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Electric vehicles (EV) are fast becoming an integral part of our evolving society. There is a growingmovement in advanced countries to
replace gas-driven vehicles with EVs towards cutting down pollution from emissions. When fully integrated into society, electric
vehicles will share from energy available on the grid; therefore, it is important to understand consumption profiles for EVs. In this
study, some computation models are developed from predicting day-ahead energy consumption for electric vehicles in the city of
Barcelona. Five different machine learning algorithms namely support vector regression (SVR), Gaussian process regression (GPR),
artificial neural networks (ANN), decision tree (DT), and ensemble learners were used to train the forecasting models. The
hyperparameters for each of the ML algorithms were tuned by Bayesian optimization algorithm. In order to propose efficient
features for modeling EV demand, two different model structures were investigated, named Type-I and Type-II model. In the
instance of the Type-I model, seven regressors representing the consumption of the previous seven days were considered as input
features. The Type-II models considered only the EV consumption on the previous day and on the same day in the previous week.
Based on the results in this study, we find that the performance of the Type-II models was as good as the Type-I models across all
the algorithms considered although less input features were considered. Overall, the all algorithms employed in this study gave
about 75-80% model accuracy based on the R2 performance criterion. The models formulated in this study may prove useful for
planning and unit commitment functions in city energy management functions.

1. Introduction

Climate change concerns have stimulated diverse interests in
alternative and sustainable sources of energy. The past
decade has witnessed significant contributions in research
and developments geared towards reduction in the depen-
dence on fossil energy sources and integration of more
renewable energy sources into the world’s energy mix. Con-

sequently, the generation of energy from renewable sources
has led to innovation and development in everyday
machines and devices that consume renewable energy. Since
it is conceptualization in the early nineteenth century, elec-
tric vehicles (EVs) have grown in prominence and adoption.
It is estimated that by 2035, all newly purchased vehicles in
the EU will be solely electric, due to the ban imposed on
the sale of new petrol and diesel cars the EU parliament
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[1]. The volume of new EV registration in Europe increased
from 3.5% to 11% between 2019 and 2020, while the pur-
chase of electric vans also increased from 1.4% to 2.2%
within the same period [2].

In a not-too-distant future, EVs will compete for energy
on the grid. The faster the drive for integration of EVs into
our society, the higher the energy consumption that will be
demanded from grid operators on an hourly-daily time res-
olution. However, the nature of EV demand can be quite
stochastic and therefore present some problems in forecast-
ing. This has driven research interests into developing fore-
casting models that are capable of predicting consumption.
Conversely, due to the current low level of adoption, there
is limited available open data to assist the development of
efficient EV demand forecasting models.

The development of accurate models for EV demand
could offer significant economic benefits by minimizing unit
commitment costs through providing reliable forecasts
[3–7]. In [8], the authors studied day-ahead charging
demand of electric vehicles using a deep-neural network.
In their study, they show that the performance measures of
the neural network forecaster, namely RMSE and MAE,
improved by 28.8% and 19.22%, respectively, due to the
inclusion of weather and calendar features in the forecasting
problem formulation. An autoregressive integrated moving
average (ARIMA) model was proposed in [9] for forecasting
charging demand and conventional electrical load of EV
charging stations. The proposed forecaster considers daily
driving patterns and distances as features to generate the
expected charging load profiles. According to the authors,
the performance of the ARIMA model was improved by tun-
ing the order of the integrated and autoregressive parame-
ters such that the mean squared error performance
criterion is minimized. A Bayesian inference method with
convolution was proposed by [10] for 24 hours ahead EV
charging demand. The performance of the proposed method
was compared with linear regression and was found to have
lower MAPE and RMSE values. Different classical and
machine learning-based algorithms were considered in [11]
for forecasting EV demand in Korea using datasets from
2018 to 2019. In their study, they considered classical statis-
tical methods such as the trigonometric, Box-Cox,
autoregressive-moving-average (ARMA), and autoregressive
integrated moving average (ARIMA), as well as machine
learning methods including artificial neural networks and
long short-term memory (LSTM) networks. The study spe-
cifically evaluated the influence of exogenous variables in
macro- and microscale geographical areas.

A decision tree-based model was proposed in [12] for
estimating charge demand for different classes of EVs in
South Korea. The proposed model incorporates traffic distri-
bution data and weather effects as features in the forecasting
model. The study built different cluster models, using prob-
ability density functions, for electric cars and buses based on
traffic patterns. Four different prediction methods, namely,
Time Weighted Dot Product Nearest Neighbor, Modified
Pattern Sequence Forecasting, support vector regression,
and random forests were applied to charging record and sta-
tion record datasets from UCLA in [13]. It was the objective

of the authors to determine the best approach between
charging record (consumer-perspective) or station record
(charging outlets/stations) to forecast EV charging load.
The authors conclude that both approaches yielded compar-
ative prediction errors. Support vector regression was uti-
lized by [14] to build an EV forecaster. The features
considered in the study included the following: historical
charging data, number of EVs, weather information, week
properties, and holiday properties. Short-term EV demand
forecasting model was investigated by [15] using a convolu-
tional neural network (CNN) optimized by a niche immu-
nity lion algorithm. The niche immunity lion algorithm
was used in their study to optimize the weights and thresh-
olds of the CNN.

Contrary to the aforementioned studies, this study was
interested in the development of multiple computational
models for EV demand forecasting towards suggesting the
best model with the least prediction errors on limited histor-
ical data. Furthermore, it was of paramount interest to test
whether increasing the number of regressors (features) in
time series forecasting for EV demand yielded better model
prediction capabilities. The main contributions of this study
are summarized as follows:

(i) We develop computational models for predicting
day-ahead EV consumption in the Municipal Area
of Barcelona (Area Metropolitana de Barcelona,
AMB), Spain

(ii) Five machine learning (ML) algorithms were inves-
tigated in this study, namely artificial neural net-
works (ANN), support vector regression (SVR),
Gaussian process regression (GPR), decision tree
(DT), and ensemble learners (EL).

(iii) We investigate two main model structures each dif-
fering in number of features considered. To forecast
the demand LðkÞ on a given day k, the Type-I model
considered total EV energy demand in the past
seven days, that is, ½Lðk − 1Þ,⋯, Lðk − 7Þ�, while
the Type-II model considered only two features,
total EV energy in the previous day and on the same
day in the previous week

(iv) The parameters of each of the ML algorithms were
optimized using Bayesian optimization to arrive at
the optimal set of hyperparamters that give optimal
model results

(v) Performance analyses were carried out for each
model cluster using the R2 regression coefficient
and root mean squared error (RMSE) values

(vi) It was determined that the Type-II models per-
formed just as well as the Type-I models with 75-
80% model prediction accuracy across all five ML
algorithms considered which suggests that the pre-
vious day consumption Lðk − 1Þ and consumption
on the same day in the previous week Lðk − 7Þ rep-
resent important features in modeling consumption
profiles of EV users in Barcelona
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2. Datasets

The dataset considered in this study was obtained from [16]
and represents the charge demand from EV users in the city
of Barcelona covering a full one year period in 2019. The
dataset consists of records from 21 stations. Each of the sta-
tions and their average daily energy consumption are sum-
marized in Table 1. The first 11 stations in Table 1
represent slow charging stations with two Schuko 3 kW
charging points (CPs). The last 10 stations represent fast
charging stations each with the following charging points:
one Mennekes 43 kW CP, one Combo CCS 55 kW CP, and
one CHAdeMO 55kW CP. Figure 1 summarizes the average
demand for each day type, that is, Monday, Tuesday,
Wednesday, Thursday, Friday, Saturday, and Sunday which
shows that bulk of the EV energy consumption occurs dur-
ing weekdays than weekends.

3. Methodology

Two model structures were formulated to investigate the
consumption patterns of EV users in the city of Barcelona.
Type-I model uses seven predictors representing the con-
sumption of the past week, that is, ½Lðk − 1Þ,⋯, Lðk − 7Þ�,
while Type-II model considers just two features, ½Lðk − 1Þ,
Lðk − 7Þ� denoting the consumption of the previous day
and the consumption on the same day last week. Both model
types were trained with five machine learning algorithms:

Decision tree, ensemble learners, support vector regression,
Gaussian process regression, and artificial neural networks.
For each of the algorithms, we carry out hyperparameter
optimization using Bayesian optimization to select the best
hyperparameters. The features of both model types were
extracted in the same manner from the original data and
split into training and testing set using a 70 : 30 split ratio.
The following subsections discuss each of the machine learn-
ing algorithms considered in the study.

3.1. Decision Tree. Decision trees are graph-based data min-
ing algorithms for regression and classification problems.
The earlier decision tree algorithms such as the Iterative
Dichotomiser III [17] and C4.5 [18, 19] were proposed for
classification-based problems and introduction of CART
[20] which is capable of solving regression problems. In a
decision tree algorithm, each interior node represents an
input variable, and each terminal node corresponds to a tar-
get variable. The regression (decision) trees are grown to
minimize errors by dividing the input space at each iteration
of the algorithm. The estimated output at each terminal
node is computed by

ŷi =
1
ti
〠
j∈ti

y j, ð1Þ

where ti represents the leaf node at i and jtij is the total num-
ber of samples at that node. An error criterion is used to

Table 1: Average daily energy consumption in each station.

SN Station Av. cons. (kWh/d)

1 FLNR Sant Andreu da la Barca: Pg. Rafael de Casanova FGC 11.3427

2 PdRL Badalona: C. Anna Tugas - Pg. Olof Palmer 2.469

3 PdRL BarberÃ del VallÃ©s: C. ArquÃ‐medes, 8 0.5813

4 PdRL CornellÃ de Llobregat: Carrer de Baltasar Oriol i Mercer 1.9629

5 PdRL El Prat de Llobregat: Pl. Volateria (Mas Blau) 0.4934

6 PdRL GavÃ : C. del Progres, 54 8.3547

7 PdRL L’Hospitalet de Ll.: C. Salvador Espriu - Gran Via de les Corts Catalanes 2.3785

8 PdRL Montcada i Reixac: C. Tarragona - C. Pla de Matabous 1.5036

9 PdRL PallejÃ : Rda. Santa Eulalia - C. Joan Maragall 3.4857

10 PdRL Sant Cugat del VallÃ¨s: Av. Via Augusta, 3 2.9999

11 PdRL Sant Joan DespÃ‐: C. TV3 - C. Jacint Verdaguer 5.1317

12 PdRR Badalona: C. Anna Tugas - Pg. Olof Palmer 54.5

13 PdRR BarberÃ del VallÃ©s: C. ArquÃ‐medes, 8 40.6751

14 PdRR CornellÃ de Llobregat: Carrer de Baltasar Oriol i Mercer 133.5475

15 PdRR El Prat de Llobregat: Pl. Volateria (Mas Blau) 110.5672

16 PdRR GavÃ : C. del Progres, 54 147.3415

17 PdRR Montcada i Reixac: C. Tarragona - C. Pla de Matabous 36.4623

18 PdRR PallejÃ : Rda. Santa Eulalia - C. Joan Maragall 78.5579

19 PdRR Sant Cugat del VallÃ¨s: Av. Via Augusta, 3 150.5473

20 PdRR Sant Joan Despi: C. TV3 - C. Jacint Verdaguer 109.0142

21 PdRR l’Hospitalet de Ll.: C. Salvador Espriu - Gran Via de les Corts Catalanes 119.3131
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guide the splitting decision. For instance, [] considers the
following least squares deviation

I tið Þ =〠
j∈ti

y j − ŷi
� �2

, ð2Þ

where IðtiÞ denotes an impurity measure. The splitting crite-
rion is then obtained as follows.

ΔI = I tp
À Á

− PlI tlð Þ − PrI trð Þ: ð3Þ

tl and tr represent child nodes to the left and right of the
parent node tp, respectively, and Pl and Pr are data propor-
tions of samples allocated to left and right children nodes.
Suppose the split rule is generated based on numeric or ordi-
nal variable, the resulting children node is two, and the par-
ent node is decomposed into two subsets, fx : xk > Sg and
fx : xk ≤ Sg, where s, xk denotes the split point and selected
attribute, respectively. Important hyperparameters consid-
ered in this study which could affect the performance of
the decision tree algorithm include maximum number of
splits, minimum leaf size, and number of variables to sam-
ple. The maximum number of splits parameter limits the
total number of splits possible from the root node. The num-
ber of variables to sample parameter determines the number
of regressors selected at each random split. The minimum
leaf size hyperparameter defines the limit for a node split
in a child node when the number of observations in that
node is less than the minimum leaf size.

3.2. Ensemble Learners. Voting ensemble or ensemble learn-
ing refers to the combination of multiple algorithms to solve
a given problem. This approach has been proven to optimize
performance, reduce instability, and handle complex data-
sets. Different ensemble-based techniques have been
reported in literature such as voting-based ensemble [21],
ensemble of online sequential extreme learning machine
(EOS-ELM) [22], and weighted voting in ELM [23].
Voting-based ELM considers multiple ELMs trained on the
same dataset, each having the same hidden node and activa-
tion function in each hidden node. A majority-based voting
is then used to determine the final output of the ensemble
network. In this study, we consider ensemble learning
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Figure 1: Maximum and average consumption by day type.

Table 2: Model performance measures.

Measure SVR GPR ANN DT Ensemble

Type-I

R2 (training) 0.807 1 0.809 0.832 0.89

R2 (testing) 0.79 0.79 0.796 0.664 0.806

RMSE (training) 172.44 0.05 171.366 161.963 135.41

RMSE (testing) 189.01 189.78 187.719 234.5571 183.89

Type-II

R2 (training) 0.802 1 0.8048 0.81 0.83

R2 (testing) 0.803 0.787 0.802 0.75 0.77

RMSE (training) 174.11 0.05 173.67 170.15 160.87

RMSE (testing) 184.42 190.89 185.12 202.87 198.53
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algorithm consisting of boosted or bagged decision trees.
The optimized hyperparameters of the ensemble learning
method considered in this study include the following:
method (LSBoost or Bag), number of learning cycles, learn
rate, minimum leaf size, and number of variables to sample.
The minimum leaf size, number of learning cycles, and
number of variables to sample are particular to the decision
tree algorithm and have been discussed in the preceding sec-
tion. The method hyperparameter specifies the type of
ensemble method to use. Boosting methods constructs shal-

low decision trees and are faster to converge than Bag
method which constructs deep trees. The learn rate hyper-
parameter guides the speed of convergence of the LSBoost
algorithm.

3.3. Support Vector Regression. Support vector machine
(SVM) originally proposed by [24] is based on the struc-
tural risk minimization principle. Given a dataset in a
binary classification task, the classical SVM algorithm
attempts to find a hyperplane that minimizes the
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Figure 2: Training and testing regression plots for SVR-I model.

Table 3: SVR Hyperparameter optimization results.

Model BC KS Epsilon KF PO Standardize MO

SVR-I 9.3477 — 1.2361 Linear — True 10.32

SVR-II 131.22 3.2215 45.721 Gaussian — True 10.3678

BC = box constraint; KF = kernel function. KS = kernel scale; PO = polynomial order; MO=minimum objective.
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classification error. Support vector regression (SVR) algo-
rithms are extensions of the SVM algorithm for
regression-based problems. The classical SVR algorithm is
based on a ε-loss function which attempts to compute a
hyperplane such that the error between the predicted
observations ŷ, and the actual observations y based on a
given feature space is minimized to have at least ε-devia-
tion. Different variants of the SVR algorithms have been
proposed such as linear, kernel, V, and twin-SVR algo-
rithms. A simple mathematical basis of the SVR algorithm

is summarized as follows. Consider a simple regression
problem with n observations arranged in the tuple ðxi, yi
Þ, where xi and yi denote features (or predictors or regres-
sors) and outputs, respectively. Suppose we seek to find a
function f ðxÞ defined by

f xð Þ = ωx + b, ð4Þ

such that the error between the observed outputs y
and the predicted outputs f ðxÞ is minimized over training
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Figure 3: Training and testing regression plots for SVR-II model.

Table 4: GPR hyperparameter optimization results.

Model Sigma BF KF KS Standardize MO

GPR-I 0.013969 Linear Ardexponential — True 10.355

GPR-II 1:7 × 10−4 Linear Exponential 1.608 False 10.355

BF = basis function; KF = kernel function. KS = kernel scale; MO = minimum objective.
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and validation datasets. The problem is thus cast into an
optimization problem as follows.

min
ω

1
2 ω2�� ��

subject to
yi − ωxi − b ≤ ε

ωxi + b − yi ≤ ε:

( ð5Þ

Alternatively, we may also consider the following loss
functions [Reference]

L y, f xð Þð Þ =
0 y − f xð Þj j ≤ ε,
y − f xð Þj j − ε otherwise,

(
ð6Þ

L y, f xð Þð Þ =
0 y − f xð Þj j ≤ ε,
y − f xð Þj j − εð Þ2 otherwise:

(
ð7Þ

For practical considerations, the presented mathemati-
cal formulation of the SVR algorithm is too naïve as it
does not account for model inaccuracies. To account for
model errors, slack variables ζ1, ζ2 are introduced, to
reconstruct the minimization problem as follows:

min
ω

1
2 ωj j2 + C〠

l

i=1
ζi,1 + ζi,2ð Þ

subject to
yi − ωxi − b ≤ ε + ζi,1

ωxi + b − yi ≤ ε + ζi,2

ζi,1, ζi,2 ≥ 0:

8>><
>>:

ð8Þ

In (8), a positive regularization parameter has been
included to balance between optimizing the flatness of
the function f and minimizing the prediction errors. The
kernel SVR is arguably the most popular SVR algorithm
in literature due to its ability to handle highly nonlinear
problems by transforming the input space into high-
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Figure 4: Training and testing regression plots for GPR-I model.
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dimensional kernel space via some kernel functions. For a
given kernel function ϕð:Þ ∈ℝm ⟶ℝ, the kernel SVR
problem is cast as follows:

min
ω

1
2 ωj j2 + C〠

l

i=1
ζi,1 + ζi,2ð Þ

subject to
yi − ωϕ xið Þ − b ≤ ε + ζi,1

ωϕ xið Þ + b − yi ≤ ε + ζi,2

ζi,1, ζi,2 ≥ 0:

8>><
>>:

ð9Þ

The performance of the support vector regression algo-
rithm may be influenced by the choice of hyperparameters.
Some tunable SVR hyperparameters include the following:
box constraint, kernel scale, epsilon, kernel function, and poly-
nomial order. The box constraint hyperparameter controls the
costs associated to misclassified points when the data is not
linearly separable. The kernel function hyperparameter deter-
mines the type of kernel function to interpret the features.
Common kernel functions include linear, Gaussian, radial
basis, polynomial, and sigmoidal functions. The margin of tol-
erance is measured by the epsilon hyperparameter. The
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Figure 5: Training and testing regression plots for GPR-II model.

Table 5: ANN Hyperparameter optimization results.

Model NL Activations Standardize Lambda LWI LBI L1 L2 L3 MO

ANN-I 1 ReLU True 0.0791 He Zeros 297 — — 10.29

ANN-II 3 ReLU True 8:5295 × 10−5 He Zeros 2 15 2 10.34

NL = number of layers; LWI = layer weight initializer; LBI = layer bias initializer; Li = size of layer i = 1, 2,⋯NL; MO = minimum objective.
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smaller the value of ε, the smaller the error tolerance. The
polynomial order hyperparameter determines the order of
the polynomial kernel function. The kernel scale hyperpara-
meter is a scaling value used to scale the features before com-
putation of the Gram matrix.

3.4. Artificial Neural Networks. Artificial neural networks
(ANN) are bioinspired information processing units that
mimic the processing capabilities of the human brain to
model complex and often highly nonlinear relationships
between input and output data. ANN was originally devel-
oped by [25], in their attempt to derive functional models
for biosystems using simple logical operators. The study
and development of artificial neural networks has since then
evolved with several model structure and algorithms pro-
posed for solving different black-box modeling problems.
The simplest neural network consists typically of a neuron

which forms its basic functional units. The mathematical
expression of a simple neuron unit is given by

ŷ = ϕ 〠
n

i=1
ωixi + b

 !
, ð10Þ

where ωi and bi are known as weights and biases, ŷ is the
output of the neuron, and n is the number of data observa-
tions. The process of arriving at black-box models for com-
plex and/or nonlinear processes is referred to as learning. In
the learning phase, the neural networks adopt some learning
algorithms to determine appropriate weights. A loss func-
tion usually in the form of mean squared error criterion
between the actual and predicted output is defined to guide
the convergence of the learning algorithms to optimal values
of the weights and biases that fits the modeling problem
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Figure 6: Training and testing regression plots for ANN-I model.
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perfectly. Different forms of learning such as supervised,
unsupervised, and reinforcement learning have been pro-
posed for neural network modeling problems. Learning
algorithms such as gradient descent, Levenberg Marquardt,
newton, quasi-Newton, and conjugate gradient have been
developed for training neural network models. ANNs can
be classified based on the network structure into single-
layer feed-forward networks, multilayer feed-forward net-
works, single-layer recurrent network, multilayer recurrent
network, and single node with self-feedback. ANNs have
the capabilities to handle both classification and regression
problems. In this study, we employ a feed-forward neural net-
work model structure with a limited memory Broyden-
Fletcher-Goldfarb-Shanno quasi-Newton (LBGBS) training
algorithm to minimize the mean squared error criterion. The
layer structure of the neural network consists of five layers,
namely the input layer, fully connected layer, ReLU activation
layer, another fully connected layer, and an output layer. The

main hyperparameters optimized for the ANN algorithms
include the activation function, the number of hidden layers,
and the number of neurons in each hidden layer.

3.5. Gaussian Process Regression. The approach for modeling
complex and highly nonlinear processes via Gaussian pro-
cess regression (GPR) is based on statistical Gaussian pro-
cesses defined by a mean and covariance function.
Consider a process to be modeled which has the pair of
input-output relationships defined by ðxi, yiÞ, i = 1,⋯n,
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Figure 7: Training and testing regression plots for ANN-II model.

Table 6: Decision tree hyperparameter optimization results.

Model MLS MNS VS MO

DT-I 4 7 7 10.41

DT-II 27 5 2 10.40

MLS = minimum leaf size; MNS = maximum number of splits; VS =
number of variables to sample; MO = minimum objective.
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where xi ∈ℝm, yi ∈ℝ represent features (input) and outputs,
respectively, and n is the number of observations. The
modeling in GPR begins with describing a predictor ŷ for
the process output y as follows:

ŷ = f xð Þ + ε, ð11Þ

where ε ≈N ð0, σ2eÞ) is a noise term with zero mean and
covariance σ2e .The function f ðxÞ is also considered to be ran-
dom variable and can be described by a statistical distribu-
tion, in this case, a Gaussian distribution as follows:

f xð Þ ≈GP m xð Þ, k x, x′
� �� �

, ð12Þ

where mðxÞ and kðx, x′Þ are mean and kernel (covariance)
functions defined as follows:

m xð Þ = E f xð Þð Þ, ð13Þ

k x, x′
� �

= E f xð Þ −m xð Þð Þ f x′
� �

−m x′
� �� �

: ð14Þ

The kernel functions are used to describe the depen-
dence of the functions at different points x and x′ and are
critical to the performance of the GPR algorithm in a model-
ing task. A popular choice of kernel function is the Bayesian
kernel function defined as

k x, x′
� �

= σ2f exp −
x − x′
�� ��2
2λ2

 !
, ð15Þ

where λ and σ2f are length scale and signal variance hyper-
parameters, respectively, and are used to increase or decrease
prior correlation between points. The major hyperpara-
meters optimized for the GPR algorithm include basis func-
tion, sigma, kernel function, and kernel scale. The options of
GPR kernel functions include ardexponential, ardmatern32,
ardmatern52, ardrationalquadratic, ardsquaredexponential,
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Figure 8: Training and testing regression plots for DT-I model.
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exponential, matern32, matern52, rationalquadratic, and
squaredexponential. The search space of the basis function
includes none, constant, linear, and quadratic.

4. Results and Discussion

This section presents the results obtained from both the
Types-I and II demand forecasting models. The perfor-
mances of each computational model are evaluated using

root mean squared error (RMSE) and correlation coefficient
ðR2Þ defined by (16) and (17), respectively. Table 2 summa-
rizes the performance values for all the models considered.

MSE = 1
n
〠
n

i=1
yi − ŷið Þ2, ð16Þ

R2 = ∑m∑n Amn − �A
À Á

Bmn − �B
À Á

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑m∑n Amn − �A

À Á2� �
∑m∑n Bmn − �B

À Á2� �r
0
BB@

1
CCA

2

:

ð17Þ
4.1. Support Vector Regression. The optimized hyperpara-
meters of the SVR model are reported in Table 3. The Type-
I SVR model optimization converged to a linear kernel func-
tion, while for the Type-II model, the optimizer converged
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Figure 9: Training and testing regression plots for DT-II model.

Table 7: Ensemble hyperparameter optimization results.

Model Method NLC LR MLS MNS VS MO

Ensemble-I Bag 16 — 19 31 5 10.34

Ensemble-II LSBoost 39 0.28721 21 1 2 10.36

MLS = minimum leaf size; MNS = maximum number of splits; VS =
number of variables to sample; NLC = number of learning cycles.
LR = learning rate; MO=minimum objective.
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to a Gaussian kernel function. The Type-I SVR model con-
verged to a minimum objective of 10.32, while the Type-II
SVR model converged to a minimum objective of 10.36.
Figures 2 and 3 show the training and testing regression line
plots for both Type-I and Type-II models. The evaluation of
the Type-I SVR algorithm on the training dataset yielded R2

and RMSE values of 0.80 and 172.44, respectively, while the
Type-II model yielded R2 and RMSE values of 0.80 and
174.11 on the training set. Likewise, the Type-I model gave
R2 and RMSE values of 0.79 and 189.01, respectively. On the
testing set for the Type-II model, we recorded R2 and RMSE
values of 0.80 and 184.42, respectively.

4.2. Gaussian Process Regression. Table 4 presents the results
of the optimized GPR hyperparameters. The Type-I model
converged to a linear basis function and ardexponential kernel
function, while the Type-II model converged to a linear basis
function and an exponential kernel function. The minimum

objective function values for both Type-I and Type-II models
are 10.35 and 10.35, respectively. In Figures 4 and 5, the
regression plots of Type-I and Type-II models are presented.
In both Type-I and Type-II model formulations, R2 and
RMSE values of 1 and 0.05 were recorded on the training data-
set. Conversely, the testing performance for the Type-I model
gave R2 and RMSE values of 0.79 and 189.78, respectively.
Likewise, R2 and RMSE values of 0.78 and 190.89 were
recorded on the training set for Type-II model.

4.3. Artificial Neural Networks. In Table 5, we summarize the
results of the hyperparameter optimization of the ANN algo-
rithm. In the case of Type-I model, the optimization algo-
rithm converged to one hidden layer with 297 neurons.
Conversely, in the case of Type-II model the optimization
algorithm converged to three hidden layers with 2, 15, and
2 neurons, respectively. In Figures 6 and 7, the regression
plots of Type-I and Type-II models are presented. The
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Figure 10: Training and testing regression plots for ensemble-I model.
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minimum objective function value recorded for Type-I and
Type-II model are 10.29 and 10.34, respectively. On the
training dataset, we recorded for the Type-I model R2 and
RMSE values of 0.80 and 171.36, respectively. With the test-
ing dataset, the Type-I model yielded R2 and RMSE values of
0.79 and 187.72, respectively. The Type-II model yielded R2

and RMSE values of 0.80 and 173.67, respectively, on the
training set and R2 and RMSE values of 0.80 and 185.12,
respectively, on the testing set.

4.4. Decision Tree. The hyperparameters of the decision tree
algorithm are summarized in Table 6. The optimization of
the DT-I model converged to minimum leaf size(MLS) of
four and maximum number of splits (MNS) of seven. Con-
versely, the DT-II model has a higher minimum leaf size of
27 and maximum number of splits of 5. The optimization
of the Type-I and Type-II models yielded converged to min-
imum objective values of 10.41 and 10.4, respectively. In

Figures 8 and 9, the regression plots of Type-I and Type-II
models are presented. In both Type-I and Type-II models,
the all the features (variables) were sampled. For the Type-
I model, R2 and RMSE values of 0.83 and 161.96 were
recorded on the training set, while R2 and RMSE values of
0.66 and 234.55 were recorded on the testing set. Conversely,
the Type-II model yielded R2 and RMSE values of 0.81 and
170.15, respectively, on the training set. On the testing set,
R2 and RMSE values of 0.75 and 202.87 were recorded,
respectively, for the Type-II model.

4.5. Ensemble Learners. Table 7 summarizes the hyperpara-
meters of the ensemble learning algorithms for both Type-I
and Type-II models. The optimization algorithm converged
to minimum objective function values of 10.34 and 10.36
after 100 iterations. The Type-I model converged to the
Bag method, while the Type-II model converged to the
LSBoost method. In Figures 10 and 11, the regression plots
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of Type-I and Type-II models are presented. Compared with
the case of decision tree algorithm, the Type-I Ensemble
learner model uses a subset of the total number of features,
that is, the best minimum objective function value in this
case was obtained by using just five out of the seven features.
The number of learning cycles (NLC) in the Type-II model
was higher compared to the Type-I model. In terms of
model performances, in the case of the Type-I model, the
ensemble learners gave R2 and RMSE values of 0.89 and
135.11, respectively, on the training set, and 0.80 and
183.89 on the testing set, respectively. In the instance of
the Type-II model, R2 and RMSE values of 0.83 and
160.86, respectively, were recorded on the training set. On
the testing set, we obtained R2 and RMSE values of 0.76
and 198.53, respectively, for the Type-II model.

5. Conclusions

In this study, we have developed different computational
models and carried out comparative analysis between the
developed models using R2 and RMSE performance crite-
rion. The summary of the developments in this study is
given as follows:

(i) Five machine learning-based algorithms were
employed to develop a day-ahead electricity demand
models representing electric vehicles in Barcelona

(ii) Two main model classes were formulated in this
study; the Type-I model was formulated by consid-
ering demand from the previous seven days as fea-
tures, that is Lðk − 1Þ⋯ Lðk − 7Þ; the Type-II
model was formulated by considering only two fea-
tures namely, the consumption of the previous day
and the consumption of the same day in the previ-
ous week

(iii) Each of the machine learning algorithms were used
to train the proposed model. We compared the per-
formances of Types-I and II models for all algo-
rithms and find that although the Type-II model
has less features, it gives almost the same results as
the Type-I model, implying that Type-II models
has less complexity and computational times

In the case of the Type-I models, the performance of the
machine learning algorithms can be summarized from best
to worst as follows: ENSEMBLE > ANN > SVR >GPR >DT.

For the Type-II models, the performances of the
machine learning algorithms can be summarized as follows
from best to worst as follows: SVR > ANN >GPR > ENSE
MBLE >DT .
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