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The present paper focuses on the utilization of the steam explosion method for efficient pretreatment of rice straw, used as a
prominent substrate for bioethanol production. Native rice straw contains abundant chemical compounds in the form of
cellulose, hemicellulose, and lignin 32.4%, 57%, and 12.5%, respectively. Pretreatment with different concentrations of H2O2
(0.05%, 0.1%, 0.25%, 0.5%, 0.75%, and 1%) was used as efficient impregnating agents at an optimum temperature of 121°C at
130 kPa pressure. After pretreatment, cellulosic content increases up to 54.5% while there was a reduction in the hemicellulose
and lignin content up to 46.5% and 6.7%, respectively. The morphological changes were analyzed both before and after
pretreatment using FTIR, TGA, and XRD. The reducing sugar estimation was carried out using DNS reagent and the
absorbance was measured using a UV spectrophotometer at 540 cm-1 wavelength. Estimated results show a reducing sugar
yield of 220.05 g/l from 0.05% (v/v) H2O2 pretreated sample and 273.21 g/l from sample, pretreated with H2O2, citric acid in
the ratio of 1 : 1 with the same previous concentration. The XRD data shows enhancement of cellulose accessibility upon
pretreatment to 13.3% and thereafter reduction with an increase in the concentration of H2O2. While pretreatment with H2O2
combined with citric acid in 1 : 1 ratio shows enhanced accessibility of 19.6% than untreated rice straw. This work mainly
focuses on the core objective of an efficient pretreatment method for sustainable bioethanol production through a novel
approach to the production of fermentable sugar.

1. Introduction

With an increase in population, global consumption has led
countries towards a path of renewable energy sources, which
can reduce global warming and the dependency on conven-
tional fossil fuels. Biofuel production has become a sustain-
able option that will reduce dependency on the import of
crude oil [1, 2]. Major countries are dependent on the export
of crude oils which was considered a wasteful expenditure
for their economies. Countries such as Brazil and the United
States have started an active program on the usage and tech-
nological innovation in the production of biofuels over the

past 30 years [3] which has led to a reduction in greenhouse
gas emissions. Various countries including India are heading
towards clean-teach energy sources that will reduce carbon
emissions. As a consequence of attempts being taken in this
direction, the national biofuel policy of India has mandated
the blending of 10% green biofuels with petrol [4]. Still,
India barely manages to achieve 3% of blending with petrol.
To meet the requirements, there was a need for 2G biofuels
to achieve the mark of 10% blending and aim to go beyond
the minimum mark in near future [5]. However, this path
was far from simple and can take years of effort and capital
to be spent by the government and industries worldwide [6].
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As of now, various bioresources are available that have the
potential for the production of bioethanol, these include
industrial waste, agricultural biomass (cotton stalk, rice
husk, rice straw, sorghum stalk, corn cob, wheat straw, sug-
arcane bagasse, and jatropha pruning), energy crops, and
woody biomass as it was plentiful and cheap, and it did
not overlap with the usage of food and feed naturally avail-
able [7, 8].

Lignocellulosic biomass (LCB) is the recalcitrant struc-
ture containing cellulose (C6H10O5)n, hemicellulose
(C5H8O4)m, and lignin [C9H10O3(OCH3)0.9-1.7]x. It is con-
sidered that rice straw (RS) contains 35-50% cellulose, 20-
25% hemicellulose, 8-10% lignin, and little traces of extrac-
tive and ash content [9]. However, the presence of high
ash and silica concentration might sometime hinder
bioethanol synthesis. As a result, treating RS in the first step
with sodium carbonate is necessary to successfully remove
90% of the silica content from the biomass, progressively
increasing the glucose output [10–13].

The cellulosic material is more resistant to bioconversion
due to its recalcitrant structure. Pretreatment is considered
an expensive process and the least technological step toward
converting biomass to fermentable sugar. It makes structural
polysaccharides accessible for hydrolysis of reducing sugar
[14]. Among these processes, steam explosion (SE) is a dis-
tinctly efficient and favourable method with a maximum sol-
ubility of carbohydrate and lignin expulsion. SE partly melts
lignin, depolymerizes hemicellulosic content, and disrupts
the complex carbohydrate structure making complex bio-
mass structure accessible for enzymatic hydrolysis [15]. It
is estimated that SE-induced reduction in the acid groups
present in the biomass due to enhancement in the severity
of autohydrolysis causes higher losses of functional groups
present in the lignin structure [16, 17].

Hydrogen peroxide along with citric acid is the green
and safe route for a cost-effective and sustainable approach
to bioethanol production. The H2O2 is used for delignifica-
tion due to the presence of highly reactive radicals namely
hydroxyl radical (OH-) and superoxide anion radical (O2

-).
These forms of active radical delignify lignocellulosic bio-
mass structure through the process, namely, oxidation and
degradation [18]. By performing single-stage hydrogen per-
oxide pretreatment, H2O2 levels are relatively high, raising
the processing cost. As a result, a combination of pretreat-
ment that has the potential to reduce chemical inputs while
increasing sugar yields should be identified to improve the
process economically [17]. Liao et al. [19] performed hydro-
gen peroxide-acetic acid (HPAC) pretreatment with H2SO4
used as a catalyst for effective removal of 94.1% lignin from
the biomass but it has risk of explosion due to the formation
of strong oxidant of peracetic acid. To overcome the recalci-
trance of poplar, a milder HPAC pretreatment was carried
out by Liao et al. and Huang et al. [19, 20]. Furthermore,
HPAC pretreatment has the potential to increase the sugar
yield as it was stated that it would enhance hydrolytic
enzyme adsorption onto the lignocellulosic structure. Based
on our findings, HPAC pretreatment could be used for bio-
mass with varied cell wall types to produce cellulosic ethanol
effectively through the available green solvent. Overall, these

outcomes suggest that HPAC treatment is a beneficial
approach for lowering the industry’s costs of the 2G bioetha-
nol processing technique [21]. The findings suggested that
HPAC pretreatment eliminates interlinked glucan linkage
by remoulding the composition of hemicellulose [22].

In the present study, physiochemical pretreatment
impregnated with hydrogen peroxide combined with citric
acid (HPCA) was performed for the enhancement of fer-
mentable sugar production. After pretreatment, the struc-
tural composition of rice straw changed and was analyzed
using XRD, FTIR, and TGA analysis. It was estimated that
the crystallinity of cellulose, thermal decomposition of bio-
mass, and the changes in the functional group of biomasses
in the rice straw altered the structural component of the bio-
mass after pretreatment. Estimation of reducing sugar was
determined by using 3,5-dinitrosalicylic acid reagent and
the absorption was measured at 540 cm-1 wavelengths. This
research focuses on the establishment of an exact relation-
ship between optimal pressure conditions along with hydro-
gen peroxide treatment conditions to shatter the recalcitrant
structure of rice straw and make it affordable for converting
rice straw into bioethanol.

2. Material and Methods

2.1. Proximate Analysis of the Sample

2.1.1. Description of Lignocellulosic Biomass. Rice (Oryza
sativa) is the staple food grown in most of northern India.
The rice straw utilized for the process was collected from
the local farm in February 2022 from Kanpur, Uttar Pra-
desh. After that, the rice straw is dried in the air in the pres-
ence of natural sunlight at 21°C temperature. After drying up
in the air, it was further dried in the oven at 110°C for a
duration of 6 hrs and mechanically grinded up to <3mm
mesh size particle and stored at room temperature 25 ± 2
°C. According to the technique developed by Ayeni et al.
[23], the compositional analysis of dried biomass is 32.5%
cellulose, 57% hemicellulose, 12.5% lignin, 10.12% extrac-
tive, and 7.4% ash and was performed according to the
National Renewable Energy Laboratory (NREL) protocol
[24]. All the chemicals were of reagent grade and acquired
from Hi-Media Lab.

2.2. Compositional Analysis of Biomass. Soxhlet’s extraction
was set up and the weight of the extractive-free sample was
measured both before and after extraction to find out the
constant weight of extractive present in the rice straw. After
that, hemicellulose determination was carried out according
to the protocol of Ayeni et al. to obtain the constant weight
of hemicellulose [23, 25]. Similarly, for lignin determination,
1 gm of extractive-free dried sample was taken and dissolved
in 50ml of 96% H2SO4 and was undertaken for acidic
hydrolysis with the method of Cornejo et al. [26]. The
acid-soluble lignin was evaluated by measuring its absor-
bance at wavelength 205 cm-1. After that, it was dried at
ambient temperature to obtain the constant weight of lignin
present in the rice straw [27, 28]. For the determination of
cellulosic content, it was accounted with the difference
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obtained from extractive, hemicellulose, lignin, and ash con-
tent. The residue was left with the dried constant weight
(%w/w) of cellulosic biomass.

2.3. H2O2-Impregnated Steam Explosion. Following the
determination of moisture content, the dried 2 gm RS was
subjected to acid impregnation with different concentrations
of 0.05% (v/v), 0.1% (v/v), 0.25% (v/v), 0.5% (v/v), 0.75%
(v/v), and 1% (v/v) H2O2 with a stock solution prepared in
100ml of distilled water. Afterward, impregnations were car-
ried out in other batches combining H2O2 (0.05%, v/v) and
citric acid in 1 : 1, 1 : 2, and 2 : 1 ratio. The RS was dissolved
in the solvent for 1 hr before being subjected to steam explo-
sion and then autoclaved at 121°C for 45min at 103 kPa
pressure. After that, the slurry was vacuum filtered for the
separation of liquid (water-soluble) and solid (water-insolu-
ble) fractions. The water-insoluble fraction was rinsed with
distilled water to obtain the desired pH using 6mol/l of
NaOH for further designated hydrolysis conditions and is
then stored at 4°C for further analysis. The reducing sugar
was estimated by the 3,5-dinitrosalicylic acid (DNS) method
[29]. All experiments were performed at least in duplicate.

2.4. Fourier Transform Infrared Spectroscopy (FTIR)
Analysis. The dried RS sample weighed 0.3mg and was agi-
tated for 2 minutes with 50mg of KBr using an FTIR grid.
With a maximum resolution of 4 cm-1, this reveals structural
variations that happened between 4000 and 400 cm-1 wave-
length, and an average of 20 scans were performed using
an FTIR spectrophotometer (CIF Lab, LPU). Both before
and after pretreatment was analyzed at different peaks on
different wavelength range to detect the spectra of various
functional group present in the biomass [16].

2.5. Thermogravimetry Analysis (TGA). TGA was performed
using Perkin Elmer TGA 4000 and was used to measure the
kinetics, proximate analysis, and composition of the bio-
mass. It was used to measure the weight of the decomposed
biomass on heating from room temperature to 600°C at
10°C/min. Throughout the procedure, the weight was
recorded so that with the onset temperature, the reaction
accelerates and the weight reduces significantly, which can
be determined. TGA measured the mass changes as a func-
tion of temperature or time with a constant heating rate.

2.6. Powder X-Ray Diffraction. The cellulose crystallinity
index of both native and pretreated samples was analyzed
using the Bruker D8 Advance XRD system (CIF Lab,
LPU). X-pert pro diffractometer with scanning range 2θ
within 5-40° at 0.03°/s using Cu-Kα radiation X-ray. The
crystallinity index was calculated from PXRD analysis using
a formula earlier developed by [30],

CrI %ð Þ = I002 − Iam‐ð Þ
I002

� �
× 100, ð1Þ

where CrI shows the crystallinity index, I002 shows maxi-
mum intensity in the crystalline region of cellulose at the
002 planes while Iam shows the minimum intensity in the
amorphous region of cellulose between its lattice plane [31].

2.7. Analytical Methods. The moisture content in the bio-
mass was determined by drying to constant weight at
110°C for 2 hrs in the hot air oven and was estimated to be
13%. The compositional analysis of raw rice straw was
obtained by Soxhlet’s extraction and using NREL standard
protocol [32]. In short, a two-step hydrolysis technique
using sulfuric acid (H2SO4) was performed to digest 1 g of
1-3mm sample size. After hydrolysis, the Klason lignin
was separated by filtration through medium porosity filter-
ing crucibles and quantified after drying at 105°C. At
205 cm-1 wavelengths, the acid-soluble lignin in the hydroly-
sate was determined using a UV-vis spectrophotometer [33].
The amount of lignin is calculated as the sum of acid-soluble
lignin and the Klason lignin. While NaOH was used to
digest 1 gm of the extractive-free biomass sample. Hemicel-
lulose content was filtered via vacuum filtration and weighed
after drying at 110°C for 1 hr. The amount of hemicellulose
was calculated as the constant weight of dried biomass.
The pretreated rice straw is subjected to a steam explosion
along with the different concentrations of H2O2 and with
varied ratios of citric acid and H2O2. The solid residue
obtained after pretreatment was analyzed for characteriza-
tion using FTIR, XRD, and TGA. The quantification of
reducing sugar was performed using DNS reagent test and
absorbance was measured at 540 cm-1 wavelength [31].

3. Result and Discussion

3.1. Compositional Analysis of Rice Straw. The majority of
lignocellulosic biomass is composed of the polysaccharide
cellulose and hemicellulose, as well as the aromatic polymer
lignin. All of these components are meticulously woven
together to offer unwavering support to the plant cell wall.
This complicated ambiguity of LCB components impeded
enzyme degradation into a low-molecular building block.
The composition of the RS used in this study was initially
compared to previous studies (Table 1) and was found as
hemicellulose (57% w/w), cellulose (32.4% w/w), lignin
(12.5% w/w), extractive (10.12% w/w), and ash (7.4% w/
w). Semwal et al. [34] reported a higher cellulosic content
(37.8wt%) for the RS biomass along with hemicellulose
(21.6wt%), lignin (13.6wt%), and ash (13.2wt%) content.
Ayeni et al. [23] reported higher cellulosic contents for
the rice straw they used. Indeed, such varied composi-
tional analyzes of lignocellulosic biomass due to soil type,

Table 1: Comparison of compositional analysis of Rice straw used
in previous studies.

Component
Present
study

Syaftika et al.
[36]

Semwal et al.
[34]

Cellulose (glucan) 32.4 28 37.8

Hemicellulose
(xylan
and arabinan)

57 55 21.6

Lignin 12.5 11 13.6

Ash 7.4 6 13.2

Extractive 10.12 NA 16.1
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nitrogen fertilization, and harvest time, all had a strong
influence on biochemical composition [35]. The presence
of both lignin and hemicellulose had the potential to
reduce overall efficacy in conventional bioethanol synthesis
from cellulose alone, as these additional components could
impair both the sample pretreatment and the enzymatic
hydrolysis phases [36].

3.2. Biomass Digestibility under Various Concentrations of
H2O2 along with a Steam Explosion. Rice straw was pre-
treated with different concentrations of H2O2 along with
citric acid (HP-CA) at different ratios. The colour of the
hydrolysate solution darkened during the pretreatment pro-
cess on decreasing concentration of H2O2, demonstrating
the breakdown of the lignocellulosic materials from the RS,
as illustrated in Figure 1. Lignin was considered a phenolic
polymer that was hydrophobic in nature and nearly insolu-
ble in water. The hydrophobic interactions between the sub-
stituent of phenolic lignin and the aromatic ring of the
hydrotrope resulted in the preferential solubilization of lig-
nin over cellulose and hemicellulose in the hydrotropic solu-
tion. For lignin separation, the hydrolysate solution
containing the lignin extract was diluted with less concentra-
tion of H2O2. Mejica et al. [37] stated that during the alka-
line pretreatment process, the substrate primarily
undergoes the crumbling of lignocellulosic structure, cellu-
lose and hemicellulose dissolution, and saponification of
ester intermolecular bonds, destroying the chemical bond
of hemicellulose and other chemical compounds, resulting
in lignocellulosic substrate delignification. Furthermore, the
intensity of cross-linking polymers was altered, resulting in
variations in the porosity, surface range, and crystallinity of
the treated biomass. To prevent lignin precipitation on the
surface of the biomass, the solid fraction extracted after pre-
treatment must be rinsed thoroughly with distilled water,
followed by washing with hot water. The pretreatment
method using SE and HP was considered to bring about
hydrolysate with elevated glucose concentration from RS.
The compositional analysis of RS was slightly influenced
by SE treatment alone while a reduction in lignin content
of up to 6.7% and hemicellulosic content of up to 46.5%
while cellulosic content enhanced by up to 54.5% that was
affected by HP treatment and the process was enhanced with
HP-CA treatment. Gao et al. [38] performed wet disk mill-
ing with HP pretreatment at 70°C with 84.7% of enhanced
glucan content in the sugarcane bagasse. The maximum
delignification has a considerable impact on xylan hydrolysis

as the majority of xylan elimination was affected by WDM-
HP pretreatment. A similar finding was confirmed with the
low concentration of H2O2 along with weak acid, i.e., citric
acid as it was one of the efficient methods towards bioetha-
nol production as it efficiently removed lignin under mild
temperature as well as utilization of weak acid was less haz-
ardous as compared to stronger one. It was earlier revealed
that HPAC pretreatment would enhance the capacity of
enzyme adsorption up to many folds approximately 2.6 to
7.1 and also contributes efficiently toward the fermentation
of bioethanol as it eliminated the formation of inhibitors in
the form of furfurals from the hydrolytic medium [39]. Sim-
ilarly, work was confirmed by using acetic acid pretreatment
prior to HPAC that was mixed in a 1 : 1 ratio. Thus, 10 gm
poplar was pretreated with 100ml HPAC (80%, v/v) along
with 100mM H2SO4 as a catalyst at 60

°C for 2 hrs retention
time that was efficient in the delignification of biomass with
95.4% of lignin removal [40]. The findings suggested that
coupling SE and H2O2 would not only improve saccharifica-
tion efficiency but also lower enzyme loading during enzy-
matic hydrolysis. As a result, optimizing saccharification to
decrease enzyme loading for low-cost ethanol production
should be a priority in the future. Further recent studies on
hydrogen peroxide pretreated samples on various lignocellu-
losic biomass are illustrated in Table 2.

3.3. Cellulose Crystallinity Index Analysis of the Sample. The
cellulose crystalline index (CrI) was a key factor that influ-
ences lignocellulosic biomass enzymatic digestibility. The
crystalline nature of cellulose varies depending on the bio-
mass, and PXRD was used to analyze the variations in the
crystallinity index of cellulose both for native and pretreated
RS. There are crystalline and amorphous forms present in
the cellulosic part of lignocellulosic biomass. To prevent cel-
lulose degradation, the crystalline structure features a large
intramolecular hydrogen bonding that was earlier confirmed
by Liu et al. [42]. Zhang et al. [16] studied the sharp high-
intensity peaks that indicated the crystalline nature of all
the samples while a broad array of peaks in all biomass sam-
ples indicated that they were amorphous in nature. The
strong diffraction peak at various 2θ values corresponds to
the (110), (200), and (004) crystal phases of the biomass
are illustrated in Figure 2, a similar finding was earlier
observed by Malgas et al. [43]. The CrI was calculated using
the intensity range of both amorphous and crystalline cellu-
lose at the strong diffraction peak range of (200) and (110),
respectively. It was estimated that the pretreated sample

0.05% 0.1% 0.25% 0.5% 0.75% 1%

Figure 1: Liquid hydrolysate obtained after pretreatment of rice straw.
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showed slightly lower CrI than the native RS. It was reported
that the CrI value of native and 0.05% H2O2 samples was
49.4% and 57%, respectively, and thereby started decreasing
with an increase in the concentration of H2O2. Similarly,
HP-CA pretreated sample in the ratio 1 : 1 shows a maximum
CrI value of 61.5%, this shows 19.6% rise in cellulose crystal-
linity while 13.3% rise in crystallinity on treating with 0.05%
H2O2 due to delignification of biomass. The CrI calculation
based on intensity values at 18.5 (Iam) and 22.5 (I002) is pre-
sented in Table 3. This reduction in CrI of the pretreated sam-
ple suggests that it was extremely amorphous, indicating that
the lower concentration of HP has broken down intra- and
interchain H-bonding in the crystalline structure of cellulose.
The XRD pattern’s large diffraction peak signifies that the
crystalline form of processed biomass has undergone signifi-
cant modifications. The rise in CrI was attributed mostly to
the ablation of lignin and hemicellulose from the amorphous
area. Thus, the similar findings from Paramasivan et al.[44]
revealed that more amorphous cellulose was generated in the
presence of greater surface accessibility, implying that more
cellulolytic activity was potentially possible.

3.4. Functional Group Analysis of a Pretreated Sample. FTIR
spectroscopy was used to evaluate potential changes in the
polymer interlinkage in pretreated feedstock residues at distinct
peaks. On comparing both steam explosion and native rice
straw accountable for linkage between hemicellulose and cellu-
losemicrofibrils peak whereas untreated sample had not shown

those peaks clearly. The broader peak at 3306 cm-1 showed the
stretching of the O-H bond while with an increase in the con-
centration of H2O2 the peak got flattened. Similarly, stretching
of the C-H bond occur at the 2916 and 2924 peak interpreting
loosening of lignin microstructure for the further enzymatic
activity that was earlier confirmed by Paramasivan et al. [44].
The absorption spectra pertaining to usual intermolecular H-
bond and β-glycosidic linkages in polysaccharides, on the other
hand, spectra were greatly elevated by the combined pretreat-
ment used in this work. This indicates that the consolidated
pretreatment used in this analysis should be a cellulose-
friendly technology that sustains cellulose in the pretreated rice
straw. As a result, the combined pretreatment effectively
extracted hemicellulose-lignin complexes from the pretreated
biomass. Namely, 2 peaks corresponding to 1056cm-1 and
1037cm-1 are associated with the stretching of C-O bond of
acetamide group while the peak at 1625 cm-1 and 1617cm-1

indicate the stretching of the amide group in acetamide, similar
stretching was earlier studied byMa et al. [45]. Figure 3 indicates
the infrared spectrum of raw and pretreated rice straw (RS). The
absorption peaks of cellulose were stronger for the sequential
steam explosion and H2O2 pretreated RS as compared to the
native sample. Thus, the change in functional group absorbance
indicates that lignin structures have been destroyed, exposing
more cellulose surface area for enzymatic hydrolysis.

3.5. Thermal Stability of the Sample. It was critical to inves-
tigate the thermal properties of the pretreated sample, which

Table 2: Recent studies on hydrogen peroxide pretreatment on various lignocellulosic biomass.

Pretreatment methods Biomass
Required pretreatment

condition
Changes after pretreatment Ref.

Alkaline hydrogen peroxide Wheat straw
0.2Mol/l NaOH at 30°C for 5 hr

20mg H2O2/g biomass
50°C for 7 hrs

42.7% of lignin removal [17]

Hydrogen peroxide-
acetic acid (75% HPAC)

Poplar

30%, w/w H2O2 & 99%, w/w
acetic acid in 1 : 1 ratio

100mM H2SO4 as catalyst
(1 : 10, w/v) 80°C, 2 hr

Decrease in lignin concentration
from 28.2% to 3.1%

Glucan content increased from 40%
to 67.2%, with 11.8% glucan removal

[19]

Alkaline hydrogen
peroxide treatment

Bamboo
3%, v/v H2O2, 100

°C,
2.2% w/v NaOH

76.5% of glucan, 56% of xylan
recovered, & 79.25% of lignin removal

[20]

HPAC Bamboo 30% H2O2: CH3COOH (1 : 1, v/v)
Reducing sugar yield increases by
more than 1.3-fold while cellulosic

content increases by 1.7-fold
[22]

H2O2 +H3PO4 (PHP) Wheat straw
74.92 gm H3PO4 (85%, w/w)
& 5.08 gm H2O2 (30%, w/w)

54.1% of lignin removal with 92.4%
of sugar conversion

[27]

HPAC
Maize straw, sugarcane
bagasse, Eucalyptus bark

10ml HPAC (1 : 1, v/v),
incubated at 80°C for 2 hr

Cellulose crystallinity increases
from 34% to 53%

[39]

Combined process
of acetic acid and
H2O2 (AC-HPAC)

Poplar

5%, v/v acetic acid with solid
to liquid ratio of 1 : 10

100ml HPAC (80%, v/v) & 100mM
H2SO4 at 60

°C for 2 hr.

Glucan content increased from
42.1% to 54.5% with 85.8%

glucan content
[40]

Alkaline hydrogen
peroxide+ supercritical
CO2 + ultrasound

Sugarcane bagasse

Pressured CO2–20.6Mpa, 453K
temperature for 1 hr, 0.6% H2O2

treatment for 9 hr and 4 hr
ultrasound retention time

97.8%, w/w of
glucose recovery

[41]
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were linked to the chemical structure of LCB. TGA was car-
ried out in order to effectively convey the thermal informa-
tion of various samples as shown in Figure 4. The TGA
result showed three major weight loss regions (A-zone, B-
zone, and C-zone) of native and pretreated rice straw that

mainly correspond to moisture removal (dehydration), ther-
mal decomposition (volatile material removal), and solid
disintegration, respectively, as similar findings revealed by
Monir et al. [46]. The initial degradation occurred at a tem-
perature between 250°C and 380°C. It was noted from the
graph that cellulose and hemicellulose started degrading at
around 275°C and 376°C for all concentrations of H2O2 with
an average weight loss of 0.08 (wt%) at 296°C and 0.06 (wt%)
at 320°C temperature. The maximum weight loss percentage
of raw rice straw was obtained at 365°C while the pretreated
sample showed maximum weight loss at 376°C and 378°C
temperatures and a similar finding was earlier observed by
Huang et al. [20]. This was mostly due to the pretreatment
elimination of a specific percentage of hemicellulose and
lignin, which had a stochastic amorphous structure and
was rendered obsolete with the rising temperature. After
raising the temperature from 376°C leaving behind the
minimum traces of ashes (14wt%/°C) while the highest
lignin breakdown occurred after 400°C with the highest
weight loss of 0.96 (wt%/°C) which was attributed to the
breakdown of rice straw fraction to gaseous compounds.
It was also discovered that the lignin component of
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Figure 2: X-ray diffraction pattern. (a) Steam explosion impregnated with different concentration of H2O2 (A) untreated sample (B) 0.05%
H2O2 pretreated sample, (C) 0.1% H2O2 pretreated sample, (D) 0.25% H2O2 pretreated sample, (E) 0.5% H2O2 pretreated sample, (F) 0.75%
H2O2 pretreated sample, and (G) 1% pretreated sample. (b) At different ratio of HP-CA, (A) 1 : 1 ratio, (B) 1 : 2 ratio, and (C) 2 : 1 ratio.

Table 3: Cellulose crystallinity Index derived from XRD analysis.

Different pretreated
sample

Intensity
at Iam

Intensity
at I002

CrI

Untreated biomass 9.4 18.6 49.4

0.05% H2O2 10.3 24 57

0.1% H2O2 10.4 23.1 54.9

0.25% H2O2 10.26 22.7 54.8

0.5% H2O2 9.6 20.7 53.6

0.75% H2O2 10.7 22.8 53.07

1% H2O2 11.4 23.8 52.1

1 : 1 6.8 17.7 61.5

1 : 2 8.06 17.3 53.4

2 : 1 10.7 22.7 52.8
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biomass was the most difficult counterpart to be degraded,
and its breakdown occurred very gradually throughout the
entire temperature profile (up to 600°C).

3.6. Reducing Sugar Estimation Using Benedict’s Reagent and
DNS Reagent. One of the chemical methods used to deter-
mine the presence of reducing sugar in the obtained hydro-
lysate was Benedict’s test which could be used to detect
simple carbohydrates with a free aldehyde or ketone func-
tional group. In this study, with a decrease in the concentra-
tion of H2O2, the obtained hydrolysate got turbid which
confirms the presence of reducing sugar in the 0.05% (v/v)
H2O2 pretreated sample. Firstly, the reducing sugar was esti-
mated using benedict reagent, and the observed colour is
illustrated in Figure 5. The highly reactive radical in the form
of hydroxide and superoxide anion would delignify the lig-
nocellulosic biomass by oxidation and degradation of the
rice straw. Further on, the reducing sugar presence was con-
firmed by using DNS reagent at 540 cm-1 wavelength in a
UV spectrophotometer [39]. The graph obtained after UV
spectrophotometry is illustrated in Figure 6. It was observed

that at a 0.05% H2O2, 220.05 g/l of reducing sugar were
quantitatively analyzed, and on increasing the concentration
of H2O2, the presence of reducing sugar gets reduced to
92.68 g/l from obtained hydrolysate. Similarly, HPCA pre-
treatment in the ratio 1 : 1 yielded 273.21 g/l of reducing
sugar. This shows the increment in sugar yield of up to
19.4% with the utilization of citric acid along with H2O2
impregnation in a 1 : 1 ratio. Furthermore, the increased pro-
portion of monomeric sugar in the pretreated analytes indi-
cated that the hemicellulose was more easily dissolved at
121°C temperature. It was worth mentioning that an
increased concentration of xylose in the hydrolysate typi-
cally resulted in the maximum formation of inhibitors.
While a maximum glucose concentration in the hydrolysate
resulted in a lesser formation of hydroxymethyl furfural
(HMF). This might be because xylan was more unstable
and unpredictable for saccharification than glucan. Earlier
studies had reported similar results for the pattern of degra-
dation of product formed during the process. The illustra-
tion regarding the quantification of reducing sugar formed
from hydrolysate is presented in Figure 7.
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3.7. Impact of Steam Explosion Pretreatment on HP and HP-
CA Impregnated Sample. The steam explosion pretreatment
coupled with HP has the ability to break the bond amid the
recalcitrant structure of lignin due to an increase in the degra-
dation of lignin content along with oxidation of lignin. Thus,
the greater the lignin degradation, the higher will be the acces-
sibility of hydrolytic enzymes to access the cellulose and hemi-
cellulose to loosen the recalcitrant structure. In previous
literature, SE was considered to abrupt an initial explosion
and fragmentation of the biomass cell wall structure into finer

constituents by improving shear strength, compression, bulk
density, andmean particle size [47]. Higher hemicellulose deg-
radation of up to 71% would occur at 1.5MPa pressure during
steam explosion methods due to partial hydrolysis of hemicel-
lulose along with polymerization of lignin in the biomass was
reported by Zhang et al. [16]. Thus, SE was an effective pre-
treatment as it enhances the water solubility of rice straw
and also enhances the utilization of polysaccharides for the
further process of hydrolysis. There were mainly two stages
in the process, the biomass was firstly subjected to extremely
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saturated steam for a few minutes before being abruptly
released, leading to a significant alteration in the composition
and structure of the lignocellulosic material. The hemicellu-
loses are partially hydrolyzed to yield monomeric and oligo-
meric sugars due to the utilization of excessive pressure
steam, owing to the emission of acetic as well as other organic
compounds in the reaction environment [48]. The high-
pressure steam explosion of 2.5MPa for 1min led to a higher
degree of fragmentation of lignocellulosic biomass and also
eliminated the intracellular structure of biomass [45]. The
recent research on the impact of steam explosion on various
LCBs is illustrated in Table 4. Thus, it was earlier noted that
steam explosion impregnated in H2O2 resulted in an increase
in 12% glucose and 34% xylose content while a 30% decrease
in cellobiose yield during the pretreatment process, the pres-
ence of H2O2 reduces the accumulation of lignocellulosic by-
products [49].

4. Conclusion

This research was performed as an integrated method of
physiochemical pretreatment technique and has proven to
be an efficient method for breaking down lignocellulosic bio-
mass structure. The optimum SE pretreatment condition
was 103 kPa pressure maintained for 45min with different
concentrations of H2O2 along with HPCA. It was concluded
that less concentration (0.05%) of H2O2 showed a maximum
reducing sugar formation of 220.05 g/l of hydrolysate. Ther-
mal decomposition of native and pretreated RS was analyzed
up to 600°C where lignin started its degradation. Similarly,
different peaks were obtained at different wavelengths rang-
ing from 4000 to 400 cm-1. The reduction in the intensity
peak resulted in the alteration in the C-O bond present in
the recalcitrant structure of lignin. While the cellulose crys-
tallinity was measured using XRD. Thus, steam explosion
pretreatment of H2O2-impregnated RS showed better results
with its ability to form radicals at higher concentrations of
H2O2. The 0.05% (v/v) H2O2 loading along with citric acid
in the ratio 1 : 1 was preferred due to its less toxicity and cor-
rosivity than other pretreatment chemicals. The HPCA
impregnation was performed using citric acid as one of the
easily available weak acids to develop cost-effective physio-
chemical pretreatment for bioethanol production. Thus, it
was concluded that due to the strong oxidizing ability of
HP, it was efficient for hemicellulose and delignification of
lignocellulosic biomass, causing detachment and solubiliza-
tion of lignin along with loosening of lignocellulosic recalci-
trant structure.

Abbreviations

FTIR: Fourier transform infrared spectroscopy
TGA: Thermogravimetric analysis
PXRD: Powder X-ray diffractometer
DNS: 3,5-Dinitrosalicylic acid
H2O2/HP: Hydrogen peroxide
HPCA: Hydrogen peroxide-citric acid
2G: Second generation
RS: Rice straw

LCB: Lignocellulosic biomass
SE: Steam explosion
HPAC: Hydrogen peroxide-acetic acid
HMF: Hydroxymethyl furfural
KBr: Potassium bromide
NREL: National Renewable Energy Laboratory
ScCO2: Supercritical carbon dioxide.
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Additional Points

Highlights. (1) Hydrogen peroxide is compatible with the
bioconversion of rice straw. (2) The effect of acid impregna-
tion on structural cross-linking of biomass. (3) Quantifica-
tion of produced reducing sugar in prehydrolysate using
DNS method. (4) The sequential pretreatment process
formed lesser inhibitory by-products for further processing.
(5) High retention of polysaccharide and lignin solubiliza-
tion improve bioethanol yield
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