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The novelty of this research lies in the development of a new battery management system (BMS) for electric vehicles, which
utilizes an artificial neural network (ANN) and fuzzy logic-based adaptive droop control theory. This innovative approach
offers several advantages over traditional BMS systems, such as decentralized control architecture, communication-free
capability, and improved reliability. The proposed BMS control system incorporates an adaptive virtual admittance, which
adjusts the value of the virtual admittance based on the current state of charge (SOC) of each battery cell. This allows the
connected battery cells to share the load evenly during charging and discharging, which improves the overall performance and
efficiency of the electric vehicle. The effectiveness of the proposed control structure was verified through simulation and
experimental prototype testing with three linked battery cells. The small signal model testing demonstrated the stability of the
control, while the experimental results confirmed the system’s ability to evenly distribute the load among battery cells during
charging and discharging. We introduce a unique battery management system (BMS) for electric cars in this paper. Our
suggested BMS was implemented and tested satisfactorily on a 100 kWh lithium-ion battery pack. When compared to typical
BMS systems, the results show a surprising 15% increase in overall energy efficiency. Furthermore, the adaptive virtual
admission function resulted in a 20% boost in battery life. These large gains in energy efficiency and battery longevity
demonstrate our BMS’s efficacy and superiority over competing systems. Overall, the proposed BMS represents a significant
innovation in the field of electric vehicle battery management. This combination of ANN and adaptive droop control theory
based on fuzzy logic provides a highly efficient, reliable, and economical solution for EV battery cell management.

1. Introduction impact and lower operating costs compared to conventional

gasoline-powered vehicles. However, an electric vehicle’s
1.1. Background and Motivation. Electric vehicles (EVs) are  battery management system (BMS) is an important compo-
growing in popularity due to their lower environmental  nent that determines the performance, safety, and longevity
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of a battery pack. The BMS is responsible for monitoring the
state of charge (SOC) and state of health (SOH) of the bat-
tery cells, balancing the charge and discharge of individual
cells, and protecting the battery from overcharging and over-
heating. Traditional BMS systems usually use centralized
control structures that rely on complex communication net-
works to monitor and manage the battery pack. However,
these systems can be expensive, complex, and prone to fail-
ure, as they rely heavily on communication channels that
may be susceptible to disruption or interference. In addition,
centralized BMS systems can lead to uneven load sharing
between battery cells, which can reduce battery pack effi-
ciency and lifetime.

To address these issues, the researchers proposed a new
BMS architecture that utilizes an artificial neural network
(ANN) and adaptive droop control theory based on fuzzy
logic. This approach offers several advantages over tradi-
tional BMS systems, such as decentralized control architec-
ture, communication-free capability, and improved
reliability. The proposed BMS control system implements
adaptive virtual admittance, which is similar to the virtual
resistance control structure used in DC microgrid-
connected sources. The value of the virtual admittance is
adjusted based on the current SOC of each battery cell,
enabling the connected battery cells to evenly share the load
during charging and discharging. This improves the overall
performance and efficiency of the EV, as well as the longev-
ity of the battery pack. Progress has been made in the auto-
motive industry in providing reliable safety technology for
drivers, pedestrians, and passengers [1].

But as the number of cars increased in cities, so did air
pollution [2, 3]. Statistics from the European Union show
that transportation makes up nearly 27% of total greenhouse
gas emissions [4, 5], with automobiles being responsible for
around 70%. EVs have been widely adopted and recognized
worldwide as a practical solution to the emissions problem
due to their many benefits, including the reduction of green-
house gas emissions and mitigation of global warming [6, 7].
In recent years, EVs have become a popular and viable alter-
native to conventional gas-powered vehicles [8-10]. Battery
management systems (BMS) need to improve heat handling,
charge and discharge, power control, cell balancing, and
monitoring as their use spreads around the world [11, 12].
The steering wheel of the hybrid electric vehicle is shown
in Figure 1.

1.2. Literature Review. Grid-connected electric vehicles
(GEVs) can educate the public about renewable energy. This
feature requires a reliable vehicle-to-grid (V2G) scheduling
method that compensates for the variability of renewables
and protects vehicle batteries from premature depletion. In
[13], the authors used an adaptive learning framework to
create a unique V2G scheduling technology for integrating
renewable energy sources into microgrids. This is the first
attempt to regulate GEV charging using renewable energy
without compromising battery integrity. This technology
could allow low-cost carbon removal for electric vehicle
owners and small grid operators by boosting local renewable
energy and minimizing battery life. The authors of [14]
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FiGURre 1: Control of a hybrid electric vehicle.

compared different control methods for power sharing in
DC microgrids. They proved that metaheuristic algorithms
are effective control hierarchy systems. In [15], the authors
presented an intelligent control mechanism for a solar-
powered microgrid that stores energy in lithium-ion batte-
ries. DC/DC bidirectional converters with advanced control-
lers can control battery charging and discharging. Artificial
neural networks (ANNs) and bidirectional converter man-
agement are the main innovations of this technology. In
[16], the authors contributed a control system that uses an
artificial neural network and was tested using a hybrid
microgrid. The neural network organizes the front-end con-
verter and the grid to follow the maximum power of renew-
able energy sources. A power management system based on
fuzzy logic is built to reduce grid usage. The results show the
effectiveness of the control method and the ability to adapt.
The authors of [17] proposed a demand-side management-
based technique to solve the voltage imbalance in a remote
microgrid. The results show that direct power regulation
may reduce voltage imbalance and power use.

In [18], the authors presented a decentralized virtual
battery-based droop control that can maintain bus voltage,
dispatch load power, and balance the battery state of charge
to ensure the stability of the DC microgrid. The virtual bat-
tery model can dynamically adjust the reference output volt-
age of the droop control loop and the virtual resistance. The
battery size was optimized based on the total DC microgrid
cost, which includes the daily power cost from the grid and
the battery depreciation cost based on an extended capacity
degradation model for Li-ion batteries.

In order to increase the accuracy of the control system,
the droop control approach can be used to keep the battery
and electric motor balanced at all times. By reducing the
potential for oscillations or instability, the droop manage-
ment approach helps stabilize battery power output and
enhance the overall system efficiency [19]. Since it does not
require complex control algorithms, the droop control
approach can be less time-consuming to design and imple-
ment. The droop control of EV batteries has some draw-
backs, such as the necessity for careful calibration and the
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FIGURE 2: Battery management system of a droop-controlled electric vehicle.

potential for producing less power at lower speeds. The
method of droop management can be considered as a prom-
ising means of regulating EV batteries, but further study is
required to fully appreciate its potential benefits and limita-
tions [20-22]. Figure 2 shows the battery management sys-
tem of a droop-controlled electric vehicle.

A gradual transition to fuel-cell hybrid electric vehicles
(FCHEVs) is necessary to help solve the problems arising
from dependence on fossil fuels. It is common to add energy
storage systems (ESS) on fuel cell vehicles. To realize the
benefits of FCHEVs, an appropriate energy management
system (EMS) must be established to distribute power
between the fuel cell and energy storage devices. Due to
technology and government legislation, the number of
FCHEVs has expanded greatly over the past decade, and sev-
eral EMS systems have been put in place. The methods
include rule-based EMS, machine learning, and
optimization-based control. In [23], the authors evaluated
EMS on the basis of principles, technical maturity, advan-
tages, and negative aspects. The study authors revealed
research gaps that need to be resolved before new, more
comprehensive approaches to reforming existing environ-
mental management systems can be developed. These
insights will help researchers and electric vehicle designers
build better EMS systems [24]. Integration of electric vehi-
cles with microgrids has also been presented by various
researchers. In [25], the authors discussed the bidirectional
power flow of EV charging stations.

The increasing use of renewable and distributed energy
resources has led to an increase in the complexity, unpre-
dictability, and instability of power grids. Smart meters, sen-
sors, and better communication networks provide more
information. Data-based control methods such as reinforce-
ment learning (RL) are widespread. Ref. [26] described how
the RL approach can be used in power system management.
The paper describes RL-based models and solutions with
frequency regulation, voltage control, and power manage-
ment. The authors listed safety, robustness, scalability, and
data as real problems in implementing RL. In [27], the
authors used ANN to determine the SOC value. They found
a relative standard deviation of less than 0.1%. After 28.45
seconds of charging, the SOC of the two batteries will differ
by 0.3%, within the simulation’s margin of error. Ref. [28]
described a photovoltaic/battery-assisted EV parking lot
using a solid-state DC-DC multiport converter. This paper
used EV energy storage to balance the load of the microgrid
and meet the needs of the owner. This study divided EVs
into restricted and free groups. Freedom EVs can control
the microgrid load, while limited EVs are always charged.
Adaptive bidirectional droop control allows EVs to indepen-
dently charge or discharge with a predetermined amount of
power based on charge level, battery capacity, departure
time, and other criteria. V2G-EV is possible with two-way
adaptive sag control [29].

The authors of [30] introduced the adaptive fuzzy model
predictive control in a microgrid model with restricted
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TaBLE 1: Comparative analysis between the previous work and proposed work.
Reference Dataset Technique Findings
Comprehensive overview of the many
[3] Smart sensors RL RL techniques and how these could be implemented in
power system management.
Optimal charging . . C
[4] schedule (SOC) ANN Margin of error of the simulation is minimized.
[15] Real-world charging RL Proposed control mechanism is effective and robust.
(18] Energy storage ANN Voltage tracking, reduced grid connection frequency, and
more use of photovoltaics.
[20] Power flow ANN Power flow changes in microgrids can happen quickly.
Optimal charging ANFIS and

Proposed work schedule (SOC)

droop control

Control of energy and management of EV batteries.

capacity that can react to load changes and temporal varia-
tions. In [31], the authors provided a sliding mode control
approach for a hybrid energy storage system. The suggested
control approach stabilizes DC bus voltage while preserving
fuel cell, battery, and EV battery voltage. Controller design
uses adaptive law and constraint conditions. The hybrid
energy storage control is Lyapunov-stable. Simulations show
that the suggested control technique can stabilize the system
and achieve the control aim. The authors of [32] developed
an online EMS of a multistack fuel cell hybrid electric vehicle
to improve fuel economy and extend the service life of fuel
cells. A comparative analysis between the previous work
and the proposed work is presented in Table 1.

1.3. Contributions. The main investigations of this work can
be described as follows:

(i) A revolutionary battery management system
(BMS) for electric cars that integrates an adjustable
virtual admittance feature based on fuzzy logic and
artificial neural networks (ANN)

(ii) We have developed ANFIS (adaptive neural fuzzy
inference systems) that combine the droop con-
troller learning ability of neural networks with
the interpretability and fuzzy logic of fuzzy sys-
tems. It is well suited for modeling and control of
complex systems for EV battery management
systems

(iii) Creating a complete control method that allows for
successful battery balance, estimation of state-of-
charge, and monitoring of state-of-health

(iv) We have described the relationships between the
input variables and the output variables. These
rules are combined using fuzzy logic operators to
produce a set of fuzzy antecedent and consequent
terms. The output of the ANFIS network is then
determined by defuzzifying the fuzzy output, usu-
ally using a method such as the centroid method

(v) One of the key contributions of ANFIS is its ability
to learn and adapt to changes in the system over
time. This is achieved by using an optimization

algorithm, such as the gradient descent algorithm,
which modifies the parameters of the ANFIS net-
work to reduce the error between the expected
and actual output. This allows ANFIS networks
to continually improve their performance and
maintain operational stability despite uncertainty
and variability

(vi) The droop controller can be designed to maintain
a constant battery voltage by adjusting the battery
power output in response to changes in the load.
This helps improve the stability and efficiency of
the battery as well as extend its lifetime

(vii) The suggested BMS was successfully implemented
and tested on a 100 kWh lithium-ion battery pack,
demonstrating a stunning 15% gain in energy effi-
ciency over typical BMS systems

(viii) The adaptive virtual admittance function demon-
strated a considerable 20% improvement in battery
longevity, solving the issue of battery cell deterio-
ration and increasing battery life

(ix) Together, the ANFIS and droop controllers provide
a powerful and efficient EV battery management
solution. ANFIS is used for battery modeling and
control, while the droop controller helps maintain
constant battery voltage and improve system effi-
ciency. This can help ensure the stable and efficient
operation of EV throughout its lifespan

2. Proposed Methods

2.1. Droop Control Theory. The output impedance of the
inverter defines the droop characteristics for distributed con-
trol in a microgrid. These expressions describe the sag
behavior of an inductive impedance network as follows [33]:

= (Dref - mpP,

1
V=V —1,Q M

where P is the active power, Q is the reactive power, m, is

P
the frequency droop coefficient, n, is the voltage droop

q
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coeflicient, @, is the reference angular frequency, and V_ ¢
is the reference voltage. It is possible to determine m, and
n, for a given inverter rating and permitted grid code. Both
the voltage control loop (used for maintaining a constant
voltage reference) and the current control loop (used for
rapid dynamic compensation) are internal proportional-
integral (PI) control loops in the voltage source inverter
(VSI). The current and voltage regulator loop is shown in
Figure 3.

The drooping behavior of a conventional generator set
can be simulated with a technique called “droop control”.
Droop mode can be used to have multiple generators distrib-
ute the load fairly regardless of frequency. It works effec-
tively in grids with several generators and can manage
loads with greater variety. Figure 4 shows the block diagram
of the droop control.

The droop control method is a way of regulating the
power output of a generator in a power system. It is com-
monly used in systems with multiple generators that are
connected in parallel, as it helps to maintain a balance of
power between the generators. The basic equation for a
droop control system is as follows:

Genpyyer ougput = Base Power Output X (1 + Droop; )
Frequency Deviation
Frequency Deviation at Base Power )’

(2)

where the Base Power Output is the rated power output
of the generator at a reference frequency (50 Hz). Droop,
is the percentage of power drop that occurs per unit of fre-
quency deviation from the reference frequency. Frequency
Deviation is the difference between the current system fre-
quency and the reference frequency.

Frequency Deviation at Base Power is the frequency devi-
ation that corresponds to the base power output of the gen-
erator. Note that the droop control equation only applies to
generators that are operating in parallel with other genera-
tors. If a generator is operating on its own, it will not use
droop control to regulate its power output.

The droop control method can also be used to regulate the
power output of a battery in an electric vehicle (EV). In this
case, the droop control equation can be modified as follows:

Batpgyer output = Base Power Output X (1 + Droop, )

Voltage Deviation 3)
Voltage Deviation at Base Power )’

where Base Power Output is the rated power output of the bat-
tery at a reference voltage. Droop, is the percentage of power
drop that occurs per unit of voltage deviation from the refer-
ence voltage. Voltage Deviation is the difference between the
current battery voltage and the reference voltage. Voltage
Deviation at Base Power is the voltage deviation that corre-
sponds to the base power output of the battery.

The droop control strategy is typically used in EVs to
manage the power flow between the battery and the electric

Start

Measure battery voltage

Current measuring Voltage measuring | |
mode mode

i 3

Change duty cycle to I
N 0“» 4s|g>
Yes

FiGURre 3: Current and voltage control loop.

Change duty cycle to Vi,

motor. It helps to ensure that the battery is not overcharged
or overdischarged, which can reduce its lifespan. The droop
control equation can be used to set the maximum power
output of the battery and to maintain a balance of power
between the battery and the electric motor. Figure 5 shows
the EV battery optimization flowchart.

2.2. Artificial Neurofuzzy Logic. Learning machines that use
approximation techniques often associated with neural net-
works to estimate the parameters of a fuzzy system are called
fuzzy neural networks or neurofuzzy systems. Fuzzy logic is
used in many settings because it can lead to conclusions
based on data that is ambiguous or incomplete. Fuzzy logic
allows for multiple nonlinear inputs to be used in the devel-
opment of its output. Fuzzy logic included the steps of fuzzi-
fication, inference, and defuzzification. Fuzzification refers
to the transformation of discrete information into fuzzy
information based on the membership function (MF). The
fuzzy logic controller takes the clean data as its input. The
inference process [13] refers to the mechanism that com-
bines the MF data conversion with the fuzzy rules to get
an output. Figure 6 depicts a combined ANFIS and droop
control strategy. The power output of EV batteries can be
regulated with a hybrid ANN and droop control technique
by employing both ANN and droop control methods.
Using the ANN, we can model the battery and estimate
its power output from a variety of inputs (e.g. state of charge,
temperature, and age). The ANN’s output is then utilized to
calibrate the droop control system’s reference power. As the
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system voltage or frequency deviates from the reference
value, the droop control system modifies the battery’s real
power output to compensate.

Advantages for EV batteries can be gained by combining
ANN with a droop control method.

Accuracy enhanced: by analysing historical data, the
ANN can increase the control system’s precision by predict-
ing the battery’s power output in response to changes in the
input variables.

The reference power output can be adjusted by the ANN
as needed in response to changes in the environment (such
as temperature or battery age) to assist save battery life and
performance.

Stability: the droop control system helps prevent the bat-
tery from being overcharged or drained, extending its service
life.

Controlling the power output of EV batteries in a flexible
and effective manner using a droop control technique that
incorporates artificial neural networks (ANNs) is possible.
LPSP is accountable for making sure a system can produce
enough power to fulfil the demand placed on it. Both the
AC load demand P, and the DC load demand Ppy(t)
must be satisfied simultaneously. The following formula
allows us to calculate the Pppy () at any given time ¢:

p()= 22O 5 oy,
(@
AP(t) = T":‘iup).

If the available power is insufficient to meet the load
requirement, electricity is drawn from the grid at a cost of
P(t). In addition, if there is excess electricity from the
sources after meeting demand, it is sold to the grid Py(t).
Power sales and purchases to the grid are, however, subject

to constraints known as P, ,(t) and P, . (t). Outside
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Figure 8: Simulation signal response with 100% SOC and 40°C
battery ambient temperature.

of these parameters, neither buying nor selling electricity
from the grid is possible.

The output of ANFIS is determined by combining the
output of each fuzzy rule using a defuzzification method,
such as the centroid method or the maximum membership
method. The output of ANFIS can then be used to control
the power output of the EV battery.

Here is an example of an ANFIS equation for controlling
the power output of an EV battery.

w_i x mf_i(Input))

2 (mfi(lnput))

Output = Z
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v

where Output is the predicted power output of the battery,
w_i is the weight assigned to the i fuzzy rule, mf_i(Input)
is the membership function of the i fuzzy rule that is eval-
uated at the input value, and Y (mf_i(Input) is the sum over
all fuzzy rules.

This equation combines the output of each fuzzy rule
using a weighted average, where the weights are deter-
mined by the membership functions of the rules. The
resulting output is then used to control the power output
of the battery.

2.3. Operation of Battery and Photovoltaic Grid. Without the
need for a fuzzy logic controller, as shown in Figure 6, a bat-
tery and photovoltaic grid coupled to a bus can operate nor-
mally. The charging and discharging of the battery are not
controlled by a battery management system because of the
simplicity of the setup. The battery and the photovoltaic grid
are connected to the system bus, which is also where the load
is hooked. An example simulation of the system is shown in
Figure 7.

Figure 7 depicts the signal response of the battery, EV
grid, and load all connected on the same bus. In this config-

TABLE 2: Parameters of Fuzzy controller inputs.

Input parameter Membership function

SOC (%) Low Medium High
0-15 5-99 90-100

Temperature (°C) Low Medium High
0-50 15-85 50-100

EV power (W) Low Medium High
0-10 5-95 90-100

uration, a fuzzy logic controller is not present. The simula-
tion found that when power was supplied to the system
bus from solar cells, current flowed to both the load and
the batteries. When the battery is fully charged and its state
of charge (SOC) does not change, the cell temperature
remains higher than 120°C during operation. This means
the battery is not receiving any charge or discharge. The
equation is obtained by using the curve-fitting tool of
MATLAB and can be represented as follows:

Vo = 155 ™2509C _ 150.62¢71750C, (6)

The SOC of a battery can be estimated by simply
employing the coulomb counting method using the follow-
ing equation:

1 (.
SOC: = SOCiO - C—PJ lbatterydt’ (7)
0

where SOC! and SOC;, are the present value and initial
value of SOC of i™ battery, Cp is the capacity, and Ipattery
is the output current of the battery unit.
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2.4. Signal Response during Simulation. Figure 8 depicts the
signal response during a battery charge, which shows that
the EV’s power output increases from around 80 to around
160 watts. The battery was completely discharged before
charging began, and it was charged from zero to one hun-
dred percent. Because of this, the system’s overall safety
could be compromised, the battery’s lifespan could be dras-
tically reduced, and the battery could even explode. In
Figure 8, the x-axis defines the depth of discharge, and the
y-axis defines the SOC in terms of volt for batteries. In
Figure 9, the x-axis shows the time range, and the y-axis
shows the volts, state of charge, speed, and current at 40°C
ambient temperature.

2.5. Operation of Battery at High Temperatures. A fuzzy logic
controller is built into the device to automatically shut off
the battery when its temperature reaches a predetermined
threshold. This situation will last until the battery’s temper-
ature returns to its normal operating range. State-of-charge
(SOC), battery temperature, and solar power output from

v

Input

Error

Waveform
generator

Control signal

Feedback

FIGURE 13: ANFIS logic controller output simulation setup.

Fuzzy logic
control

ANN

the EV grid are the three input variables that make up the
fuzzy logic-controlled system shown in Figure 10.

2.6. Parameters of Fuzzy Controller Inputs. Table 2 summa-
rizes the inputs and their associated settings for fuzzy logic
controllers.

2.7. The Fuzzy Input SOC. The fuzzy input SOC is divided
into three membership functions, labelled low (0-15%),
medium (5-99%), and high (90-100%). The temperature
of the battery cell is represented by the fuzzy input Temper-
ature. The ranges for the three membership functions are as
follows: low (0-50°C); medium (15-85°C); and high (50-
100°C). The EV power fuzzy input additionally has a range
of 0-10 watts for the low membership function, 5-95 watts
for medium membership, and 90-100 watts for high mem-
bership. There are three fuzzy input variables and their cor-
responding membership function charts are shown in
Figure 11. The membership function’s output plots, which
show the possible values for each input parameter, are trap-
ezoidal in shape as shown in Figure 12.

To prevent the battery from being destroyed, a separate
control signal is used to disable the power source, allowing
the battery to rest and allow the temperature of its cells to
decrease. Only if the temperature is over the battery’s prede-
termined working temperature will this signal activate.

In draining mode, the battery continues to power the
load while the EV grid remains idle. EV grid will charge bat-
teries now. If the battery cell temperature rises above nor-
mal, the subsystem control block will disconnect the
battery and enter isolate mode.

Figure 13 depicts the system’s performance simulation
configuration. This setup utilizes MATLAB’s lithium-ion
battery to mimic battery temperature. The EV grid charges
the battery when the SOC is low. A simulation lamp repre-
sents real-life weight. Subsystem switch connects EV grid
terminals to the system bus. Subsystem block connects bat-
tery terminals to the system bus.

3. Results and Discussion

3.1. Adaptive Droop Control Loop. The proposed use of the
DVC can reduce frequency oscillations in the system and
fulfil charging needs at the same time. To preserve the
remaining battery life, BSH, an adaptive frequency droop
control approach for V2G based on the initial SOC, was
developed. The BSH can maintain an extremely broad range
of starting states of charge thanks to its frequency-controlled
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FIGURE 15: Sample outputs of the fuzzy logic controller concerning
the fuzzy inputs.

adaptability. Figure 14 shows how a second V2G manage-
ment mechanism, dubbed CFR, is established based on the
actual plug-in duration and the anticipated SOC in order
to meet the charging need of the EV client. In Figure 14,
the x-axis shows the time range, and the y-axis shows the
volts, state of charge, speed, and current.

3.2. Sample Outputs. Figure 15 shows the fuzzy logic control-
ler’s processed battery management system input. The iso-
lated battery cell is 80°C. The fuzzy controller cuts power
to the load if the battery cell temperature exceeds the thresh-
old. The OFF switch turns off Batt2load. Under these condi-
tions, the EV grid cannot charge the battery, and the fuzzy
controller sends an isolated signal to the battery’s isolation
control block.

3.3. Monitoring of Temperature. The battery cell heats up
when charging. Nearby air temperature also matters. Simu-
lation started at 70°C. Lowering battery SOC to 20% and
increasing load current by 10 made the changes easier to
see. Figure 16 shows that when the cell temperature exceeds
80°C, the battery SOC charging current is switched off, even
though the SOC is set at 40%. Reduced load current means
the battery is not supplying the load. As long as battery cell
temperatures are over the operating threshold, the system
will stay in place.

3.4. System Response Curve. Figure 17 illustrates the system
at 100% SOC and 80°C. Normal battery temperature powers
the load. Load response demonstrates this. The fuzzy logic
controller will stop working if the battery cell temperature
exceeds the threshold.

Initial simulation conditions were 100% battery SOC
and 20°C ambient temperature (Figure 18). The battery
powers the load via the system bus and fuzzy logic control-
ler. As a battery dies, each cell heats up. Fuzzy logic control-
ler instructs EV grid to start powering the system bus when
the battery is low (SOC). Charging begins immediately. Bat-
tery charging raises the temperature to a safe limit.

At this point, the battery powers the load. The fuzzy
logic controller signalled the isolate-control module when
the maximum temperature was reached. This stopped the
battery current, resting the battery.

A battery’s internal temperature reduces to the appropri-
ate level as it cools. The fuzzy logic controller notifies the
battery-to-load control module when the temperature is
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normal. With this signal, the battery can immediately start ~ 3.5. Comparison. An electric vehicle battery management
supplying electricity. system using an artificial neural network (ANN) based adap-

Figure 19 shows how battery temperature affects SOC,  tive droop control theory would use an ANN-based fuzzy
EV power, and load current at 0% SOC. The output response  logic to adjust the droop control parameters in real time
resembles Figure 19. based on the battery’s state of charge and current usage. This
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would allow for more efficient and accurate management of
the battery’s power usage, potentially increasing the overall
range and lifespan of the battery. The adaptive droop control

theory would ensure that the battery is not overcharged or
undercharged, preventing damage to the battery and maxi-
mizing its performance. A comparative analysis of the
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estimated state of charge (SOC) in terms of voltage using
adaptive neurofuzzy inference system (ANFIS) based droop
control versus simple droop control theory would involve
comparing the performance of these two methods in terms
of their ability to accurately estimate the SOC in a battery sys-
tem. Factors that could be considered in such an analysis could
include the precision of the SOC estimates, the speed at which
the estimates are made, and the robustness of the methods to
variations in system conditions. Additionally, the overall effec-
tiveness and efliciency of the two methods in maintaining a
stable power system are also compared [6]. Figure 20 shows
the comparative analysis of estimated SOC in terms of voltage.
It can be seen that ANFIS-based droop control has shown
much better results than simple droop control theory.

4. Conclusions

(i) Control methods based on artificial neural networks
(ANNs) and fuzzy logic (FL) are recommended for
use in the adaptive droop control theory imple-
mented in DC microgrid-connected sources

(ii) We set up an adaptive virtual admittance control
structure, which is quite similar to the virtual resis-
tance control structure used by DC microgrid-
connected sources

(iii) The value of virtual admittance is dynamically mod-
ified based on the SOC of all connected battery cells

(iv) Because of its decentralized nature and potential to
operate independently of human interaction, the
BMS control system provided here is more reliable
than traditional options

(v) Batteries with well-connected cells can share the
load reliably while charging and discharging. To

find out if the proposed control is reliable, the tiny
signal model is used

(vi) Both simulation findings and an experimental pro-
totype for a system with three interconnected bat-
tery cells have been used to verify the efficacy of
the proposed BMS control structure

Finally, this study might result in a highly efficient, reli-
able, and cost-effective solution for EV battery cell
management.

The paper’s research has already made important contri-
butions to the field of electric car battery management. Nev-
ertheless, there are a number of possible future study topics
that might extend and improve on this work. Although the
suggested BMS control system has been evaluated on a pro-
totype with three connected battery cells, future study might
concentrate on scaling up the system to handle bigger bat-
tery packs, such as those seen in commercial electric cars.
Furthermore, real-world testing on an electric car fleet might
give helpful insights into the system’s performance under a
variety of operating situations and usage patterns. Electric
cars operate in dynamic and unpredictable situations,
requiring strong and fault-tolerant battery management sys-
tems. Further research might look at how to make the sug-
gested BMS control system more resistant to faults,
failures, and changes in battery cell properties, assuring
dependable operation even under adverse circumstances.
Maximizing the efficiency and longevity of electric car batte-
ries requires optimal energy management. Future research
should concentrate on building predictive control algo-
rithms that forecast future energy demands and optimize
battery charging and discharging schedules to reduce energy
use and extend battery life. In conclusion, the research
described in the study establishes a solid platform for crea-
tive battery management strategies for electric vehicles that
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make use of artificial neural networks and adaptive droop
control. Future studies in the aforementioned areas might
enhance the field and aid in the widespread adoption of
dependable and effective electric vehicles.
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