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Contemporary lithium-ion batteries (LIBs) are one of the main components of energy storage systems that need effective
management to extend service life and increase reliability and safety. Their characteristics depend highly on internal and
external conditions (ageing, temperature, and chemistry). Currently, the state of batteries is determined using two parameters:
the state of charge (SOC) and the state of health (SOH). Applying these two parameters makes it possible to calculate the
expected battery life and a battery’s performance. There are many methods for estimating the SOH of batteries, including
experimental, model-based, and machine learning methods. By comparing model-based estimations with experimental
techniques, it can be concluded that the use of experimental methods is not applicable for commercial cases. The
electrochemical model-based SOH estimation method clearly explains processes in the battery with the help of multidifferential
equations. The machine learning method is based on creating a program trained to predict the battery’s state of health with
the help of past ageing data. In this review paper, we analyze the research available in the literature in this direction. It is
found that all methods used to assess the SOH of an LIB play an essential role, and each method has its pros and cons.

1. Introduction

Lithium-ion batteries (LIBs) are one of the primary compo-
nents of an energy storage system that requires appropriate
management to extend service life and improve reliability
and safety. Lithium-ion batteries are nonlinear electrochem-
ical devices with a complicated electrochemical structure.
Their performance is heavily influenced by internal and
external factors (ageing, temperature). An accurate evalua-
tion of a battery’s state of health (SOH) aids in predicting
the operational range, preventing potential damage, and
enhancing performance [1]. In scientific papers, the main
description of a battery SOH is mainly focused on building
a battery model and developing an algorithm. In recent
years, the importance of lithium-ion batteries has grown,
and, in this regard, much scientific research appears devoted
to the battery’s performance and reliability. Accordingly,
intelligent battery management systems (BMS) perform

actual SOH estimation or control of batteries that optimize
battery efficiency [2]. It is widely accepted that when the
capacity of batteries is decreased to 80% of its initial capac-
ity, the battery is considered dead and no longer has any
use. The battery capacity degradation occurs around 400
cycles and is hard to predict. The first phase relates to an ini-
tial capacity increase at the start of life (Figure 1). This
behavior might be explained by the geometrical properties
of the cells and is unrelated to any ageing process. As a
result, the data from Phase 1 was disregarded for the con-
struction of the ageing model. Each cell’s most significant
capacity point was identified as the beginning of the life
point during the data preprocessing step and assigned to
the “zero cycled Ah-throughputs” state. The second phase
is characterized by a steady rate-constant fall in cell capacity.
This phase is occasionally followed by a third phase charac-
terized by an abrupt capacity loss, as seen in Figure 1. The
presence of lithium plating in these examined cells triggered
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FiGure 1: The degradation curve of capacity retention with cycle
number. The first phase is capacity growth, the second is a steady
deterioration, and the third is a dramatic decrease in capacity
(Creative Commons (CC-BY) [3]).

the third phase. The modeling of Phase 3 is omitted from the
scope of the research, and the accompanying data was
deleted from the modeling dataset. As a result, the modeling
effort in this study focused on capturing the relationships
between cycling circumstances and cell capacity loss during
the gradual deterioration corresponding to the second phase
in Figure 1 [3]. Currently, the state of the batteries can be
determined by two parameters: the state of charge (SOC)
and the state of health (SOH). Applying these two parame-
ters makes it possible to calculate the expected battery life
and affect its performance. The level of the SOH of batteries
might vary due to irreversible physical and chemical reac-
tions during battery life. As a rule of thumb, the SOH is a
quality indicator that indicates the level of degradation of a
battery. The accuracy of assessing the health status is directly
proportional to evaluating the nutritional status and the
state of charge [4].

Typically, battery ageing is a complex process which
includes many characteristics, such as battery internal resis-
tance, conductivity, capacity, and others. To record these
factors, batteries are equipped with a BMS. Internal resis-
tance, impedance spectroscopy, capacity, entropymetry,
accelerated cycling, and other methods are used to deter-
mine the SOH of lithium-ion batteries.

Lerner’s invention of a nickel-cadmium battery in 1970
was one of the first attempts to explore the status of the
charge. He discovered that the only dependable way to
determine a battery’s charge state at that time was to com-
pare the output current value to a known battery current
level. The output current of the battery (the charge level of
which had to be calculated) was compared to the current
of the battery, where the charge level was known, in this
manner. This comparison allowed us to determine the pre-
cise level value of an unknown battery [5]. Furthermore, it
is necessary to consider all methods to accurately identify
the charge level using all the accumulated knowledge
because they are all interrelated. There are many methods
for estimating SOH batteries, including experimental,
model-based, and machine learning methods (Figure 2).
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2. Battery State of Health (SOH) Estimation:
Experimental Methods

Experimental methods play an essential part in the SOH
assessment of a battery and demand a considerable number
of procedures to collect the necessary data. During the
experiment, it is not always possible to obtain reliable infor-
mation since there are systematic errors and many external
factors. With the help of experimental methods, it is possible
to measure internal resistance based on direct and indirect
measurements. Direct measurements subdivide into battery
capacity measurements, internal resistance, impedance mea-
surements, and others. In the case of indirect methods, these
include data optimization and processing to locate parame-
ters of SOH, the charging curve method, the ICA and
DVA method, and ultrasonic inspection [6]. Experimental
methods are usually carried out in laboratories due to the
requirement for specific equipment and are often time-
consuming [7]. They are founded on a set of data and mea-
sures that may be utilized to comprehend and assess battery
ageing behavior. This section discusses some major experi-
mental approaches [8].

2.1. Internal Resistance Measurement. Internal resistance (R;
) plays a vital role in the SOH of a battery as this property
provides information promptness about the end of the bat-
tery life. The general description of internal resistance is
the resistance of a substance through which an electric cur-
rent is passed. The battery materials and their structure,
the state of charge (SOC), temperature, and discharge rate
impact the internal resistance and specific characteristics
ensue to help identify the battery’s length of life. The internal
resistance of the lithium-ion battery has two main contribu-
tions, namely polarization resistance (PR) and ohmic resis-
tance (OR) [9]. The internal resistance is the prominent
feature which defines the lithium-ion battery’s voltage drop
at a certain current. The ohmic resistance combines the con-
tact resistance of diverse components: electrolyte, electrode
materials, and separator. Researchers at Tongji University
have studied certain aspects of the state of health of
lithium-ion batteries by measuring the internal resistance
[9]. The polarization resistance is the conversion state
between the electrolyte and the electrodes during the electro-
chemical reaction. The increase of internal resistance is
related to the battery’s capacity and discharge time. Prior
investigations considered that the ohmic resistance directly
correlates with temperature and SOC. During the experi-
ment, an effective equivalent circuit model for the lifetime
estimation of the battery was established. According to this
equivalent circuit, Xuezhe Wei and his coworkers could pro-
vide accurate and accelerated descriptions of the ohmic or
internal resistance of the battery for use in fuel elements
[10]. Much attention has been drawn to current pulse meth-
odology, and research generally confirms that the SOC and
temperature affect the battery’s internal resistance [6, 8,
11]. Special additives are introduced into the electrolyte in
lithium-ion batteries to reduce the problems of internal cor-
rosion which correlate with internal resistance. The internal
resistance of a battery might then become independent of
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the ageing and degradation of the battery. So, the capacity  following equation: [15]
does not decrease concerning the internal resistance during
cycling [10]. Battery internal resistance does not always AQue
remain consistent throughout a cycle. It is determined by dr = Tpg X Rigeo (2)

various factors, including a battery’s state of charge, the tem-
perature of the electrolyte inside the battery, the load cur-
rent, and the battery’s capacity. According to the literature,
the more excellent the load current, the lower the battery’s
internal resistance because charge transfer activities inside
the electrolyte are more intensive and active from the elec-
trode to the electrode [12]. Several types of research have
been conducted to evaluate internal resistance utilizing the
current pulse approach based on Ohm’s law. This method
determines the battery’s voltage decline at a given current
and calculates R,(SOC, T) using the following equation.
(13, 14]

OCV (SOC, T) -

Vit (SOC, T)
I J

R, (SOC, T) = (1)

pulse

where R, is the internal resistance of the battery, OCV is the
open-circuit voltage, Vi, is the voltage of the battery, and
Iy is the current. One of the key benefits of this equation is
that, under various circumstances, it can provide answers with
high accuracy. During the experiment, the temperature was
constant and was approximately 21°C. After measuring the
internal resistance, the lithium-ion battery is discharged with a
continuous current and with a current pulse equal to 10 A. This
measurement method works well for large stationary batteries.
High-quality instrumentation allows taking resistance readings
in the 10 ¢Ohm range [14]. Other research has emphasized that
using Joule’s law is more effective for calculating energy loss of
the internal resistance of the battery and is characterized by the

where Q. is the heat generation of the battery. This method
uses a calorimeter to detect heat loss for the duration of the
charge/discharge. In addition, this type of assessment uses
high-cost laboratory equipment. If, during the cycling process,
the LIBs have an equal amount of specific capacity (discharge/
recharge) at a given SOC, then the reversible thermal effect is
neutralized. In this case, the researchers applied Joule’s law to
control the heat input. To identify the internal resistance, the
change in temperature in the cycle must be controlled using
an electrochemical calorimeter [15]. For this purpose, the lim-
ited energy during the procedure should be calculated using
the following equation:

Q=P xRxt=(Cy+Cq) x AT. (3)
Then, the internal resistance may be described by

Ri= (Cca1+ccell) (T B Tl)’ (4)
a1(1)* dt

where [ is the current strength, R is the resistance; C,, is the
heat capacity of the calorimeter, C_y is the heat capacity of
the battery, and AT is the temperature difference. It is well
known that heat is generated when a certain current is set for
LIBs. For all types of LIBs, the amount of heat is characterized
by the matching formula I,R; during the discharging/rechar-
ging process. The process in which heat is released with the help
of internal resistance is called Joule heating. According to Joule’s
law, internal resistance can be measured, and for this purpose, a



calorimeter is used to measure the heat generated [16-18].
Experiments on direct electrochemical calorimetric analysis of
zinc-bromine and zinc-air batteries were carried out in 1984
by a group of researchers from the University of Ottawa [19].
The experiments were conducted in aqueous solutions and
under galvanostatic conditions, and the method’s efficiency
was about 82%. In this study, it was possible to determine the
Peltier electrolytic heats using the total anode and cathode cur-
rents. Pesaran et al. developed a special calorimeter and tested it
for large battery modules with dimensions of 21 x 39 x 20 cm®
[20]. This paper outlines the heat dissipation measurement of
full-size batteries to determine internal resistance accurately.
Studies based on LIB capacitance reduction used an isothermal
calorimeter to determine the Joule heating [18, 20]. The identi-
fication of the internal resistance of lithium-ion batteries can
also be carried out by the alternating current (AC) or direct cur-
rent (DC) method. The AC method should be used initially to
measure the internal resistance of the same lithium-ion batteries
utilizing both methods. There is no need to discharge/charge
the battery between the AC and DC testing in this situation.
However, batteries charged at an ambient temperature of 20
+ 5 o C should be kept at this temperature for 1 to 4 hours [21].

The lithium-ion battery’s state of charge (SOC) and state
of health (SOH) are two crucial state parameters (LIBs). The
battery’s capacity is essential in obtaining these states, but it
is difficult to detect directly online. On the other hand, this
parameter strongly correlates with battery internal resistance
[22]. Under isothermal and iso-SOC conditions, the linear
fitting relation of internal resistance and capacity can be
established using correlation analysis of internal resistance
and capacity. The battery capacity obtained by linear fitting
the internal resistance can be used directly as an EKF algo-
rithm for estimating SOC. The experimental results show
that this capacity fitting method is not only simple to imple-
ment, but it also improves the accuracy of the SOC algo-
rithm evaluation.

2.2. Internal Resistance Measurement Using the Alternating
Current (AC) Method. The internal resistance of a lithium-
ion battery is a critical quantity for determining power,
energy efficiency, and lost heat. This value must be precisely
understood when constructing battery systems for automo-
tive applications. Current step methods, alternating current
methods, electrochemical impedance spectroscopy, and
thermal loss methods have been used to assess a cell’s inter-
nal resistance. The results of these measures were compared
to one another. Current step approaches produce the same
results as energy loss methods when the cell’s charge or dis-
charge is restricted [22]. In addition, it is necessary to mea-
sure the active, inductive, and capacitive components of
the internal resistance. The active and capacitive compo-
nents of the internal resistance were calculated using a
bridge circuit, as shown in Figure 3 [23]. However, the
inductive component is often not taken into account due
to its small value.

Figure 3 illustrates the bridge circuit for calculating the
alternating current of lithium-ion batteries. The two left
sides of the bridge consist of active and capacitive resistance
(R,, Cy, and R,, C,), while the right sides contain only active
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FIGURE 3: Bridge circuit to measure the internal resistance of the
LIB.

resistance (R, and R,). The capacitance of C2 is a reference
used as a precision capacitor. In the case of capacitor C,, it
is a variable that should compensate for the capacity of the
lithium-ion battery. It is essential to note that the resistances
R, and R, are approximately equal, and R, has a slight resis-
tance value. Moreover, the value of R, depends on the
lithium-ion battery’s resistance and other circuit resistances.
The equilibrium of the bridge circuit to calculate the internal
resistance is achieved using two conditions:
First condition:

& = & (5)
Ry, Ry

Second condition:
% = & (6)
C R

Hence, an unknown value could be found:

R,C
R =22, (7)
1 Cz

The resistance value of the battery is defined as the dif-
ference between the two measurements: the first measure-
ment is calculated by connecting the battery; the second
one is without the battery. However, calculating the internal
resistance of complex loads is significantly more challenging
since the measurement outcome is determined not only by
the device’s ohmic behavior but also by its capacitive and
inductive behavior. Things become much more problematic
if the measuring technique causes extra nonlinearity, such as
temperature dependency and other time-variant behavior of
the equipment under test. As a result, sophisticated mea-
surement methodologies must be utilized to quantify the
resistive component of a complex system. These approaches
are dependent on the gadget under the test’s frequency
dependence [15]. This type of bridge has been developed
and used for exothermic and endothermic energy changes
in battery cells [19]. The measurement of the internal
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resistance of LIBs by the AC method is carried out using
small current ripples, which stimulate the voltage with a reg-
ular frequency of 1kHz. The main features of the AC
method are the possibility to measure through the phase
angle, and it is suitable for complex measurements [23,
24]. A significant advantage of the AC method is that it is
a nondestructive method for internal resistance measure-
ment. However, this method is not commercial for multicell
batteries due to the limited voltage range [25].

2.3. Internal Resistance Measurement through the Direct
Current (DC) Method. The direct current internal resistance
analysis of lithium-ion batteries is the oldest and most reli-
able method [21]. The direct current method consists of a
short-term battery discharge through a certain load with a
known resistance. The battery capacity selects the load cur-
rent. The algorithm for the measurement of the internal
resistance of the battery via the direct current method is as
follows:

(i) A voltmeter is used to measure the open-circuit
voltage without a load

(ii) Connect the load and measure the voltage across it

(iii) From Kirchhoff’s law for the circuit, calculate the
value of the internal resistance

The direct current method for measuring internal resis-
tance is suitable for lithium-ion batteries, which have a high
capacity. Their ohmic values are accurate and repeatable
with constant measurements. State-of-the-art high-quality
instruments for internal resistance measurement allow inter-
nal resistance readings in the range of 10 4#Ohm. The DC
method measures the voltage drop during the current supply
to a cell. The DC method is among the most widely used for
assessing the SOH of a battery during the cycling procedure.
The primary advantage of measuring internal resistance with
the DC approach over the AC method is that it is more pre-
cise owing to diffusion polarization. If diffusion polarization
occurs during the experiments, then the AC method can
only measure low impedance values of LIBs [26, 27].

2.4. Electrochemical Impedance Spectroscopy. Another com-
monly used nondestructive method for measuring internal
impedance is electrochemical impedance spectroscopy
(EIS). The experiments are always based on determining
the electrical system resistance and using a sinusoidal alter-
nating current [28-30]. The main fundamental characteris-
tics of impedance spectroscopy are the identification of the
ageing state of a battery. Scientists in previous research dis-
tinguished two things about the battery SOH during the
experiment [31]. The first phenomenon is a charge transfer
on the positive electrode, and the next is the displacement
of lithium ions through the solid electrolyte interphase
(SEI) layer [32, which provides a battery model to assess
SOH through impedance spectroscopy. This study has estab-
lished the ability to measure the ageing of batteries and their
neural network. Previous studies have explored EIS mea-
surements during charge and discharge. Thus, the imped-

ance measurement in the potentiostatic approach at a
specific open-circuit voltage (OCV) was taken. For this pur-
pose, the required current was dropped and left to restore
equilibrium capacitance. However, some researchers sub-
stantiate the belief that the impedance measurement at the
equilibrium condition will differ from the measurement dur-
ing the charge and discharge of the battery [8, 33, 34].
Throughout this paper, scientists used the galvanotactic
voltage-transient technique to obtain the desired impedance
parameters [34]. EIS analysis is widely accepted to predict
detailed information about the tested coin cell, namely, reac-
tion kinetics, local corrosion, corrosion rate, electrochemical
mechanisms, and the remaining useful life (RUL) of the LIB
[35]. A galvanostatic voltage-transient technique has been
generating considerable interest in the possibility of obtain-
ing electrochemical impedance and RUL estimation results
in a nondestructive method. In some cases, there is a possi-
bility of getting erroneous results of LIBs causing drift volt-
age at the output. Those errors could be terminated via the
filtering of high-frequency current and voltage signals [33,
34]. Generally, impedance is defined as the total resistance
of a device or circuit to the flow of alternating current at a
given frequency and is expressed as a complex number.
The leading role of these complex numbers is determined
by phasors or complex amplitudes that characterize the
amplitude and phase of a monochromatic or quasimono-
chromatic wave perturbation. Phasors or complex ampli-
tudes describe the relationship between circuit voltage (E)
and current (I) by determining the amplitudes of the rotat-
ing voltage and current vectors in the complex planes [36].
Impedance spectroscopy plays an increasingly essential role
in fundamental and applied research. This spectroscopy
can investigate solid and liquid materials: ionic, mixed, semi-
conductor, and even insulators [37]. The method is essential
for studying charge transfer in heterogeneous systems,
including phase boundaries, electrode boundaries, and
microstructural elements. With the help of EIS, it is possible
to study the behavior of chemical sensors, fuel cells, and cor-
rosion processes. It is necessary to measure at least two
quantities to determine the impedance since it is a complex
quantity. Many modern impedance-measuring devices mea-
sure the real and imaginary parts of the impedance vector
and then convert them to the desired parameters [38, 39].
The operator only needs to connect the test object, circuit,
or material to the measuring device. However, sometimes,
the result obtained is unexpected by being too large or too
small. One probable explanation is an incorrectly set method
(technique) of measurements or the natural behavior of an
unknown device. The frequency spectrum should be as
broad as feasible. There are many ways to implement imped-
ance measurements: each of which has several advantages
and disadvantages. The choice depends on the specific con-
ditions and measurement requirements, particularly the fre-
quency domain, measurement range, measurement
accuracy, and ease of experimentation. Ideally, impedance
measurements require 6 to 7 orders of magnitude in fre-
quency, for example, 102-10°Hz. At frequencies below
107-10°Hz, various bridges are widely used. In the past,
manually balanced bridges (Wheatstone bridge, Schering



bridge) were used, but modern devices are computer-
controlled and autobalance (Figure 4) [40].

Figure 4 illustrates four arms of the Wheatstone bridge
AB, BC, AD, and DC with the resistances Ry, R, R;, and
R,, respectively. According to the described procedure, the
values of R and C are determined that are connected in var-
ious combinations and operate as an electrochemical cell in
frequency measurements. The galvanometer (G) is con-
nected to the BD diagonal, while the power source is con-
nected to the AC diagonal. Generally, the source & will
flow through all circuit parts, including the galvanometer
(G). Discussions regarding impedance have dominated
research in recent years and are taken as a function of AC
frequency. The parameters R and C must balance simulta-
neously, for a bridge of the simplest form is a slow process.
Therefore, the method applies only to static or very slowly
changing systems [40]. The main goal of studying the elec-
trochemical impedance and solid-state systems is to obtain
information about electrode processes, which means pro-
cesses occurring at the electrode or electrolyte interface. Pre-
vious studies have promoted measuring impedance mainly
using closed-loop amplifiers or frequency response ana-
lyzers. The main feature of using closed-loop amplifiers is
that they are faster and more convenient than AC bridges
[41, 42].

Measuring EIS spectra does not necessitate disassem-
bling the battery cell, preventing sensitive samples from
impregnating with moisture and oxygen. EIS measurements
can also be performed under operating parameters, which
helps obtain spectra without disrupting the cell. Finally,
EIS analyses require little time and money [6]. The RSEI rep-
resents resistance from an interfacial layer formed by elec-
trolyte decomposition. Initially, research on this SEI layer
was aimed at a deeper understanding of the deterioration
of graphite electrodes by establishing a link between the
resistance features of the SEI layer and the cycling condi-
tions. However, in recent studies on nanosized electrode
materials for high-performance lithium-ion batteries, the
SEI layer has been taken into account as another factor
resulting in additional capacity via reversible reactions. The
reversible SEI establishment with additional capacity is still
being worked out in detail. As a result, analyzing the SEI
layer with EIS is very effective for monitoring the anode
material’s resistance and additional capacity from reversible
SEI layer formation.

2.5. Battery Capacity Measurement. Recent theoretical devel-
opments have revealed that battery capacity tends to degrade
over time and reflects the total amount of energy in the bat-
teries [43]. This method has useful applications due to accu-
rately determining the amount of energy in lithium-ion
batteries for health assessment. For example, with the pre-
dicted findings, research was done on detecting charge
capacity regulated by the voltage across the charge/discharge
of the batteries. The battery’s capacity is widely characterized
as power and energy capacity [44]. Pecht’s use of various
temperature conditions from 25°C to 40°C over 800 cycles
of battery to measure its capacity is fully justified [45]. Fur-
ther analysis showed that this kind of method could only
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FIGURE 4: The straightforward Wheatstone bridge for R and C
measurements.

be carried out in laboratory conditions in an offline mode
[46]. The power rating is the power that can deliver the
underrated charge and discharge time interval. In the case
of energy capacity, it deals with the energy that may be elim-
inated or preserved in the LIB. Specific energy density and
power rating highlights the cost price of the battery. The
rapid development of technologies for the production of
lithium-ion batteries has significantly expanded, including
batteries with a capacity of tens and hundreds of ampere-
hours [47]. Using new electrode materials in LIBs instead
of traditional anode materials based on carbon, cathode
materials, and lithiated Co, Mn, and Ni oxides made it pos-
sible to ensure a high safety level even when operating in
abnormal modes of operation. The application of electrodes
using modified nanosized materials made it possible to
increase the service life of LIBs at deep (70-80%) discharges
up to 3000-5000 cycles and the discharge currents, up to 10-
20°C and above. The capacity of a battery reflects the
amount of energy it can store.

Meanwhile, internal resistance and impedance are indi-
cators of its power. Different indicators show the health sta-
tus depending on battery mode. The hybrid battery may lose
up to 20% of its capacity at the end of its life while the inter-
nal resistance grows to 160% of its starting value .

2.6. Incremental Capacity Analysis (ICA) and Differential
Voltage Analysis (DVA). Lithium-ion batteries can be exam-
ined by analyzing the change in their incremental capacity
analysis (ICA) and differential voltage analysis (DVA) [48].
These parameters change during the operation of the bat-
tery, and it is possible to track the ageing through experi-
mental testing. One downside of the ICA and DVA
approaches is that they require more time throughout the
experiment since their curves are obtained at a low current,
about equivalent to C/20. Prior studies collected data for 11
months to assess battery ageing, while this study only covers
a subset of operating situations [49]. Based on the study of
the SOH estimation for the LIB, the article considered a
method for predicting the capacity and RUL of batteries
based on the ICA method. In addition, the ICA method is
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considered one of the valuable tools for obtaining accurate
battery characteristics by integrating changes in capacitance
and battery voltage. As its name indicates, the cycle counting
method consists of counting the number of cycles a battery
has experienced and comparing it to the number given by
the manufacturer to evaluate the battery’s condition. This
counting method considers a vital parameter—the depth of
discharge (DOD) [50, 51]. The core problem of the ICA
method is that IC curves are very sensitive to noise, which
is why some data results may contain undesirable peaks.
Researchers apply to filter algorithms to obtain clean peaks,
such as wavelet transform (WT) and moving averages (MA).
It should be noted that the IC curves depend on the differen-
tial voltage range, which can lead to inaccurate analyses.
Two types of filtering algorithms (MA and Gaussian filter)
must be used to avoid this difficulty [49]. The IC curve rep-
resents the degree of power amplification as the voltage
changes. The battery voltage and capacity were commonly
employed to detect IC curves during the charging method.
As a result, the battery capacity and voltage initially should
be determined [52].

Q=1It,
V=£(Q) (8)
Q=f(V).

Thus, the IC curve can be distinguished as follows:

W dQ  Ixdt . dt
U= = T ®)

The ICA method requires a tremendous amount of high-
quality research data, and it takes much time to preprocess
the input data [53]. Gaussian process regression plays a vital
role in SOH estimation since it measures the similarity of
input variables and constructs a covariance function to
improve the accuracy of the SOH assessment of the battery.
Yang and his coworkers provided an effective procedure, a
novel Gaussian process regression model through the ICA
curves [52]. In the works of Barker et al., the ICA and
DVA methods were used for the first time to evaluate the
remaining useful life of LIBs [54, 55]. During this research,
the ICA and DVA methods have gained much importance
in recent years and confirmed the electrochemical features
of the spinel phase LIBs based on carbon anode material.
Dubarry et al. have utilized these methods in the research
regarding the lifetime estimation of the battery cell
[56-58]. The DVA method is valuable because it reflects
the lithium distribution’s homogeneity and does not depend
on the sensor voltage. Generally, the DVA method is
described as the gradient of the battery voltage to its capac-
ity, and during the discharge state, it is calculated as follows.

v dv  dv

dqQ ~ Tidi " T (10)

where V is voltage and Q is capacity.

Alternatively, DV can be defined in a specific form, as
follows:

dv fok1]= Vi ~ Vi

= (11)
dQ I(tk+1—fk)

where dV/dQ|t = k + 1] is the DV meaning at the k + 1 time
and V= V|, is the values of the voltage. Overall,
experimental methods can significantly impact predicting
the SOH of a battery [52, 59]. However, precision and accu-
racy may vary from method to method. The sum of experi-
mental methods considered in this section is listed in
Table 1, along with their main benefits and drawbacks.

3. Battery State of Health (SOH) Estimation:
Model-Based Methods

Another method to estimate a battery’s state of health is a
model-based estimation. However, the model can only be
used with enough experimental preresults [61]. This method
is based on determining the dependence of essential charac-
teristics of the battery, such as current, voltage, and capacity,
on the battery’s ageing. After verification of the model by a
set of experimental results, the state of health of the battery
can be estimated without battery destruction. Therefore,
the method is suitable for battery management systems.
The destruction of the battery during estimation is not eco-
nomically effective when applied in a battery management
system. The main difference between this method and the
experimental estimation method is that the experimental
estimation method can also be used for scientific purposes.
A survey of scientific papers revealed that there are several
main types of model-based estimation: such as Kalman-
based filters, equivalent circuit model-based methods, elec-
trochemical model-based methods, empirical fitting
methods, machine learning methods, and deep learning
methods.

3.1. Kalman-Based Filters. The standard Kalman filter is a
filtering algorithm based on the minimum root-mean-
square variance that applies to the measurement of the state
of linear systems, and the error follows a Gaussian distribu-
tion [60, 62]. In practice, many systems have some nonline-
arity that manifests itself in the nonlinearity of the equation
of state or measurement equation. Therefore, the standard
Kalman filter algorithm does not give satisfactory results
[62]. In this case, the solution consists of a linear approxima-
tion of the nonlinear relation: converting a nonlinear prob-
lem into a linear one. Based on the extended Karman filter
algorithm, the battery health assessment process determines
the model’s parameters following the initial health value
[63]. The first step in estimating health status is creating a
model. The model parameters, operating current, and volt-
age are inserted into the extended Karman filter’s recursive
equation, and the model parameters are then updated in real
time based on the value of the improved battery SOH [64].
The next step is to analyze the findings and use a prediction
approach. A filtering method is required to detect the
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TaBLE 1: Experimental methods.
Method Benefits Drawbacks
Reliable

Widely used as an indicator for
evaluating the charge
Direct and common

Noninvasive

Internal resistance
measurement

Time-consuming
Not suitable for online assessment [60]

Nondestructive

Electrochemical impedance Accurate estimation of RUL

Requires a long time

spectroscopy Prediction of the degradation of the Used only for a particularly stable environment
battery

Batterv capacit Not suitable for online assessment

ry capacity Fastest Not possible when the battery running (requires the battery to be
measurement

fully charged)
Effective tool to analyze the capacity

ICA/DVA loss of battery Not suitable for other types of batteries (only for LIB) due to the

Robust and reliable
High accuracy

difference in charging IC curves

dependency and eliminate the noises based on the results.
The most often used approach in battery characterization
is adaptive Kalman filtering. There are numerous Kalman
filtering variations. Some articles, for example, have pro-
vided the following types of filtering: dual unscented Kalman
filtering, linear regression filtering support, and double-scale
particle filtering.®* [65], Kalman filtering can also be used to
simultaneously assess the state of charge and the state of
health of the battery.

3.2. Equivalent Circuit Model-Based Methods. In this estima-
tion method, the battery system is considered an electric cir-
cuit. An electrical circuit contains elements such as
resistance, inductor, and capacitor, which can be connected
in series or parallel. The model is varied depending on the
number of elements and types of connections [66]. As is
known, the ageing of a battery depends on several conditions
of exploitation, such as temperature, storage time, C-rate,
overcharging, or overdischarging [67]. Yang et al. analyzed
the ageing of a battery at constant voltage and constant cur-
rent charging [68]. To estimate the SOH of the battery, the
battery was treated as an electrical circuit that consists of a
parallel-connected inductor and resistance as characterized
in Figure 5. The model is described as a resistor-capacitor
circuit with self-healing resistance. This model has been
examined for experimental results of lithium iron phosphate
batteries and found that if the circuit has three resistances
and three inductors, the model has high accuracy. Prior
studies discovered that the battery’s self-healing mechanism
accurately predicts SOH [69]. One study proposed repre-
senting the self-healing mechanism with an analogous cir-
cuit model. Pei et al. used two different circuit models for
the ageing and self-healing process [70]. The model has a
self-healing process in a standing state, and the ageing pro-
cess is carried out in a discharging state. The equivalent cir-
cuit model of the discharging state and standing state is
illustrated in Figure 6. According to another article, the pres-
ence of a parallel connection between a constant phase ele-

ment and ohmic resistor elements in the circuit model was
used to consider overcharging of the battery [70] [71]. Most
researchers have applied accelerated ageing experiments to
collect the data at a minimum time. According to Xia and
Abu Qahougq, the data on electrochemical impedance was
collected during the accelerated ageing of the battery [72].
Based on the collected data, an equivalent circuit model
was created, which consisted of a series of resistors and
capacitors. It was verified that the acceleration of the ageing
process leads to an increase in resistance value and a
decrease in capacity value in the circuit model. To decrease
the time of the data collection, some people have suggested
that the circuit model consists of a double resistance and
capacitor with one-state hysteresis. The work introduced
the Sobol method to investigate the ageing characteristics
of the battery [73]. According to the ageing experiments, it
was concluded that this method needs only half of the data
of ageing results. Consequently, it means that the time of
data collection decreases. Some researchers established that
the equivalent circuit model could be used for lead-acid bat-
teries in low-voltage applications. Topan et al. used the
recursive least square (RLS) and Kalman filtering based on
the Thevenin circuit model to estimate the SOH of the bat-
tery [65]. They concluded that Kalman filtering results are
better than RLS [74].

3.3. Electrochemical Model-Based Methods. Understanding
the processes that occur during battery operation is required
to evaluate the state of health of a battery using the electro-
chemical model. An article study found that battery ageing
reduces battery capacity and increases internal resistance.
Doyle et al. developed the first lithium-ion battery electro-
chemical model. This approach is abbreviated as the DFN
model (Doyle-Fuller-Newman) [75, 76]. It analyzes battery
parameters with high accuracy, yet it is too sophisticated
for use in a BMS. The model was developed based on the
partial differential form of the mass and charge conservation
equations in the solid and electrolyte interphases. It also
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FI1GURE 6: The equivalent circuit model scheme of the battery’s self-healing process (Creative Commons (CC-BY) [70].

describes the chemical process that occurs before the crea-
tion of the solid electrolyte interphase layer (SEI), which
reduces the capacity of lithium-ion batteries due to the pro-
duction of nonconsumable lithium ions. The DFN model
equations are provided below:

0 is the thickness of the negative electrode; 8" is the
thickness of the positive electrode, and J, is the thickness
of the separator.

oC, _ D, 9 (,9C,
ot 12 or\ or)

(12)

where C; is the concentration of lithium in solid phase.

The boundary conditions are as follows:

dCs

“Z(r=0)= 13
2 (r=0)=0, (13)
0Cs JLi

D,— (r=Rs) = L, 14
=Ry = T (14)

where j;; is the volume specific rate of the chemical reaction,
a, = 3¢,/R, is the specific surface area of spherical particle, R,
is the radius of spherical particle, and ¢, is the active material
volume fraction. In Equation (14), the mass conservation of
lithium ions in the cathode and anode material is defined.
According to the charge conservation in the electrode
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material, the following equations are produced:

9 0.\ _ .
ax(aeffax> =i (15)

The boundary conditions are

aq’s i“
Geffa(x=0)= PP

09,
W(x=87)=0,
. (16)
a_;(xZL_(S*):O’

o¢ fapp
et gy D=
A is the surface area of the electrode, i, is the applied

current, ¢ is the potential of solid phase, and L is the thick-
ness of electrolyte.

0 0@, . eff Olnce .
P (keffﬁ +kp E ) =—Jri- (17)
The boundary conditions are
%(x:O):%(x:L):O_ (18)

ox ox

The open-circuit voltage is defined as follows:

VO =00 - 900 - Ligglt)  (19)

Overall, there are several considerations about the elec-
trochemical model: (1) the electrochemical reaction is pro-
ceeding in the interphase of the solid and liquid phase, and
the Butler-Volmer equation describes it; (2) in the electrode,
the mass transfer of lithium-ion is only defined by diftusion.
According to a review of articles, the model is simplified to a
single-particle model (SP) [77]. The single-particle model
considers the electrode material as one with a spherical
shape. It means that the charge is uniformly distributed over
the solid phase. This model has high precision at low C-rates
because it does not consider particles’ cracking and volume
expansion during the intercalation of lithium ions. The
assumption of fracture propagation in electrode material is
made to improve the accuracy of the SP model. The article
hypothesized that the SEI layer was created by a four-step
method. In the first stage, an SEI layer is applied to the whole
surface of the single particle until 10% of the lithium ions are
intercalated. Then, the new SEI layer on the surface of the
initially produced SEI starts growing. In the third step, the
SEI layer reaches enough thickness, leading to cracks form-
ing. The final step is forming the SEI layer on the surface
of the cracks. The voltage profile results of a LiFePO, cath-
ode material were observed at different temperatures, C
-rates, and cycle numbers to test the model’s precision.
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The creation of the SEI layer on the surface of the generated
fractures has a more significant impact on the battery’s state
of health than the production of the SEI layer on the original
SEI layer. Following the creation of the model, it is critical to
extract the battery’s physical characteristics from the SP
model’s equations, which can be easily tested in real time.
According to another study, the single-particle model should
be enhanced by specifying the SP model’s final equation with
the following physical parameters: I: applied current, ¢: time,

Yaverage: the ratio of the average concentration of lithium to a

maximum concentration of lithium in the positive electrode,

and X, e, the ratio of the average concentration of lithium

to a maximum concentration of lithium in the negative elec-
trode [78]. Transformation of the SP model with the above
physical parameters leads to simplifying Equations (7)-
from 26 distribution parameters to 11. All parameters can
be estimated in real-time except the lithium concentration
in an electrolyte which must be obtained from the battery
manufacturer. Finally, due to their sensitivity to ageing, the
magnitude of lithium-ion loss and diffusion into the liquid
was chosen as the state of health indicators from the physical
parameters [79]. Selecting the magnitude of lithium diffu-
sion as the assessing parameter of the battery’s state of health
shows good applicability. As previously stated, the electro-
chemical model consists of many partial differential equa-
tions that cannot be solved analytically; instead, numerical
solution methods are needed, such as Euler’s, Heun’s, and
nth-order Runge-Kutta’s methods [80]. The distinction
between this article and others is that the diffusion parame-
ter is evaluated at different levels of charge to improve the
prediction of the state of health empirically, demonstrating
the method’s high precision with a relative error of 2%
[81]. Besides measuring the battery’s health, the electro-
chemical model may also be used to determine the battery’s
charge level. Some papers discuss the simultaneous measure-
ment of SOH and SOC of a battery. The topic of the equivalent
circuit model for evaluating the SOH has previously explained
the adaptive filtering approach [82, 83]. It is used to process
the dynamic behavior of the battery’s physical properties. In
the subsequent papers, which demonstrate the simultaneous
evaluation of the SOC and SOH, the sigma-point Kalman filter
adaptive filtering approach paired with an electrochemical
model is utilized for this purpose [64].

In summary, the electrochemical model for battery state of
health (SOH) estimation and degradation trajectory prediction
plays a crucial role in the understanding and predicting the per-
formance of a battery. The Butler-Volmer equation describes
the electrochemical reaction at the interphase of the solid and
liquid phases. The single-particle (SP) model considers the elec-
trode material as one with a spherical shape. The SP model is a
simplified version of the electrochemical model. It has high pre-
cision at low C-rates, but its accuracy can be improved by con-
sidering the formation of cracks in the electrode material. To
extract the battery’s physical characteristics, the SP model’s
equation can be enhanced by including physical parameters
such as the applied current, time, and the ratio of the average
concentration of lithium in the positive and negative electrodes.
Lithium-ion loss and diffusion into the liquid are chosen as the
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state of health indicators. The electrochemical model requires
numerical solution methods, such as Euler’s, Heun’s, and nth-
order Runge-Kutta’s methods, to solve its partial differential
equations. The adaptive filtering approach, such as the sigma-
point Kalman filter, can process the dynamic behavior of the
battery’s physical properties. The electrochemical model can
also be used to simultaneously determine the battery’s charge
level (SOC) and SOH.

3.4. Empirical and Fitting Methods. The method is based on
fitting the state of the health battery with mathematical func-
tions such as polynomial and exponential. The drawback of
such a method is that the mathematical model does not
describe the chemical and physical processes happening in
the battery. According to the literature, the mathematical
model describing the battery’s capacity could have the fol-
lowing variables: C-rate, the depth of discharge, tempera-
ture, storage time, number of cycles, and state of charge
[84]. Calendar ageing and battery cycling ageing are two
mathematical models for ageing. In the case of calendar age-
ing, it reduces battery capacity without using an electrical
current. Cycling ageing reduces the capacity of a battery by
delivering a steady charge-discharge current at a specific
voltage range. Deshpande and Bernardi claim that Equation
(20) may be used to develop a mathematical model in which
the capacity of the model is specified by the depth of charge
(DOD), the number of cycles (1), and storage duration (t)
[83]. This calculation takes into account both calendar and
cycle ageing.

Q<t)=Q0(1—B><DOD2><n—Kt), (20)

where B is the coefficient that characterizes the cycling age-
ing, K, is the coefficient that characterizes the calendar age-
ing, Q) is the real-time capacity of the battery, Q, is the
initial capacity of the battery, and ¢ is the calendar time.

The phase transition region during the charge-discharge
can be determined by incremental capacity (IC) analysis
[85]. IC analysis is the differential form of dependence of
capacity to the voltage. Differentiation can give several peaks
which correspond to specific phase transitions [86]. These
peaks are sensitive to the battery’s state of health; therefore,
they can be used as the state of health assessment parame-
ters, which has been verified in some articles. It was found
that the INR-18650-25R cylindrical battery shows four peaks
in the incremental capacity analysis [87]. Among the four
peaks, the second and fourth peaks were selected as the state
of health assessing parameter and created the mathematical
model defined as in Equation (21), because the first and
third peaks do not have a high linear correlation as in the
following equation.

hyorhy=axIn (SOH -b) +¢, (21)

where h, or h, is the height of peaks in the incremental
capacity analysis. a, b, and ¢ are the parameters of a mathe-
matical model.

The experiment must be performed at a C-rate equal to
or less than 0.05 C to improve the visibility of IC analysis
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peaks. As a result, the experiment takes a long time in this
scenario and is not appropriate inside a BMS. According to
Li, the IC analysis of “NMC” batteries at various C-rates
revealed four peaks at 0.05 C and two at peaks of 13 C
[88]. The article discovered that the two peaks acquired at
the 13 C-rate are more sensitive than the peaks obtained at
the 0.05 C-rate by examining the four peaks at varied SOH
of battery and depth of discharge. A low C-rate is no longer
required to estimate the battery’s health condition. The
paper employed the linear regression model to build the
mathematical model for SOH based on peak intensity.

SOH=a-bxh, (22)

where a and b are the parameters of the model and h is the
height of the peak.

Previously, it has been discussed about the creation of
mathematical models based on the height of the IC analysis
[89, 90]. Instead of the height of peaks, several studies sug-
gested using the area of peaks to create the mathematical
model [91]. For instance, several articles use the linear
regression model with the area of the peak. The model was
tested on the 60 Ah and 74 Ah LiFePO,/C cells and resulted
in an error of 4%. Zhou et al. indicated that data of the con-
stant current charging of the profile of the battery in the
range of terminal voltage to upper cut-off voltage is sensitive
to the SOH of the battery [92]. To determine empirical
dependence, they calculated the area of the charge-
discharge profile by the following formula:

t1
- J vdt, (23)

t0

where IV is an area of the charge-discharge profile, v is volt-
age at time ¢, t is time, ¢, is the time when the battery reaches
the upper cut-off voltage, and ¢, is the time when the battery
reaches the terminal voltage. Finally, they found a linear
relationship between the area of the charge-discharge profile
and the SOH of the battery. The high precision of this linear
dependence was verified by testing four LiCoO, cathode-
based batteries [91]. In sum, the reviewed model-based
methods are listed in Table 2 with their benefits and
drawbacks.

3.5. Battery State of Health (SOH) Estimation: Data-
Driven Method

3.5.1. Machine Learning Method. The machine learning
method is based on creating a program trained to predict
the battery’s state of health with the help of past ageing data.
In recent years, it has been used in different areas, such as
genetics and genomics [93], cancer prediction of patients
[94], mineral processing [95], economics analysis [96], and
image recognition [97]. The advantage of this method is that
the machine learning method can be used without introduc-
ing information about the electrochemical model of the bat-
tery. As previously discussed in Sections 2.2 and 2.3, we
know that the prediction of the state of health of a battery
without an electrochemical model is time-consuming if



12 International Journal of Energy Research
TaBLE 2: Model-based estimation methods.
Method Benefits Drawbacks
In this model, the chemical and physical processes are not
Nondestructive defined. Instead, the entire system of the battery is
Equivalent The estimation requires only analysis of direct considered an electric circuit. It will be a drawback for cases

circuit model

measurements such as current, voltage, and temperature
The kinetic of process in battery system can be investigated

in which necessary to understand the mechanism of
degradation.
Needs high controllers of characteristics of the battery for
identification of ageing parameter

Nondestructive

Besides the state of health of the battery, the model gives

Electrochemical o . .2 This model contains a lot of differential equations which
model the exact description of chemical processes proceeding in needs high computational efficiency
the battery at appropriate circumstances (depth of
discharge, temperature, and C-rate)
Mathematical ‘ Nonfiestructive . In this method, the mechanism of the degradgtion is not
fitting There is no need to use high computational efficiency due defined. Instead, the SOH is defined empirically by

to the simplicity of mathematical equations

mathematical expression

there is not enough data. However, this disadvantage can be
overcome using newly emerging big data technologies. For
example, big data was collected by testing the batteries of
700 vehicles in different variables such as the depth of dis-
charge, temperature, and cycling number [98]. For training,
data was selected in the state of charge regions 20-80% due
to its sensitivity to ageing. After using big data, the articles
show the SOH estimation with a relative error of 4.5%.
According to the literature analysis, machine learning
methods can be divided into the following classifications:

(1) SOH estimation is based on direct temperature, volt-
age, and current measurements. For instance,
Roman et al. used the gradient boosting regression
tree model by direct measurements of the battery,
and it showed results with a relative error of 7% [99]

(2) SOH estimation is based on the charge-discharge
profile of a battery. According to the article, data
on the battery’s charge-discharge profile was col-
lected and selected from training data in the 20-
60% charge region. Finally, long short-term memory
and convolutional neural networks were used to
forecast the battery’s health [99]

(3) SOH estimation is based on processed results of
charge-discharge profiles such as IC analysis and
DV analysis. Previously in Section 2.5, it was dis-
cussed about the sensitivity of peaks of IC and DV
analysis to the ageing of batteries

Therefore, IC peak identification can be mixed with
machine learning methods [100, 101]. These articles used
the support vector machine tool. Prediction of the state of
health of the battery based on the machine learning method
can be estimated through various algorithms. Bandara et al.
used a feedforward neural network (FNN) and long short-
term memory (LSTM). The data for learning was taken from
publicly available NASA data on lithium-ion 18650 cylindri-
cal batteries [102]. The assessment of the SOH was done

only by data on the current discharge profile. They con-
cluded that this algorithm shows valid results for estimating
the SOH of the battery. Nevertheless, it can be improved by
inserting additional data for learning, such as impedance
and temperature. According to Khan et al., bidirectional
LSTM, support vector machine (SVM), adaptive boosting
(AB), multilayer perceptron (MLP), and convolutional neu-
ral network (CNN) can be applied for the assessment of the
SOH of the battery [103]. As the training data progressed,
additional temperature data was obtained during charge-
discharge of the “NCA” based 18650 cylindrical batteries
besides the current and voltage data. Bai and Wang inte-
grated the dual extended Kalman filtering with an artificial
neural network and used the battery’s terminal voltage for
the program’s training [104]. By comparing the mean
squared error (MSE) and root-mean square deviation
(RMSE) of each algorithm, they concluded that the method
with high precision is a bidirectional LSTM. Furthermore,
the tested batteries’ results showed that the maximum and
minimum mean absolute percentage errors are 0.38% and
2.72%, respectively. Most researchers collect data on battery
cycling for the program’s training in constant current mode.
However, Ruan et al. built the artificial neural network based
on data on the constant voltage cycling of the battery [105].
The proposed high-precision model was verified by testing
the three “NCA” half-coin cells. The model’s training on
the input dataset is one of the differences between machine
learning and other model-based methods. In some cases,
the model demonstrates high accuracy only for the appro-
priate dataset [106]. To test the model’s accuracy, the dataset
is divided into two parts: training data and test data. This is
referred to as model overfitting. As a result, tenfold cross-
validation must be used to validate the model’s accuracy.
In general, it will be helpful for readers if feature selec-
tion and algorithm selection are discussed in the machine
learning method. Feature selection in machine learning
refers to choosing a subset of the available features or vari-
ables to use in model training. The goal is to select features
most relevant to the battery’s state of health and improve
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the model’s performance. Several feature selection tech-
niques can be used, including incremental calculation: this
is just a derivative of the function of parameters. For exam-
ple, the value obtained from the incremental capacity analy-
sis can be used as a feature in the machine learning method.

Nevertheless, this feature selection has disadvantages,
such as the value of incremental analysis of any parameter
with many noises, which needs an additional noise process-
ing algorithm. Therefore, the most impactful features are
selected for inclusion in the final model. Time-related fea-
tures can be advantageous in time-series analysis or forecast-
ing problems.

Features such as time of day, day of the week, or trend
over time can provide vital information for the model. The
envelope area of a feature is the area enclosed between the
minimum and maximum values of that feature. Features
with a large envelope area are often more relevant and
impactful for the model. Using energy can be considered a
feature with a large envelope. Because energy can be
obtained by computation of the area of current-voltage
function; however, this feature has an advantage related to
high sampling frequencies. To obtain more valuable infor-
mation about the state of health, it needs more data on the
charge-discharge profile of the battery. The model’s param-
eters can also provide information about the importance of
features. For example, linear models such as linear regres-
sion assign coefficients to each feature, which can be used
to determine the relative importance of each feature. Once
the relevant features have been selected, the next step is to
choose the appropriate algorithm for training the model.

Several algorithms can be used, including linear regres-
sion: This simple and widely used algorithm assumes a linear
relationship between the features and target variable. How-
ever, the algorithm only applies if it has enough features
because complex equations mainly define the battery. This
is similar to linear regression but is used for binary classifica-
tion problems. This tree-based algorithm uses recursive par-
titioning to divide the data into smaller and smaller
subgroups based on the features. Random forest is an
ensemble of decision trees combined to produce a single pre-
diction. Support vector machines (SVMs) is a robust algo-
rithm that can be used for classification and regression
problems.

3.6. Deep Learning Method. In the field of artificial intelli-
gence, besides the machine learning method, there is also
the deep learning method. The use of artificial neural net-
works distinguishes the deep learning method [107]. How-
ever, the deep learning method requires more datasets for
training than the machine learning method. As a result,
some scientists use publicly available and reliable datasets
on battery ageing. As discussed in previous sections, the var-
iation of capacity accumulation at the corresponding voltage
range varies for the different ageing states of the battery. Sec-
tion 3.4 describes the estimation methods based on the dif-
ferential capacity analysis’s peaks. The previous section
stated that machine learning was an assessment method
based on charge-discharge profiles at 20-60% SOC. [108]
However, the disadvantage of the described methods is the
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long estimation time of the SOH because the peaks in the
differential capacity analysis and the charge-discharge pro-
file with 20-60% SOC are less available in real-world BMS
applications. Tian et al. used the deep neural network to
train the model at different voltage windows of the charge-
discharge profile to avoid the previously mentioned draw-
back. Finally, they confirmed that assessing the battery’s sta-
tus based on the 300mV voltage window had a 2.28%
inaccuracy [109]. As a result, the SOH estimate time is
reduced to 10 minutes by using this low-voltage window.
Section 3.3 examined the mechanisms of battery deteriora-
tion, such as fracture propagation in the electrode, side reac-
tion, and collector corrosion. However, these pathways are
primarily explored in half-cells. Furthermore, it is difficult
to determine if the entire cell battery is deteriorating owing
to cathode or anode deterioration. Tian et al. used a convo-
lutional neural network model to estimate the battery’s SOH
[110]. In addition to the battery’s high-precision SOH calcu-
lation, they got an extra model that can detect the ageing sta-
tus of each electrode. The deep learning method is the
encoder-decoder model, which uses recurrent neural net-
works for sequence-to-sequence forecasting problems. Gong
et al. applied the encode-decoder model for the publicly
available dataset of NASA and Oxford [111]. They obtained
three encoders—decoders for regions of the charge-discharge
profile. In addition, they obtained that by decreasing the
sampling interval, the accuracy of the SOH estimation can
be increased. According to the review analysis, the prospect
of deep learning is up-and-coming. That is why it offers
two significant advantages:

(1) It does not require any particular data, such as
impedance or differential capacity analysis. This
model can calculate the SOH based only on the
charge-discharge profile recorded by the battery’s
BMS chip

(2) It requires the shortest period to compute since
input data may be collected in the appropriate high
C-rate mode

The downside is that it needs a large amount of accurate
data for training. As a result, many scientists begin by
attempting to build models using publicly verifiable and
available datasets. The model is then applied to their sample
dataset, which was gathered using their proprietary battery
tester.

4. The SOH Estimation for Various Types of the
Battery Chemistry

In this section, the SOH methods used for the different
chemistry of LIB are listed in Table 3. Most of this table’s
articles are devoted to deep learning methods, ICA, and
DVA approaches. Because according to the review analysis,
these methods have good potential to use in practical appli-
cations. The reviewed estimation methods for various types
of chemistries for LIBs are listed in Table 3. The majority
of the articles in the review are on deep learning methods,
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TaBLE 3: The SOH estimation for various types of battery chemistry.
Battery L
. SOH estimation method Advantage Drawbacks
chemistry
(1) The ICA approach may be used to
detect the cause of capacity declines, such
. Based on ICA, the ridge and OLS as LLI, LAM, or conductivity loss (1) The peaks of thé ICA analysis depend
LiFePO,/C reoression were fitted to the heicht (2) The mean absolute error of the on the mode of ageing of the battery; the
[112] & of the peaks & regression is limited to 2% method would be more usable if ICA
P (3) One peak was considered more related peaks only depend on SOH
to the ageing condition based on the best
feature selection
The new method of DVA plotting (1) The linear regression was fitted to the (1) The model needs additional testing to
LiFePO,/C  was proposed. The new method can position interval between two SOH verify that this model is reliable
[112] assess the SOH of the battery more battery inflection points. It also revealed a (2) The model does not have a
accurately 2.5% inaccuracy for three batteries relationship with the mode of ageing
Deen neural network batter (1) The SOH is precisely estimated based
LiFePO,/C char inp curve prediction usiny 30 On just any small portion of the charge- (1) The method requires more data than
[113] sing P J discharge profile other known methods

points collected in 10 min

(2) The method is very fast

(1) LiCoO,/
C
(2) LiFePO,/
C

State of health estimation for

(1) The SOH was calculated using the
energy characteristics of the batteries at
various ageing stages. The benefit of
utilizing this feature is that the model

(3) lithium-ion battery based on energy derived from various sorts of materials (1) The model is only verified for batteries
LiNiCoAlO,, features may be used for other materials. As a used in Artemis urban drive cycle
C result, there is a strong generalization
(4) capacity
L (2) For 95% of the datasets analyzed, the
LiNiMnO,/ R2 is more than 98%
C [113]
(1) NCA/C State of health estimation of . . . (1) This is a very new method; that is why
(2) LiFePO4/ lithium-ion batteries based on the (.1) Tlh e calculation of this method is the method is not verified yet for other
C [114] regional frequency simple datasets
@ (1) The SOH is precisely estimated based
LiNiMnO,/ on just any small portion of the charge-
C Battery health evaluation using a  discharge profile

(2) LiCoO,/
C

(3) LiFePO,/
C [114]

short random segment of constant
current charging

(2) The method is very fast

(3) The accuracy and estimation time can
be regulated. By increasing the estimation
time, the accuracy is increased

(1) The method requires more data than
other known methods

ICA, and DVA approaches. The key advantages of deep
learning methods are their short estimating time and
excellent precision. However, training the deep learning
model requires a large and accurate dataset for diverse
battery and ageing conditions. Deep learning algorithms
are faster than ICA and DVA. ICA and DVA are slower
than deep learning algorithms. However, the precision of
this assessment is excellent, and meaningful information
about the reason for the battery degradation can also be
obtained.

Nevertheless, the precision of this assessment is excel-
lent, and meaningful information about the reason for the
battery degradation can also be obtained. Among various
chemistry of batteries, it is essential to note that LiFePO4

battery has only one peak at ICA and DVA analysis which
means that it has only one Plato in the charge-discharge pro-
file. These unique characteristics of the battery lead to a
detailed assessment of the state of the battery. According
to the review analysis, it is adequate to use deep neural net-
work battery charging curve prediction to assess this type of
battery. The advantages and disadvantages are written in
Table 3 [112]. It is hard to say that one battery chemistry
can only use one assessment method. According to
Table 3, a universal model can be obtained if the feature of
SOH selects the energy profile of the battery. Huang et al.
estimated the battery’s state of health based on the battery’s
energy value using the deep learning method. Furthermore,
they achieved a universal model [112].



International Journal of Energy Research

Big data cloud

il

Machine learning
and deep learning

Synthetic data

Real data

EBMS]

Training of the
model

15

ECM, EM models

Sensors development Batteries

s =

SOH estimation

FiGure 7: The future practical application prospects.

5. The Future Practical Application Prospects of
SOH Estimation

The future application of SOH estimation definitely will be
related to a model-based estimation and the data-driven
method due to its online and nondestructive evaluation abil-
ity. After analyzing each estimation method, we think there
are two ways to develop the application of the SOH estima-
tion algorithm in the battery management system. The first
is to increase the precision of the voltage, temperature, and
current sensors. The precision of the SOH estimation is
dependent not only on the precision of the estimation algo-
rithm but also on the precision of the collected data. There
are many discussed articles about each method’s precision,
but there are a few discussions about the precision of the
sensor itself. For example, the applicability of the equivalent
circuit model directly depends on the sensor’s characteristics
because susceptible instruments can collect the input data.
The second way of developing the SOH application is to cre-
ate a big reliable data cloud of ageing batteries. It can help
apply emerging new technologies such as deep learning
and machine learning more efficiently. The efficiency of the
deep learning method is directly related to the amount and
reliability of data for the algorithm’s training. However,
extensive data collections require a lot of funding and time.
Therefore, we propose to use the developed model-based
SOH estimation method (EC, ECM) in creating synthetic
datasets, which can further be used for the training of the
data-driven model. All the above-discussed future practical
prospects are illustrated in Figure 7.

In addition to the use of big data, other trends in battery
management include the integration of artificial intelligence
(AI) and machine learning algorithms for model construc-
tion and improvement. Al algorithms can be used to analyze
large amounts of data and identify patterns that can be used
to predict battery health and degradation. Another trend is
the integration of sensors and real-time monitoring systems
to collect data on battery performance and health in real
time, which can help improve the accuracy and robustness

of battery health prognostic models. Moreover, developing
low-cost and highly accurate sensors is also an important
trend in battery management. These sensors can monitor
various aspects of battery performance, including voltage,
temperature, and current, providing valuable information
for battery health prognostic models. In conclusion, digitiz-
ing batteries and integrating big data, AI, and real-time
monitoring systems are important trends in future battery
management. These trends will help improve the accuracy,
robustness, and reliability of battery health prognostic
models, which is crucial for ensuring the safe and reliable
operation of battery-powered devices and systems.

In conclusion, there is a growing trend toward imple-
menting SOH estimation methods in battery health manage-
ment. However, several challenges still need to be addressed,
including finding a trade-off between model complexity and
computational efficiency, extracting and estimating SOH
features under dynamic discharging and controllable charg-
ing processes, modeling the inconsistency in cell perfor-
mance, and fusing multiple signals for comprehensive
monitoring. In addition, there is a need for more research
on the application of SOH monitoring results in battery
health management, including performance optimization
and safety management strategies. Developing SOH indica-
tors or parameters that can be used to formulate these strat-
egies is a promising area for future research. With the
continuous advancements in technology and the increasing
demand for reliable and efficient energy storage systems, it
is expected that the field of SOH characterization, estima-
tion, and application will continue to grow in the coming
years.

Cloud computing and the digital twin are good instru-
ments to improve battery diagnostics. In addition, advanced
sensing technology helps detect the internal variation of bat-
teries and extract the key parameters directly while helping
reduce the complex parameter identification significantly.
Another aspect that needs further research is the develop-
ment of more robust and accurate feature extraction and
estimation methods for SOH. The extraction and estimation
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of SOH feature under dynamic discharging and controllable
charging processes are crucial for accurate SOH prediction.
The quality and quantity of data also play a significant role
in SOH estimation, and further research is needed in this
area. Another challenge is estimating SOH in a large-scale
lithium-ion battery pack composed of multiple individual
cells. Cell performance needs more consistency due to tem-
perature gradient, nonuniformity, and manufacturing vari-
ances. This calls for further research in imbalance
modeling and the description of consistency dependence
among battery parameters. Finally, integrating multiple sen-
sors for comprehensive monitoring is another area that
needs further research. Using fiber optic sensors or built-in
piezoelectric sensors can provide comprehensive informa-
tion about battery health, and fusing multiple signals is likely
to become a research hotspot in the future. In terms of SOH
application, there is still a wide gap between SOH diagnos-
tics and SOH application. The goal of SOH monitoring is
not only to determine the retirement point of a battery but
also to provide guidance for battery ageing process optimiza-
tion and safety management. Further research is needed on
developing detailed health management strategies from the
developer’s side, including adaptive charging cut-off condi-
tions and charging C-rate and safety operation boundaries
for early warning. The use of SOH indicators and parame-
ters for formulating battery health management strategies
is still in its infancy, and this is a promising area for future
research.

Another aspect of SOH estimation is the data-driven
methods, which rely on large amounts of data to make pre-
dictions. Machine learning algorithms such as artificial neu-
ral networks (ANNs) and support vector machines (SVMs)
have been applied to battery SOH estimation and degrada-
tion prediction. The benefits of data-driven methods are
their fast prediction speed, ease of implementation, and
adaptability to various batteries. However, the accuracy of
these models depends on the quality and quantity of the data
used for training, which can sometimes be limited in real-
world applications. Moreover, the combination of model-
based and data-driven methods, referred to as hybrid
methods, is another research direction in battery SOH esti-
mation. By combining the strengths of both methods, hybrid
methods can improve the accuracy of SOH estimation while
reducing computational costs.

In conclusion, there is still much room for improvement
in the battery SOH estimation and degradation prediction
field. The challenge of balancing model accuracy, computa-
tional efficiency, and practical applicability will continue to
drive research in this field. Integrating multiphysics model-
ing, advanced sensing technology, and machine learning
algorithms holds excellent potential for the future of battery
SOH estimation and degradation prediction.

6. Conclusion

Several methods are used to get information about the life-
time of lithium-ion batteries. A prominent characteristic of
these methods is the possibility of repetition, not only in lab-
oratory conditions but also in actual life conditions.
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Included here is the measurement of internal resistance,
the measurement of internal impedance, and the energy
level. The following benefits of measuring internal resistance
may be identified: accuracy and ease of the research; down-
sides of this approach include the inability to monitor
parameters in real-time and the length of the investigation.
The strong point of measuring the internal impedance is
the accuracy of the data obtained, and when using this
method, it is possible to identify the cause of battery degra-
dation; the disadvantages of this method include the need
to determine the chemical composition of the battery under
study. The final method of measuring a battery’s capacity is
one of the quickest and most accurate methods for examin-
ing a battery’s SOH; however, the disadvantages of this
method include the need to have a fully charged battery
before testing.

Since energy storage systems have been highlighted in per-
sonal electronics and electric vehicle hybrid implementations,
SOC estimates’ correctness has become increasingly relevant.
Several scholars have conducted extensive research on SOC
estimation in recent years. Estimation accuracy has steadily
improved, and focused efforts in research and development
are already underway. Several of these methods accomplish
well under fixed discharging current conditions, while others
perform much better under variable discharging current con-
ditions. It is challenging to compare the effectiveness of the
various methods because the applications and services use var-
ious discharging conditions and battery sizes. Numerous SOC
analysis methods are predicted to benefit electrochemical
devices, including BMS, in hybrid electric vehicles.

The practical technique may not be acceptable in the
real-time estimation of the battery’s state. That type of con-
clusion is necessary because it necessitates a large amount of
input data on the battery’s ageing experience and, at times,
necessitates breaking the battery to investigate the inner
structure. Conversely, the experimental technique remains
critical because it is the foundation for modeling the SOH
estimation method. The experimental technique is mainly
used for understanding the battery’s degradation mechanism
rather than for estimation. For example, a machine learning
approach requires a large amount of data that can only be
obtained through experimental research to progress in the
future. Even if the model SOH estimation methods over-
come the drawbacks of the experimental method, it cannot
be commercially applicable if the process has the following
disadvantages: high computational efficiency, long assess-
ment time, extensive sampling data, and high sensitivity of
parameter measuring. The lengthy period is due to two sig-
nificant factors. The first is the model’s increased complex-
ity, which results in the lengthy processing of findings. The
second reason is that obtaining preliminary input findings
takes a long time. A typical shortcoming of SOH estimates
based on the equivalent circuit model (ECM) and mathe-
matical model is the lack of an explanation of processes in
the battery. The extended duration of the model-based
assessment technique can be attributed to two factors. The
first is the model’s tremendous complexity, which results
in the lengthy processing of findings. The second reason is
that obtaining preliminary input findings takes a long time.
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A typical shortcoming of SOH estimates based on the equiv-
alent circuit model (ECM) and mathematical model is the
lack of an explanation of processes in the battery. The elec-
trochemical model-based SOH estimation technique clearly
explains activities using multidifferential equations. The
electrochemical model may necessitate a large number of
computer resources due to the high complexity of numerical
solutions of differential equations. Deep learning can
approximate the complicated data-to-health link of battery
cells. However, the proposed deep learning strategy has sev-
eral drawbacks. The fixed-size input matrix and a lack of
understanding of the inner working mechanism limit the rec-
ommended method’s applicability in estimating battery capac-
ity and necessitate further investigation. We hope that by
reading this article, readers will understand each approach
thoroughly and the best state of health for various types of bat-
teries. Furthermore, we expect that readers who want to use
the machine learning or deep learning approach will be able
to modify the model by adding new characteristics that are
more sensitive to the SOH of the battery. Combining an equiv-
alent circuit model, electrochemical model, and incremental
capacity analysis with machine learning or deep learning
models could yield these additional characteristics.
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