thermome-
chanical effects. In summary, the solution methodology relies
on a combination of analytical equations to describe the
near-field elastic behavior. By leveraging the computational
technique, the stress state induced by a buried thermally and
porously expanding inclusion can be modeled efficiently.
The step-by-step workflow outlined here provides a roadmap
for implementing the proposed approach to gain insight into
subsurface thermomechanical processes.

3. The Influential Aspects

The shape of a reservoir, including any alternations made
through drilling or production operations, can significantly
influence the stress distribution. The location and depth of
a reservoir affect the in situ stress state due to regional and
local rock loads as well as tectonic forces. Changes to pore
pressure from fluid injection/withdrawal will modify the
effective stress acting on reservoir rock. Thermal effects from
processes like steam injection can also impact stresses. Heat-
ing reduces rock strength, causing differential compaction
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Figure 4: The normalized stresses of varying aspect ratios (a1/a3 = 5, 7.5, and 10) beneath the surface: (a) σ11, (b) σ22, (c) σ33, and (d) σ13.
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and redistribution of stresses (Figure 3). In summary, geoen-
gineering activities that change reservoir geometry will alter
load paths and may cause localized stress concentrations or
rotations. Any alternations in these factors may subse-
quently change stress distributions and orientations in both
reservoirs and adjacent formations. The complex interac-
tions between reservoir geometry, location, depth, fluid
pressures, and temperatures govern in situ stresses. The
thermoporoelastic response of reservoirs and surrounding
rocks results in stress changes that must be considered
within the geomechanical model. In order to study the stress
evolution in engineered reservoirs, the normalized factor
σ0 = E/ 1 − ν is set for the comparative analysis of relative
consistency.

3.1. The Geometrical Changes of Reservoir Region. The pro-
duction process may cause some geometrical changes in
the rock and the hydrocarbon region, which may affect the
flow behavior and the efficiency of the injection. One of
the geometrical changes is the deformation of the rock due
to the fluid pressure and stress. The rock may expand, con-
tract, or fracture depending on the properties of the rock and
the fluid. The deformation may alter the porosity and per-
meability of the rock, which are important parameters for
fluid flow. The deformation may also change the shape and
size of the hydrocarbon region, which may affect the contact
area and the displacement efficiency of the injected fluid, as
well as the chemical reactivity and stability. Another geo-
metrical change is the phase transition, which may affect
the density, viscosity, and compressibility of the hydrocar-
bons, which are also important parameters for fluid flow.
The effect of shape alternation (a1/a3 varies from 5 to 10)
on the stress evolutions of the hydrocarbon region (a2 = 1,
a3 = 0 1) beneath the ground at the depth of 2a3 is evaluated

(Figures 4 and 5). The coefficients of linear thermal expansion
λ = 1 and Biot α = 1, the corresponding local fluctuations of
temperature ΔT = −1 and pore pressure ΔP = −1 are set.

The graphs illustrate three different stress-axis curves,
each with varying aspect ratios. The red curve (a1/a3 = 5)
in Figures 4(a) and 4(b) shows that σ11 and σ22 display the
relatively larger values in the beginning and end than those
of the green (a1/a3 = 7 5) and dark yellow curves
(a1/a3 = 10). The dark yellow curve has the lowest stress
values among the three, starting at a lower point than the
red and green curves and increasing more gradually. It is
noted that σ22 of the dark yellow curve exhibits a relatively
low stress in the beginning, gradually decreasing and reach-
ing a bottom at approximately -0.1. The other two curves
follow a similar pattern of increasing stress, and their peak
is reached at a higher value of around 1.2. As compared to
Figures 4(a) and 4(b), normal stress σ33 in Figure 4(c)
exhibits the same trend at the beginning and end for three
kinds of aspect ratios and reaches around 0.1 and a mini-
mum value of -0.9 at the geometrical boundaries for differ-
ent shapes. Moreover, the shear stress σ13 in Figure 4(d) of
the red curve starts at a larger point and gradually increases
to a peak at approximately 0.025, then decreases to the min-
imum point at -0.025. The difference in the shapes and
slopes of the curves can be attributed to the varying aspect
ratios, which affect the distributed stress components along
the axis.

In geology, Von Mises stress can be used to analyze the
deformation and failure of rocks and soils under the influ-
ence of natural or artificial factors such as injection, produc-
tion, and groundwater flow. By calculating σVonMises, it can
be determined whether the rock and soil mass reach the crit-
ical condition of yielding or failure and take corresponding
protective measures. The red curve shows a relatively higher
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Figure 5: The normalized Von Mises stresses due to temperature and pore pressure changes under the ground.
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stress value of 0.4 at the beginning and then exhibits a more
gradual incline as compared to the green and dark yellow
curves, which illustrate the stress jumps inside and outside
the geometrical boundaries. The dark yellow curve lies
between the red and green curves, demonstrating an inter-
mediate value and a moderate incline. The smaller the aspect
ratio, the larger the stress jump at the interface between the
reservoir and rock formation. The overall trend of the curves
shows a progressive increase in stress values as the aspect
ratios increase. Understanding these relationships between
stresses and aspect ratios can provide valuable insights into
the rock system’s behavior during production.

3.2. The Location and Depth Impact. The combination of
location and depth determines the initial stress state of the
reservoir rock. Local geology can lead to variations where
horizontal stresses are dominant even at depth. Accurately
characterizing the stress distribution is crucial for managing
reservoir productivity and stability during drilling and pro-
duction operations. The complex interplay between location,
depth, and in situ stresses must be understood to effectively
engineer reservoir behaviors. In addition, location and depth
are two primary controls on the stress profile within a reser-
voir. Their collective influence arises from regional and local
rock loads as well as tectonic forces unique to each area and
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Figure 6: The normalized stress variations of inclusions located at a depth from a3 to 4a3 near the surface: (a) σ11, (b) σ22, (c) σ33, and
(d) σ13.
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depth. A careful assessment of these factors provides critical
insights into reservoir stress distributions. The effect of var-
ious depths (from a3 to 4a3) for the penny-shaped resource
(a1 = 0 75, a2 = 1, and a3 = 0 1) on the stress redistributions
near the surface is estimated (Figures 6 and 7). The linear
thermal expansion and Biot coefficients and fluctuations of
local temperature and pore pressure are the same as in
Section 3.1 for the purpose of comparations.

The red, green, dark yellow, and blue curves, respec-
tively, represent the stress variations of inclusions located
at a depth from a3 to 4a3. It can be seen that σ11 of the red
curve in Figure 6(a), whose inclusion is placed closest to
the ground, exhibits a relatively higher value at the begin-
ning and end than those of others, while the stress inside
the region shows the greatest difference between the bound-
ary and the center of the inclusion. The same trend is also
valid for σ22 and σ33 distributions of the red curve in
Figures 6(b) and 6(c). The blue curve which means the dee-
pest inclusion beneath the surface shows the smoothest tran-
sition curve in σ11, σ22, and σ33 among the four. The stress
components inside the region are not disturbed by the sur-
face effect. As can be seen from Figure 6(d), the shear stress
components generally exhibit different paths along with
changes in the depth of inclusion. The inclusion located
closest to the surface (red curve) experiences a sudden
change in shear stress, exhibited as two fluctuations of high
and low peak values before and after the boundary. The
shear stress component of the deeper inclusion (green curve)
illustrates a relatively smoother change as compared to the
shallowest one, whereas the dark yellow and blue ones show
the same trends with increasing depth.

The graph in Figure 7 displays four different σVonMises of
an inclusion with various depths as compared to Figure 6.
The four curves exhibit generally similar trends, where the
red curve has slightly higher tensile stress values at the

beginning and end compared to the other three curves, while
its tensile stress values are lower within the thermoporous
region. Notably, the maximum tensile stress values of the
four curves appearing at the boundary of the region are
approximately the same as 1.9. Within the region, the
σVonMises of the red curve (depth at a3) is lowest at the center
point of inclusion, while the corresponding values for the
other three curves are highest. As the depth increases, the
stress values tend to converge, while the inclusion closer to
the surface is more heavily influenced by the surface effect.
The slopes of the curves differ due to the varying depths of
the inclusion, which affect the distribution of σVonMises
around the surrounding rock formation.

3.3. Effect of Thermal Fluctuations. Temperature changes
and thermal fluctuations can induce significant stresses in
reservoir structures due to thermal expansion and contrac-
tion. As the temperature rises, the heated fluid expands, put-
ting outward pressure on the reservoir walls and floors.
Rapid cooling of the reservoir has the opposite effect, as con-
traction of the fluid causes depressurization that changes the
stress distribution on structural elements. Repeated cycles of
heating and cooling lead to thermal fatigue that can compro-
mise the integrity of the reservoir and surrounding formation
over time. Thermally induced stresses also affect reservoirs’
spillways, gates, and outlet controls which must continue to
operate reliably despite fluctuating pressures and loads. There-
fore, accounting for thermal fluctuations is an important
consideration in reservoir management and operations. The
response of temperature alternations with varying thermal
fluctuations (ΔT = −50, -25, 0, 25, and 50) to the stress redis-
tributions is determined in a half-space (Figure 8). The loca-
tion position of the reservoir is at a depth of 2a3, and the
other parameters except for the thermal changes are the same
as those in Section 3.2 for the comparative analysis.
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Figure 7: The changes of normalized Von Mises stresses due to the changes in depth.
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The graph describes five different stress curves with
respect to the red (ΔT = −50), green (ΔT = −25), dark yellow
(ΔT = 0), blue (ΔT = 25), and purple (ΔT = 50) of a half-
space inclusion produced by thermal fluctuations. In
response to the alternations in the interior temperature field,
σ11 inside and outside the inclusion shows a symmetrical
trend of variation, with the maximum values at around 70
occurring at the boundaries. As the temperature changes in
the reservoir, the stress jumps at the boundaries are about
30 for each segment of temperature increase in Figure 8(a).
Likewise, the curves for σ33 exhibit symmetry as well, with

the maximum and minimum values differing by approxi-
mately 90 in Figure 8(b). The temperature change appears
to have a greater impact on the stress redistribution at the
reservoir’s boundaries, while σ33 inside and outside the res-
ervoir are relatively smaller. Regarding the changes in shear
stress σ13 in Figure 8(c), as the temperature inside the reser-
voir continuously increases, its tensile stress value also
increases continuously, but near the reservoir boundary, it
rapidly decreases to compressive stress. While inside the res-
ervoir, σ13 transitions from compressive stress to tensile
stress, passing through zero at the center point, and then
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Figure 8: The thermal fluctuations (ΔT = −50, -25, 0, 25, and 50) impact the stress redistributions of the half-space reservoir.
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transitions back from compressive to tensile stress. Similarly,
in the case of continuously decreasing reservoir temperature,
the changes in σ13 are opposite to those of increasing tem-
perature. It is worth noting that the maximum values of
σVonMises occur at the boundary points regardless of the
highest temperature increase or decrease. The σVonMises
exhibit the maximum tensile stress of around 95 at ΔT =
50 and ΔT = −50. This graph is important as it helps to
understand the effect of thermal fluctuations on the stress
levels of a half-space inclusion under different thermal con-
ditions, such as specific heat management properties or ana-

lyzing the durability of a reservoir exposed to temperature
alternations.

3.4. Pore Pressure-Sensitive Analysis. Before injection, the
interior pressure of the reservoir is in its initial state, which
depends on the depth and geothermal gradient. During pro-
cessing, fluid is injected into the reservoir, leading to an
increase in pore pressure. This stress release causes the pore
throat size to increase and microfractures to open up,
enhancing the permeability. In the condition of production,
the reservoir pressure is elevated compared to the initial
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Figure 9: The sensitive stress analysis of interior pore pressure variations (ΔP = −50, -25, 0, 25, and 50) around the injected or withdrawn
resource.
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conditions. The increased pore pressure reduces the effective
stress acting on the reservoir rock. This stress change causes
rock compaction and shifts stress-dependent petrophysical
properties like porosity and permeability. The altered pres-
sure regime also impacts the geomechanical stability and
changes the propensity for subsidence or induced seismicity.
Furthermore, the cyclic changes in pore pressure during
fluid flooding lead to reversible alterations of reservoir stress
state, pore structure, and petrophysical properties. Proper
assessment of these dynamic effects is crucial for optimizing
waterflood performance and geomechanical stability. The
sensitive analysis of interior pore pressure variations
(ΔP = −50, -25, 0, 25, and 50) on the stress state of the
injected region is determined as compared to the preceding
case. Figure 8 depicts a comparative study of the pore pres-
sure effect on the geophysical changes.

The pore pressure alternations varying from ΔP = −50 to
50 and impacting the exterior and interior stress fields of the
resource are explored. As the internal pressure increases, σ11
gradually decreases, as shown in Figure 9(a). Due to the
influence of the ground, the values at the region center
points are relatively smaller compared to those at the region
boundaries. However, the trends of σ33 are generally the
same as the pressure changes in Figure 9(b). The difference
is that the jump values at the region boundaries reach the
maximum compressive stress when the pressure drops to
-50 and reach the minimum compressive stress when the
pressure rises to 50. Similarly, the same trend also appears
for σ13 in Figure 9(c). The difference is that, compared to
when the pressure increases, the tensile and compressive
states of σ13 at the boundaries and slightly outside the
domains are slightly higher when the pressure decreases to
-50. As can be seen from Figure 9(d), σVonMises has the max-
imum values at about 2.1 when the pressure decreases and
has the minimum values at about 1.7 when the pressure
increases at the interfaces. Due to the difference between
the reservoir and rock formation caused by the existence of
inherent strains in the inner field and vanishing in the outer
field, the maximum σVonMises also appears at the boundaries.

4. Conclusions

(1) Evaluating the fluid flow, heat transport, interior
temperature, and pore pressure fluctuations inside
the hydrocarbon energy during production is of
great practice. The disturbance effect on the shallow
geostructure affecting the geomechanical properties
around the rock formation is difficult to solve. It is
therefore necessary to adopt the micromechanics
method to handle quasistatic and isothermal poroe-
lastic problems

(2) Based on Green’s function and coordinate transfor-
mations for the semi-infinite isotropic solid, the
stress state of a dilatationally eigenstrained inclusion
beneath the surface can be derived in terms of poten-
tial functions. The approach uses constitutive laws
and governing equations that link changes in stress,

strain, temperature, and pore fluid pressure of the
subsurface reservoir in a porous matrix

(3) The thermal and pore pressure fields are coupled
through the eigenstrain equation within the domain.
The resource located closest to the surface experi-
ences a sudden change in shear stress, which is
exhibited as two fluctuations of high and low peak
values before and after the boundary. As the depth
increases, the stress values tend to converge, while
the resource closer to the surface is more heavily
influenced by the surface effect

(4) TPE models are often complex and computationally
intensive, requiring advanced analytical techniques
like potential theory for a better understanding of
rock failure/fracturing, reservoir compaction, surface
subsidence, and induced seismicity that can occur
with fluid injection/withdrawal. It is recommended
that Eqs. (5) and (6) can be employed to predict
the stress changes resulting from operations like
hydrocarbon production or injection, geothermal
energy extraction, and CO2 sequestration

Data Availability
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an ongoing study.
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