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A reliable combustion monitoring system is essential to satisfy global carbon neutrality trends. As the concentrations of emissions and
flame stability are associated with the air–fuel ratio, the equivalence ratio should be continuously evaluated. In this study, a deep neural
network- (DNN-) based regression model is proposed to predict the equivalence ratio of turbulent diffusion flames.
Chemiluminescence signals from the OH∗, CH∗, and C2

∗ radicals were acquired as input features. In addition, three different
optical sensing views were applied to consider the future general measurement conditions. Furthermore, a loss function
comparison for model training and hyperparameter tuning techniques, such as random search and Bayesian optimization, were
used to improve the prediction performance. Consequently, the enhanced DNN model showed reductions in the mean absolute
error and root mean square error of ~17.84% and ~12.06%, respectively, compared with the initial model. In addition, a mean
absolute percentage error and R-squared value of ~3.61% and ~0.9311, respectively, were obtained. Thus, a novel sensing method
has been proposed for flame monitoring systems to realize future digital transformations in the combustion industry.

1. Introduction

Considering global environmental pollutants and human
health concerns, the realization of a stable and efficient com-
bustion system is imperative to satisfy emission regulations.
Therefore, combustion pollutants, such as NOx and CO,
must be strictly controlled and monitored in industrial com-
bustion applications [1–3]. Various studies have been con-
ducted using different parameters, such as burner geometry
[4, 5], ignition timing [6, 7], fuel type [8, 9], and equivalence
ratio [9, 10], to enhance the combustion system efficiency.
Among them, as combustion emissions are strongly affected
by the equivalence ratio [10–12] which is related to the air–-
fuel ratio [13, 14], monitoring and controlling these param-
eters is important. Therefore, the equivalence ratio should be
considered a crucial parameter to achieve flame stability and
control the emission concentrations. The flow rates of air
and fuel can be obtained directly using additional flow
meters to calculate the equivalence ratio. However, direct

sensing methods have some disadvantages, such as high cost
and the need for regular offline calibration. Moreover, ana-
lytical instruments may be difficult to access physically
because of complicated air/fuel supply systems in industrial
applications. Therefore, facile soft-sensing methods that
can measure the equivalence ratio of combustion systems
during operation are required.

Over the past few decades, optical measurement
methods, such as laser-induced breakdown spectroscopy
(LIBS) [13, 15–17], tunable diode laser absorption spectros-
copy (TDLAS) [18–21], intensified charge-coupled devices
(ICCD) [4, 22, 23], spectrometry [24–26], and other
methods [27–29] have been employed for flame monitoring.
Specifically, as the indirect sensing methods can effectively
characterize the combustion reaction through the flame, var-
ious studies have been conducted with different flame types
and equivalence ratios recently, as shown in Table 1. For
example, Wu et al. [17] applied LIBS to inverse diffusion
methane-oxygen flame measurement to establish the

Hindawi
International Journal of Energy Research
Volume 2023, Article ID 3889951, 10 pages
https://doi.org/10.1155/2023/3889951

https://orcid.org/0000-0003-1683-4141
https://orcid.org/0000-0003-3870-388X
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/3889951


correlation between the overall equivalence ratio and LIBS
emission spectra intensity. In addition, Liu et al. [21] used
the TDLAS method for a scramjet model engine generating
strong turbulent flow fields of the flame region with different
equivalence ratios and flame temperatures. Furthermore,
color and spatial characteristics were extracted using a
high-speed camera by Yang et al. [29]. Through the radical
chemiluminescence from optical flame imaging, the equiva-
lence ratio measurement models between 0.93 and 1.53 were
developed using a multiple linear regression.

As the chemiluminescence emissions from the OH∗, CH∗,
and C2

∗ radicals of flames are related to the equivalence ratio
[24, 30], spectrometer data in the range of 200–700nm can be
utilized to predict the combustion conditions without addi-
tional equipment such as laser system and ICCD camera.
However, for future real-time monitoring applications, scan-
ning optical signals over the entire wavelength range is ineffi-
cient. Therefore, diverse studies have been conducted to
obtain optical intensity values in specific wavelength regions
(~309, ~431, and ~516 nm for OH∗, CH∗, and C2

∗, respec-
tively) [22] demonstrating their considerable potential for
effective flame diagnosis [22, 31, 32]. However, the optical sig-
nals can change depending on the position in the data acqui-
sition process, yielding inaccurate results.

Artificial intelligence- (AI-) based models have been
introduced in recent years to overcome conventional limita-
tions in several fields. Specifically, AI models have been
applied as computational algorithms to predict variables in
complex situations where conventional physical sensors are
unavailable or impractical, such as in autonomous vehicles
[33, 34], manufacturing [35, 36], and environmental science
[37, 38]. By utilizing deep learning techniques for data anal-
ysis and fusion from multiple sources, soft sensors can
derive nonlinear relationships between physically coupled
input and output data [39, 40]. Deep neural networks
(DNN) were widely employed among the deep learning
models for classification and regression problems [41–43].
The algorithm generally includes three types of layers of
interconnected nodes: the input, output layer, and hidden
layers. The number of nodes constituting the layer can be
determined through appropriate hyperparameter tuning
algorithms including grid search, random search, and Bayes-
ian optimization [44, 45]. After the DNN model is estab-
lished, it iteratively updates the training parameters
through backpropagation considering loss function and

error between actual and predicted values. In addition, as
trained data-driven models can perform rapid calculations
for output generation, these algorithms have considerable
potential for real-time monitoring [46]. Furthermore, virtual
sensors can be integrated into existing control systems,
thereby enabling a more efficient and precise operation of
industrial processes.

In this study, a DNN model was used to predict the
equivalence ratio of a turbulent diffusion flame of liquefied
petroleum gas (LPG) using the chemiluminescence charac-
teristics of flame radicals. For the input data, three different
chemiluminescence radical intensities—OH∗, CH∗, and C2

∗

—were adopted. The datasets for the model training, valida-
tion, and test processes were established using experimental
methods with different equivalence ratio values. Addition-
ally, three different acquisition view directions were applied
to the datasets to consider general observation conditions
in real applications. Subsequently, various loss functions
were used for the DNN model training, and hyperparameter
tuning methods were conducted to enhance the prediction
accuracy. Finally, the results were calculated and compared
using regression metrics. Thus, a facile virtual sensing
method is proposed to achieve real-time equivalence ratio
monitoring systems via simple flame detection that is stable
at optical sensing positions for future optimized combustion
control and smart energy systems.

2. Experimental Setup for Combustion System

The experimental setup to implement combustion reactions
and obtain datasets comprises three main components: a gas
supply system for providing fuel and air, a combustion fur-
nace for combustion reaction, and a spectrometer system
used for optical measurements, as seen in Figure 1(a).
Figure 1(b) shows the schematic of the combustion furnace
used for the acquisition of chemiluminescence data. Other
parameters influencing combustion characteristics, such as
room temperature, pressure, humidity, and fuel speed, were
assumed or set to constant values in all measurement cases
to focus on the predictability of chemiluminescence signals
as input data. Commercial gas (LPG) fuel and an air-
staged diffusion flame burner with a maximum heat load
of 40,000 kcal/h were used in the combustion system. For
the gas burner, combustion air was supplied through a flame
stabilizer. The LPG was initially mixed with air near the fuel

Table 1: Summary of recent studies for various flame monitoring techniques with different equivalence ratio.

Ref Year Flame Fuel Measurement technique Equivalence ratio

[27] 2018 Premixed and diffusion flames Propane Ion current sensing 0.854–1.110

[32] 2019 Laminar and turbulent diffusion flames Methane
UV imaging

Line-scan hyperspectral imaging
0.7–1.2

[28] 2021 Lean premixed flames Kerosene Chemiluminescence by imaging spectrometer 0.53–0.80

[16] 2022 Turbulent partially premixed flames NG, LPG LIBS 0–1.4

[21] 2022 Turbulent flames Kerosene TDLAS 0.1–1.0

[17] 2022 Inverse diffusion flames Methane LIBS 0.30–0.70

[29] 2023 Premixed flames Propane Optical flame imaging 0.93–1.53
∗NG: natural gas.
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nozzle at the center of the burner. In addition, air was sup-
plied with tangential momentum from outside the burner.
Furthermore, a perforated shape of the flame stabilizer was
used for stable flame generation. A rectangular combustion
furnace with the width, height, and length of 800, 800, and
1200mm, respectively, was constructed for the test bed. In
addition, rectangular and circular quartz windows were
installed on the side and rear walls of the furnace to allow
for optical flame measurements. The gas flow rate was mea-
sured using a rotameter at constant pressure and regulated
using a pressure regulator. Prior to the supply of the gas to
the burner, its pressure was reduced to 1000mmAq using a
regulator. Moreover, the supplied gas and air flow rate were
controlled constantly using a needle valve and proportional-
integral-derivative control, respectively.

As shown in Figure 1(c), three different views of flame
detection, namely, vertical, diagonal, and horizontal views
(hereafter referred to as view 1, view 2, and view 3, respec-
tively), were applied through quartz windows for chemilu-
minescence measurements to consider different
observation position deviations owing to limited optical
access in future applications. In addition, all the optical sens-
ing views were oriented in the initial local area (50mm away
from the burner outlet in the axial direction) of flame forma-
tion. Furthermore, an angle of 60° was formed from the
burner flow direction for view 2. For view 3, measurements
were conducted from the rear at an angle of ~10°, encom-
passing the downstream zone of the flame. Finally, the opti-
cal head applied in the experiments utilized a 1-inch
diameter lens (LB4879, Thorlabs, Inc.) to transmit flame
chemiluminescence through an optical fiber (RPU3-214-
1.5-SSSS, Fiber optics) with a core size of 214μm, spectral
range of 190–1100nm, and numerical aperture of 0.22.
The optical fiber was positioned at the focal length of the
lens to enable line-of-sight measurements. For the combus-
tion conditions, nine different equivalence ratio values in
the range of 0.56 to 1 (i.e., lean combustion conditions) were
applied to generate the flame. The equivalence ratio (Φ) can
be calculated by dividing the actual weight ratio of the fuel
and oxidizer by the stoichiometric weight ratio.

Spectrometer (SpectraPro-500i, Acton) measurements
were conducted within a range of 250 to 550nm with a res-
olution of 0.3 nm for the equivalence ratio of 0.83 to com-
pare the intensity distribution depending on the

wavelength with different view positions. As shown in
Figure 2, three characteristic intensity peaks related to OH∗,
CH∗, and C2

∗ were observed at the wavelengths of ~309,
~431, and ~516nm, respectively. It should be noted that the
three different radical regions with relatively high intensities
compared to the other (refer to Figure 2) were selected for
the data collection for the simple measurement, although the
broadband CO2

∗ background emission can affect the other
specific wavelength region [47]. However, despite the same
combustion conditions, the results showed different intensity
distributions in the wavelength range. Owing to the horizontal
view (view 3), including the yellow and blue flame areas (see
Figure 1), and the soot radiation effect [30, 48], an increasing
trend was observed in the range of 400–550nm. The back-
ground effect by the blackbody radiation can be subtracted
by acquiring reference measurement without the target signal,
as shown in previous studies [23, 49]. Additionally, normaliza-
tion of baseline correction can be applied to further improve
the quality of the spectral data. In subsequent experiments to
acquire the datasets, selective detection was performed on
the spectral regions of OH∗, CH∗, and C2

∗, which represent
the characteristics of the flame.
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Figure 1: Schematic of the overall experimental setup for the dataset acquisition. (a) Photograph of measurement setup for dataset
acquisition. (b) Experimental setup to generate turbulent diffusion flame. (c) Top view of the combustion furnace to obtain optical
signals with different views.
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Figure 2: Intensity distribution of the generated flame depending
on the wavelength with different measuring views.
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3. Data Preparation for Model Training

Figure 3 shows the methodology and procedure for dataset
acquisition using selective optical measurements. A 1 × 3
fiber optic splitter was utilized to transmit the same optical
signal measured from the quartz window to three photomul-
tiplier tubes (PMTs) (H5784-03, Hamamatsu). In addition,
bandpass filters were applied to each PMT to capture specific
radical chemiluminescence signals within a selective wave-
length range. The center wavelength and peak transmission
of the bandpass filters for OH∗, CH∗, and C2

∗ were 308.7,
432.2, and 511.3 nm, and 17.2%, 51.2%, and 66.2%, respec-
tively. In this case, the measurement uncertainty, which
can be calculated as the standard deviation, was obtained
for the measured total equivalence ratios. Specifically, for
OH∗, the values were 0.005052, 0.004903, and 0.005405 for
views 1, 2, and 3, respectively. Similarly, for CH∗, the values
were 0.006674, 0.006564, and 0.008646 for views 1, 2, and 3,
respectively, and for C2∗, the values were 0.006791,

0.006827, and 0.014247 for views 1, 2, and 3, respectively.
It should be noted that the measurement uncertainty might
be determined not only by the precision of the measurement
devices but also by the fundamental characteristics of the
turbulent flame. In the case of view 3, including the down-
stream zone of the flame, background radiation, and turbu-
lent flame effect might affect the relatively high uncertainty
values. Furthermore, the intensity data were averaged every
3 s, and their corresponding equivalence ratios were
obtained for the input and output data. Subsequently, a nat-
ural logarithm was applied to the entire dataset to scale the
data. Consequently, 2160 datasets were obtained and ran-
domly split in a ratio of 7 : 1.5 : 1.5 for the training, valida-
tion, and test datasets (i.e., 1512, 324, and 324,
respectively) for training each prediction model.

Scaled OH∗, CH∗, and C2
∗ radical data were plotted as

functions of the equivalence ratio, as depicted in
Figures 4(a)–4(c), respectively, to analyze the measured
dataset distribution. Owing to the short averaging time of
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∗ radicals.
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3 s, and the turbulent flame, notably, some deviations were
observed even in the same view and equivalence ratio condi-
tions. As shown in Figure 4(a), as the equivalence ratio
increased, the OH∗ radical data decreased under all viewing
conditions. However, view 3 exhibited opposite trends to
views 1 and 2 for the CH∗ and C2

∗ radical signals, as shown
in Figures 4(b) and 4(c), respectively. These different ten-
dencies may be attributed to the fact that the wavelength
regions, including the chemiluminescence of CH∗ and C2

∗

radicals, could be influenced by the different view character-
istics of view 3 compared with the other conditions, as dem-
onstrated in Figure 2. Therefore, AI-based approaches can
be used for precise measurements and real-time monitoring.

4. Deep Neural Network Regression Model

Figure 5 shows the DNN architecture for predicting the
equivalence ratio using chemiluminescence signals. The
DNN regression model consisted of input, output, hidden,
and dropout layers. The input and output layers have three
and one nodes for the radical signals and the corresponding
equivalence ratio, respectively. For the input layer, the num-
ber of input features can be increased to apply other param-
eters such as intensity data of different wavelength regions to
consider background radiations and combustion conditions
for the enhanced prediction. In addition, three fully con-
nected dense layers were used as hidden layers to extract
the relationships between the features. Furthermore, a drop-
out layer with a dropout rate of 0.5 was added to prevent
overfitting issues during the training processes [50]. With
respect to the activation function, the rectified linear unit
(ReLU) activation function was applied for the input and
hidden layers, and the linear activation function was applied
for the output layer for the nonlinearity of the DNN regres-
sion model. Therefore, the DNN model can effectively derive
the nonlinear relationship between optical measurement
results considering the uncertainty of turbulent flame and
the equivalence ratio. Besides, by applying transfer learning
techniques using pretrained DNNs, accurate models can be
effectively developed with relatively small amount of data

for future applications with different combustion conditions
(e.g., different flame, fuel, and burner types). The node num-
bers of the hidden layers (i.e., units 1, 2, and 3) and the
learning rate were selected for the following hyperparameter
tuning to search for the optimized hyperparameters for
training the DNN regression model.

For data processing, algorithm realization, and training
processes, Python-based frameworks were adopted using a
cloud computing platform of Google Colaboratory Pro with
Intel Xeon 2.20GHz and Tesla P100 for the CPU and GPU,
respectively. In addition, powerful open-source libraries,
such as TensorFlow, Keras, and scikit-learn, were used. A
min-max scaling preprocessing method was applied using
the following equation to normalize the input log-scaled rad-
ical data and output equivalence ratio data:

Xscaled =
X − Xmin

Xmax − Xmin
, ð1Þ

where Xscaled, Xmax, and Xmin are the scaled, maximum, and
minimum values of the data X, respectively. Therefore, the
datasets were scaled from zero to one. Moreover, the Adam
optimizer and 1000 epochs were used for model training. To
evaluate the prediction performance of the trained regres-
sion models, several metrics, such as mean absolute error
(MAE), root mean square error (RMSE), mean absolute per-
centage error (MAPE), and coefficient of determination (R
-squared), were used, which can be calculated using the
equations provided in Table 2. yi, pi, and �y denote the actual
value, predicted value, and the average of the actual value,
respectively.

5. Results and Discussion

Various loss functions, such as the MAE, mean squared
error (MSE), and Huber loss function, were applied for
model training to compare the prediction performance of
the regression model. The Huber loss function can be uti-
lized to realize a robust regression model [51] by combining
the advantages of both linear and squared losses with an
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Dense layer 2
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Figure 5: Illustration of the architecture of the DNN-based regression model.
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appropriate threshold that determines the transition
between the losses, as shown in the following equations:

LossH xð Þ =
1
2 x

2, if xj j ≤ α,

α xj j − 1
2 α

� �
, if xj j > α,

8>><
>>:

ð2Þ

where α is a positive real number and a threshold between
the linear and quadratic returns of the prediction error of
value x. Thereby, the Huber loss has the advantages of being
robust to outliers and differentiable everywhere. However, α
should be appropriately selected for the enhanced regression

model. Parametric studies using α values of 0.25, 0.5, and
0.75 were conducted to determine the effective values. For
the loss function comparison tests, units 1, 2, and 3 and
the learning rate used were 32, 64, 128, and 0.01, respec-
tively, for the DNN model (DNN-initial). Figure 6 shows
the five average prediction results with different loss func-
tions. The MAE and RMSE of the predicted and actual
values were used to evaluate the prediction performances
of the models. In comparison with the other cases, the model
trained using the Huber loss function with α = 0:25 demon-
strated the smallest MAE and RMSE of 0.0307 and 0.0427,
respectively. Thus, the Huber loss function with a threshold
of 0.25 was selected for the subsequent model training and
hyperparameter tuning processes.

As the internal hyperparameters of deep learning models
are among the most critical factors that determine perfor-
mance, optimized values need to be determined. In general,
grid search [44, 52], random search [44, 53], and Bayesian
optimization [54, 55] techniques are widely used to imple-
ment hyperparameter tuning processes. The grid search
thoroughly explores hyperparameter combinations within a
predefined set [44, 45]. Compared with a grid search, the
random search technique randomly samples hyperpara-
meters from a predefined distribution for a given number
of iterations to determine satisfactory solutions [45, 56].
Bayesian optimization searches for optimized hyperpara-
meter values based on Gaussian processes and acquisition
functions [45, 55]. Therefore, while random search ran-
domly selects and searches hyperparameters in the defined
space, Bayesian optimization selects hyperparameters using

Table 2: Equations of regression metrics to evaluate the trained models.

Metrics MAE RMSE MAPE R-squared

Equation
1
m
〠
m

i=1
yi − pij j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
m

i=1

yi − pið Þ2
m

s
1
m
〠
m

i=1

yi − pi
pi

����
���� × 100% 1 − ∑m

i=1 yi − pið Þ2
∑m

i=1 yi − �yð Þ2
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Figure 6: Comparison of prediction error of the DNN regression
model with different loss functions.

Table 3: Hyperparameter tuning results depending on the tuning
techniques.

Tuning techniques Selected hyperparameters

Random search

Unit 1 96

Unit 2 224

Unit 3 128

Learning rate 0.001

Bayesian optimization

Unit 1 256

Unit 2 256

Unit 3 160

Learning rate 0.001
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Figure 7: Training and validation loss trends of the DNN-based
models depending on training epochs.
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previous search results. In the present study, random search
and Bayesian optimization techniques were employed to
enhance the prediction performance of the DNN model. In
the tuning process, a range of 32–256 for units 1, 2, and 3
of the hidden layers and a learning rate value among 1e-2,
1e-3, and 1e-4 were selected to enhance the performance.
Table 3 lists the best-searched hyperparameters for each
tuner. Consequently, the random search technique selected
96, 224, 128, and 1e-3, and the Bayesian optimization
selected 256, 256, 160, and 1e-3 for units 1, 2, 3, and the
learning rate, respectively. Therefore, these parameters were
applied to the established DNN algorithms (hereafter, DNN-
RS and DNN-BO for tuned DNN algorithm using random
search and Bayesian optimization, respectively), and their

prediction performances were compared using the training,
validation, and test datasets.

Figure 7 shows the history of the training and validation
losses of DNN-RS and DNN-BO during the model training
processes. Overfitting did not occur, as demonstrated by the
saturation tendencies of the losses. Subsequently, the training
results were compared quantitatively and qualitatively using
the test datasets. For comparison, an additional multilinear
regression (MLR) model [57], a widely used conventional
data-driven model, was fitted using the same datasets.

The average regression model prediction performances
of MLR, DNN-RS, and DNN-BO were evaluated in terms
of MAE, RMSE, MAPE, and R-squared values with 10 differ-
ent newly shuffled datasets, as shown in Figure 8. The DNN-
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based algorithms (i.e., DNN-RS and DNN-BO) exhibited
similar prediction results, and their performances were
improved compared with that of the previous DNN-initial
architecture (before hyperparameter tuning). Specifically,
the average MAE and RMSE of DNN-BO decreased by
~17.84% (~0.0307 to ~0.0252) and ~12.06% (~0.0427 to
~0.0376), respectively, compared with those of the previous
DNN-initial architecture. Note that the DNN-BO model
showed better prediction results than the MLR model. The
MAE, RMSE, and MAPE values of DNN-BO were
~62.06%, ~53.69%, and ~61.65% smaller than those of the
MLR, respectively. Furthermore, the MAPE values were
approximately 3.62% and 3.61%, and the R-squared values
were 0.9299 and 0.9311 for DNN-RS and DNN-BO, respec-
tively, confirming a reliable prediction of the equivalence
ratio.

The relative prediction errors were compared for 324 test
data points to characterize the qualitative performance of the
virtual sensing algorithms. Figures 9(a)–9(c) show examples
of errors for MLR, DNN-RS, and DNN-BO, respectively, for
the same test dataset. In this study, the prediction error of
data number i between the ground truth (yi) and prediction
(pi) values is defined as follows:

Error %ð Þ = 100 × yi − pi
yi

: ð3Þ

As shown in Figure 9(a), compared with the DNN-based
models, MLR predicted the equivalence ratio with a large error
in the range of ±40%. By contrast, approximately 94% of the
test datapoints were successfully predicted within ±10% error
using the DNN-based models. In this case, although the
chemiluminescence optical signals were obtained with differ-
ent viewing directions, the equivalence ratio of the turbulent
diffusion flame was predicted with only ~3.0% and ~3.5%
errors with real data. Furthermore, it should be noted that only
~0.076 s was required to calculate the equivalence ratio for a
single case on average, demonstrating the potential for real-
time monitoring by utilizing the pretrained DNN model.
More importantly, the prediction performance of data-
driven models can be further enhanced using dataset augmen-
tation and additional wavelengths of chemiluminescence sig-
nals. Moreover, the accuracy can be improved by acquiring a
dataset utilizing a specific view direction if the measurement
conditions are fixed in the actual environment. In conclusion,
these results demonstrate the potential of the deep-learning-
based regression model as a virtual sensing system for moni-
toring flame stability.

6. Conclusion

In this study, the equivalence ratio of a turbulent diffusion
flame was predicted using experimental chemiluminescence
data and deep-learning-based regression models. For the
optical measurements, three different intensity signals from
the OH∗, CH∗, and C2

∗ radicals were obtained with various
equivalence ratios in the range of 0.56–1. In addition, verti-
cal, diagonal, and horizontal views were applied to consider
general flame-monitoring environments. Subsequently, the

prepared datasets were preprocessed for model training, val-
idation, and testing. To derive the nonlinear relationships
between the input and output, DNN-based deep learning
regression models were trained and compared using various
metrics, such as MAE, RMSE, MAPE, and R-squared. Subse-
quently, loss function comparison and hyperparameter tun-
ing techniques, such as random search and Bayesian
optimization, were applied to enhance the prediction perfor-
mance. Consequently, DNN-BO showed ~17.84% and
~12.06% smaller MAE and RMSE values, respectively, than
the initial DNN model. More importantly, the DNN-BO
model showed an average MAPE and R-squared of only
~3.61% and ~0.9311, respectively. In addition, the predic-
tion performances of the MLR- and DNN-based models
were compared quantitatively and qualitatively. Note that
the equivalence ratio could be successfully estimated using
chemiluminescence data averaged for 3 s with the DNN
models even if the measurement position changed. Further-
more, the trained DNN model needed only ~0.076 s on aver-
age to calculate the equivalence ratio, supporting the great
potential for real-time monitoring applications. Thus, a sim-
ple, real-time, and novel virtual sensing technique has been
proposed using a DNN-based regression model for future
combustion monitoring and optimization.
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