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Industrial and energy-related industries are major sources of carbon dioxide emissions, and their interdependence, as reflected in
the financial field, has attracted the attention of scholars. For the purpose of exploring the evolutionary characteristics of the short-
term dynamic correlation coefficient between the EU carbon futures price and the industrial and energy-related indices, this paper
selected the settlement price of EU carbon emission quota futures, the MSCI energy I index on three dimensions, and the Dow
Jones industrial index and West Texas crude oil futures price, as sample data. Using the time-varying t-copula model to
measure the dynamic correlation coefficient between variables, the time-sliding window idea and coarse-grained method were
combined to establish the correlation fluctuation mode, and a complex network theory and analysis methods were used to
study the evolutionary traits of the time-varying network structure between the EU carbon price and the industrial and energy-
related index. The results show that the transmission objects of the key correlation fluctuation modes in the network are stable
and maintain their own state with a high probability. Second, the clustering effect exists in the transmission process. Some
nodes with high mediating abilities are also the key correlation wave modes in the dynamic correlation evolution network.
This study provides ideas for the study of the correlations between multiple variables and is also a useful reference for
international investors.

1. Introduction

Due to the swift expansion of the global economy, the emis-
sion of greenhouse gases, mainly carbon dioxide, has
become a focus in all walks of human life. To cope with
the harm caused by climate problems, countries have put
forward GHG emission reduction systems, resulting in the
swift growth of the carbon emissions trading market. Inter-
national carbon futures, as important derivative contracts
in the financial market, have also attracted much attention
[1–3]. This special financial market trades carbon dioxide
emission rights as a commodity, and the price of trading is
determined by the supply and demand dynamics within

the carbon emission market, which in turn is closely linked
to the production and demand of the industrial and energy
sectors, which account for an increasing share of carbon
emissions each year. For investors, the relationship between
the carbon futures and the industrial and energy-related
stock indices in financial markets is important to observe.
Therefore, this paper analyzes the correlation between car-
bon futures and the industrial and energy-related indices
to clarify the link from a financial market perspective and
provide a reference for international investors.

Domestic and foreign scholars’ studies on the carbon
emission trading market mainly focus on the fluctuation of
the carbon futures market [4] and the influencing factors
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of the carbon futures and spot prices [5–7]. Eva and Stefan
modeled the changes in the price dynamics and volatility
of the potential random price process through a Markov
mechanism transformation and the AR-GARCH model
and then examined the short-term behavior in the spot
prices of carbon dioxide emission allowances and found that
its volatility mainly comes from the fluctuation of the
demand for carbon quotas [8]. Using an empirical analysis
of the three main markets under the EU carbon trading sys-
tem, scholars such as Daskalakis et al. found that carbon spot
prices better approximate a jump-enhanced geometric Brow-
nian motion [9]. Chevallier used empirical research to explore
the factors influencing carbon futures yields and found opin-
ions that differ from those of previous market watchers; the
link between macroeconomic shocks and carbon markets is
weak [10]. Kumar et al. used the vector autoregression
approach to investigate the relationship among the stock
prices of new energy companies, oil prices, and carbon futures
prices, and there was no notable correlation found between the
prices of new energy stocks and carbon futures prices [11].

At the same time, certain scholars have also focused their
attention on the correlations between the carbon emission
market and other markets. The area of research that has
received the most focus is the correlation between the car-
bon emission market and the energy market [12–14]. For
example, Kanamura used a supply and demand correlation
model to explore the correlation between the EU carbon
trading price and energy prices, both theoretically and
empirically, showing that energy prices positively impact
the EU carbon price [15]. By combining DCC, GARCH,
and BEKK models, Zhang and Sun discussed the correlation
between the futures price of European carbon and the prices
of three fossil energy sources and concluded that the corre-
lation between the coal market and the carbon market was
the highest and that the impact of the price decline of three
fossil fuels on the fluctuations of carbon prices might be
stronger than that of a price rise of the same degree [16].

In the long history of correlation research, scholars have
mainly used models such as the Pearson correlation coeffi-
cient [17], DCC [18, 19], and copula [20–22]. Among them,
the linear correlation between variables can be expressed by
the Pearson correlation coefficient; however, it cannot
describe complex correlation characteristics such as the non-
linearity between variables [23, 24]. The DCC model focuses
on describing the dynamic conditional correlation under the
aggregation of financial market volatility [25]. Copula
models focus more on the tail correlation characteristics
between financial markets [26].

In contrast, Patton constructed the basic form of the
time-varying copula function based on the classical theory
of copula functions [27]. The time-varying copula [28–32]
model comprehensively considers the nonlinear, time-vary-
ing, and thick-tailed complex correlation features among
financial time series. For example, scholars Zhang and Zhao
[33] used the time-varying geometry copula to model the
dependence structure between crude oil and natural gas
returns and found that there was a strong correlation
between the two series. The time-varying t-copula [34] has
relatively good goodness of fit and can take into account

the upper-tail and lower-tail correlations of financial time
series. For example, Gong and Huang [35] used the time-
varying conditional t-copula model to study the correlation
between the exchange rates of the US dollar, euro, and yen
against RMB before and after the reform of China’s RMB
exchange rate system and revealed that the conditional tail
correlation has reference value for the risk management of
foreign exchange portfolios. However, the correlation fluctu-
ations between the variables are also indicative of a complex
process. The development of complex network theory offers
a solid theoretical foundation for exploring the intricacies of
complexity science, especially the study of the evolutionary
characteristics of the variables, which can be examined
through complex network.

In summary, this paper’s main contribution lies in exam-
ining the time-varying nonlinear correlation coefficient
between variables by using the time-varying t-copula model,
abstracting the correlation strength between the multivariate
variables into a symbolic sequence by using the time-sliding
window and coarse-grained method, and combining it with
complex network theory. The evolution of the dynamic corre-
lation between the EU carbon quota futures price and the
industrial and energy-related indices is mapped in a complex
network. The modes of the correlation strengths between the
variables are taken as network nodes, and the conversion
and conversion frequency between the modes are taken as
the edge and weight of the network. By analyzing the net-
work’s topology characteristics, the dynamic correlation evo-
lution characteristics of the EU carbon quota futures price
and the industrial and energy-related indices are explored.

2. Data and Methods

The main anthropogenic sources of carbon dioxide are the
consumption of fossil fuels, industrial production, and urban
waste treatment. Crude oil, which dominates traditional
energy consumption, is subject to price fluctuations that
can impact the economy of a region or country. Based on
this analysis, this paper examines the dynamic correlation
evolution between the settlement prices of EU carbon
futures and indices related to industry and energy.

2.1. Data. As the EU carbon market was established in 2005,
at present, it holds the position of being the world’s largest
and most mature carbon trading market [36]. Therefore,
among the many regional carbon trading markets, the EU
carbon emission allowance futures settlement price is
selected as the object of this study. According to the opera-
tional traits of the carbon market in the European Union,
which is in an advanced phase, the EU carbon market
entered the third operational phase in January 2013, which
makes it relatively mature. Therefore, this paper uses daily
data for the time frame from January 2013 to December
31, 2022, as the sample size. The MSCI indices are widely
used as reference indices in the investment field and are
important reference indicators that allow investors to judge
investments. In this paper, the MSCI developed market
energy I index, the MSCI emerging market energy I Index,
and the MSCI global energy I index are selected to
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investigate the dynamic correlation between the EU carbon
futures prices and the energy stock indices in three dimen-
sions. The Dow Jones industrial average, which averages
the share prices of 30 blue-chip US companies covering all
sectors except transportation and utilities, and the settle-
ment price of West Texas crude oil futures, one of the most
significant benchmark oils in international trade, are
selected. The six groups of research variables were prepro-
cessed, the date and time of each group of data were aligned,
the rest days and missing data were deleted, and 2516 pieces
of effective data were obtained by taking the logarithmic rate
of return (the above data originates from the WIND
database).

2.2. Model Design. The copula function, first proposed by
Sklar [37], is called the dependence function or connection
function, which is a nonlinear correlation analysis function
that is formed by connecting the marginal distribution func-
tions of the variables. The definition of the N-dimensional
copula function is as follows: C 0, 1 N ⟶ 0, 1 .

C has a base surface and is an n-dimensional increas-
ing function. The edge distribution function of C satisfies
Cn u = C 1,⋯1, u, 1,⋯, 1 = u, uϵ 0, 1 .

By definition, it can be seen that the copula function is
actually a multivariate distribution function with a uniform
edge distribution of [0, 1] on the n-dimensional [0, 1] space.
Sklar’s theorem states that if F is an N-dimensional joint dis-
tribution function with an edge distribution of F1,⋯, FN ,
then there must be a copula function C 0, 1 N ⟶ 0, 1
that

F x1,⋯xn,⋯xN = C F1 x1 ,⋯, Fn xn ,⋯, FN xN 1

If F1,⋯, FN is continuous, then C can be uniquely deter-
mined; conversely, if F1,⋯, FN is a monadic distribution
function, then the function F determined by the above equa-
tion is an edge distribution F1,⋯, FN . The density function
corresponding to the joint distribution function F can be
further derived in the following:

f x1,⋯xn,⋯xN = c F1 x1 ,⋯, Fn xn ,⋯, FN xN
N

n=1
f n xn

c u1,⋯un,⋯uN = ∂c u1,⋯un,⋯uN
∂ u1 ⋯ ∂ un ⋯ ∂ uN

,

2

where c ∙ is the density function for the copula function,
f n xn is a marginal distribution Fn xn . The joint distribu-
tion density function can be viewed as consisting of two
parts: the product of the copula density function and the
edge distribution density function.

In this paper, we study the time-varying correlation coef-
ficients between the EU carbon price and the industrial and
energy-related index, which correspond to the two-
dimensional copula function.

F xt , yt = C F1 xt , F2 yt , 3

where xt is the series of EU carbon allowance futures set-
tlement price returns, yt is the series of stock index
returns, F1 xt and F2 yt are divided into the marginal
distribution function of xt and yt , F xt , yt is the joint dis-
tribution function of F1 xt and F2 yt , and C denotes the
copula model.

Referring to previous studies [35, 38, 39], the depen-
dency structure among financial variables changes with time,
and there is a peak and thick tail characteristic that fluctu-
ates slowly most of the time and violently a few of the time
when extreme events occur. According to previous literature
studies [33, 40], the time-varying t-copula model can bet-
ter describe the nonlinear dependence relationship
between multiple variables at the same time, especially
the tail dependence relationship between each two vari-
ables to a certain extent. In other words, the model has
a relatively good goodness of fit and can take into account
the top-tail and bottom-tail correlations of financial time
series. Therefore, the time-varying t-copula model is
selected in this paper to capture the time-varying correla-
tion structure between the two variables. In this paper, the
time-varying t-copula model is used to investigate the
nonlinear correlation, and the expression is as follows:

c F1 z1,t , F2 z2,t ; ρt , n

= 1
1 − ρ2t

Γ n + 2/2 Γ n/2
Γ n + 2/2 2

1 + z21,t + z22,t − 2ρtz1,tz2,t/n 1 − ρ2t
−n+2/n

2
i=1 1 + z2i,t/n

−n+2/n ,

Qt = 1 − β1 − β2 Q + β1zt−1z
‘
t−1 + β2Qt−1,

rt =Qt
−1
QtQt

−1 =
1 ρt

ρt 1
, 4

where β1, β2, n is an estimated parameter of the
time-varying t-copula model, satisfying the constraint
β1 + β2 < 1, β1, β2 ∈ 0, 1 . zi,t is the standard residual,
F1 z1,t represents the EU carbon price yield series T
distribution probability integral transform, and F2 z2,t
represents the stock index yield series T distribution
probability integral transform. Q is the covariance matrix

of the standard residuals, and Qt is a matrix where the
principal diagonal element is Qt ; the other elements
are 0. ρt is the dynamic correlation coefficient, and rt
is the dynamic correlation coefficient matrix.

In this paper, the establishment of dynamic correlation
wave modes needs to be combined with sliding window
and coarse-grained method, and the intensity of dynamic
correlation between variables is quantified by time-varying
t-copula model through five steps.

Step 1: the return series were first subjected to descriptive
statistics and ADF smoothness tests. The results are shown
in Table 1. The skewness of each group of return series is
not 0, and the kurtosis is greater than 3, which reflects the
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characteristics of financial time series that fluctuate slowly
most of the time and violently when extreme events occur
very little of the time; that is, the series has the characteristics
of a peak and thick tail. The JB statistics show that the p
value is less than 0.01, implying that the original hypothesis
of a normal distribution is rejected; that is, the normal distri-
bution is not obeyed. It is again verified that the EU carbon
quota futures yield and the industrial and energy-related
index yield series have peak and thick tail distribution char-
acteristics. Second, the original assumption of the ADF unit
root test is that the tested sequence has a nonstationary unit
root sequence. Each group of series in the table exhibits a p
value of less than 0.01, and the original hypothesis is rejected
at a 1% level of significance, which means that each group of
return series is a smooth series with good statistical
properties.

Step 2: the purpose of the autocorrelation test is to
determine the form of the GARCH model mean equation,
and if an autocorrelation exists, then the GARCH mean
equation uses an autoregressive process. The original
assumption of this test is that there is no autocorrelation
in the series. After testing, Table 2 displays the results.
The p values of the autocorrelation tests for the series of
EU carbon quota futures price returns and the industrial
and energy-related index returns are all less than 0.01.
The original hypothesis was rejected with a significance
level of 1% which implies that there is a significant auto-
correlation in the groups of series, and therefore, to elim-
inate the autocorrelation, the AR process must be
incorporated into the mean equation of the subsequent
GARCH family model.

Step 3: the residuals of the mean equation were tested for
ARCH effects, and the original hypothesis was that there was
no ARCH effect in the residual series. As shown in Table 2,
the test reveals that the p values of the residuals of the mean
equation test of the log returns of the EU carbon quota futures
settlement price and the other sets of log returns are all less
than 0.1, and the original hypothesis was rejected with a signif-
icance level of 10% which implies that there is an ARCH effect
on the residual error from the mean equation, which satisfies
the prerequisite for conducting GARCH family modeling.

Step 4: in the GARCH modeling, the descriptive statistics
show that there are spikes and thick tails in each group of
series, so the cumulative distribution function of the residual
series normalized by the GARCH model under the skewed
t-distribution is called a marginal distribution of the cop-
ula function. The GARCH model under the skewed distri-
bution is shown below:

yt = μt + εt ,
εt = σtzt ,

σ2t = ω + 〠
p

i=1
βiσ

2
t−i + 〠

q

i=1
αiε

2
t−i,

5

where ω > 0, αi > 0 i = 1,⋯, q , βi > 0 i = 1,⋯, p , ∑p
i=1βi +

∑q
i=1αi < 1, and zt obey a mutually independent skewed

t-distribution. The standardized residual of GARCH model-
ing was extracted, and the ARCH effect was tested. If there
was no ARCH effect, the heteroscedasticity was eliminated
by the GARCH model, and the GARCH modeling was

Table 1: Descriptive statistics and ADF smoothness test.

Variable
Statistics ADF

Skewness Kurtosis JB-prob t-statistic Prob Conclusion

EUA -1.0573 18.7284 0.001∗∗∗ -52.546862 0.001∗∗∗ Smooth

MSCI developed/energy I -1.2329 26.8546 0.001∗∗∗ -48.089773 0.001∗∗∗ Smooth

MSCI global/energy I -1.3529 26.7261 0.001∗∗∗ -46.716946 0.001∗∗∗ Smooth

MSCI emerging/energy I -1.2891 17.1093 0.001∗∗∗ -43.907300 0.001∗∗∗ Smooth

DJIA -0.98025 26.3163 0.001∗∗∗ -58.088587 0.001∗∗∗ Smooth

WTI 0.096774 26.2674 0.001∗∗∗ -50.369561 0.001∗∗∗ Smooth

Note: ∗p < 0 05, ∗∗p < 0 01, ∗∗∗p < 0 001, indicating that it is significant at the significance level of 1%, 5% and 10%.

Table 2: Autocorrelation and ARCH effect tests.

Variable
Ljung-Box Q test Test for the ARCH effect

Statistic Statistic Prob Prob

EUA 71.4056 35.013734 0.001∗∗∗ 1 0720e − 07∗∗∗

MSCI developed/energy I 93.3299 39.900577 0.001∗∗∗ 1 9288e − 11∗∗∗

MSCI global/energy I 100.9161 42.104969 0.001∗∗∗ 8 6320e − 13∗∗∗

MSCI emerging/energy I 107.3126 54.101719 0.001∗∗∗ 6 0507e − 14∗∗∗

DJIA 388.2387 474.939167 0.001∗∗∗ 0∗∗∗

WTI 88.1167 237.124476 0.001∗∗∗ 1 5793e − 10∗∗∗

Note: ∗p < 0 05, ∗∗p < 0 01, ∗∗∗p < 0 001, indicating that it is significant at the significance level of 1%, 5% and 10%.
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Figure 1: Correlation fluctuation series graph. (a) EUA-MSCI developed/energy I, (b) EUA-MSCI global/energy I, (c) EUA-MSCI
emerging/energy I, (d) EUA-DGIA, and (e) EUA-WTI).
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successful. The ARCH effect hypothesis was accepted by all
the sequences; that is, the pairwise variable GARCHmodeling
was successful.

Finally, this paper chooses a time-varying t-copula
model with a relatively good fit and the ability to take into
account the upper and lower tail correlations of the financial
time series to capture the time-varying correlation structure
between two variables and establishes a joint distributed
time-varying t-copula model to obtain the fluctuation pro-

cess of the time-varying nonlinear correlation between the
EU carbon emission allowance futures price and the other
five groups of variables, as shown in Figure 1, within a cer-
tain range of the nonsmooth fluctuations.

2.3. Coarse-Grained Processing of Correlated Fluctuating
Modes. The correlation coefficients take values in the range
[-1, 1]. In this paper, the strength of the variables’ correla-
tion is defined according to the values of the five groups of
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Figure 2: The network density of each group of variables under different thresholds (data1:EUA-developed/energy I; data2:EUA-global/
energy I; data3:EUA-emerging/energy I; data4:EUA-emerging/energy I; data5:EUA-WTI)

EUA-developed/
energy I

EUA-global/
energy I

EUA-emerging/
energy I

EUA-DJIA EUA-WTI Coarse-grained
mode

1 0.206748464 0.213146086 0.149150628 0.144545861 0.173792837 Sliding window

2 0.206416056 0.211854429 0.142061024 0.146986099 0.174433904

3 0.203607294 0.209369551 0.14352321 0.145285421 0.174203423

4 0.192228452 0.19689048 0.135323257 0.131738751 0.171727411

5 0.193259412 0.198496273 0.139796018 0.138968559 0.171840689 mmrrm

6 0.190808692 0.195613324 0.135814699 0.128503464 0.171561197 mmrrm

7 0.182419603 0.186978372 0.134304653 0.116476784 0.167027277 mmrrm

8 0.179846013 0.185497491 0.139862456 0.11489462 0.168345782 mmrrm

9 0.180283272 0.185751708 0.137385584 0.114853086 0.167720595 mmrrm

…… …… …… …… …… ……

2516 0.203550056 0.210849257 0.169887354 0.221759532 0.136006735 mmmmr

Figure 3: Correlativity fluctuation mode coarse-granulation process.
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time-varying correlations studied, and the strength of the cor-
relation over a certain fluctuation interval is replaced by an
alphabetical abstraction. When dividing the intensity interval,
the extreme values and median values of the time-varying cor-
relation coefficients of each group of variables are considered,
while the network density of each group of variables under dif-
ferent correlation coefficients is referred to in Figure 2, and the
mean value of the threshold inflection point of each group is
taken, thus forming the intensity interval of the correlation
coefficients shown in formula (6).

R, 0 35 < rxy ≤ 1 ; strong positive correlation,
M, 0 25 < rxy ≤ 0 35 ; comparatively strong positive correlation,
m, 0 15 ≤ rxy ≤ 0 25 ; mediumpositive correlation,
r, 0 05 ≤ rxy ≤ 0 15 ; comparatively weak positive correlation,
N ,−0 05 ≤ rxy < 0 05 ; no correlation,
y,−0 15 ≤ rxy < −0 05 ; comparatively weak negative correlation,
q,−0 25 ≤ rxy < −0 15 ; mediumnegative correlation,
Q,−0 35 ≤ rxy < −0 25 ; comparatively strong negative correlation,
P,−1 ≤ rxy < −0 35 ; strong negative correlation

6

Coarse-granulation is the time-varying correlation coeffi-
cient between the above obtained EU carbon price and the
industrial and energy-related index. In order to better classify
the intensity of the correlation coefficient and facilitate better
analysis, the correlation coefficient between the obtained vari-
ables is divided into the intensity interval represented by dif-

ferent letters. In this way, the whole system interval is
converted into a letter sequence, and the study of the coarse-
grained letter sequence is equivalent to the study of the corre-
sponding time series. Overall data sliding andmode formation
are shown in Figure 3. The correlation coefficients between the
settlement price of EU carbon emission quota futures and the
settlement price of theMSCI developedmarket energy I index,
MSCI emerging market energy I index, MSCI global energy I
index, Dow Jones industrial index, and West Texas crude oil
futures under each time sliding window are denoted by letters
in the corresponding correlation strength interval. Under each
sliding window is a coarse-grained mode consisting of five let-
ters representing the strength of the time-varying correlation
coefficient between the EU carbon price and the industrial
and energy-related indices.

2.4. Construction of Complex Networks. Mapping the time-
varying correlation between the EU carbon future prices
and industry and the energy-related indices in a complex
network facilitates the analysis of the distribution character-
istics and the interrelationships between the modes in the
system through network indicator characteristics. As shown
in Figure 3, this paper implements the mode formation pro-
cess through a time-sliding window so that the correlation
fluctuation mode at time t is the basis for the formation of
the correlation fluctuation mode at time t + 1 so that the
transition of the correlation fluctuation mode has direction
and transferability, and then a time-varying network of cor-
relation fluctuation modes is constructed, as shown in
Figure 4. In this directed weighted network, the correlation
fluctuation modes between the EU carbon quota futures
price and the other five groups of the logarithmic rate of

Figure 4: Time-varying network of correlations between EU carbon futures prices and industrial and energy-related indices.
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return series are taken as nodes, the conversion is taken as
the edge, and the edge weight is determined by the frequency
of mode conversion.

One mode consists of five symbols, each of which repre-
sents the correlation strength between the settlement price of
the EU carbon emission quota futures and the settlement price
of theMSCI developedmarket energy I index,MSCI emerging
market energy I index, MSCI global energy I index, Dow Jones
industrial average, andWest Texas crude oil futures. The time-
varying network of the EU carbon quota futures prices and the
industrial and energy-related indices is explained by using the
weighted outdegree and weighted outdegree outdistribution,
clustering coefficient, intermediate centrality, and other com-
plex network characteristics.

3. Results and Analysis

3.1. Statistics of Correlation Fluctuation Modes. The correla-
tion coefficient between each group of data and the EU car-
bon quota futures price was calculated, and every group

showed an overall positive correlation. Five groups of sym-
bol sequences representing the correlation strength between
the EU carbon quota futures prices and MSCI developed/
energy I, MSCI global/energy I, MSCI Emerging/energy I,
Dow Jones Industrial Average, and WTI futures prices were
obtained by a coarse-grained symbolic abstraction of the
correlation strength. The five groups of symbol sequences
were statistically analyzed.
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Figure 6: Cumulative distribution of weighted outdegree of time-varying correlation evolutionary networks.

Table 3: Key correlation modes and their weighted outdegree in
networks.

Node Weighted outdegree
The proportion of total
weighted outdegree

mmrrm 247 0.09836471843

rrrrr 231 0.09199522103

mmrrr 174 0.06929510155

MMmmm 174 0.06929510155

rrrNr 128 0.05097570688
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As shown in Figure 5, symbol m occupies a relatively
high proportion in the symbol sequence of the correlation
between the EU carbon futures price, MSCI developed/
energy I index, MSCI global/energy I index, and WTI futures
price, all of which reach more than 40%. As demonstrated,
there exists a medium positive correlation between the price
of EU carbon quota futures and the three variables. The ratio
of symbol r in the symbol sequence of correlation between
the EU carbon futures price and MSCI emerging/energy I
index and Dow Jones industrial average is 49.24% and
41.2%, respectively. There is a comparatively weak positive
correlation between the price of EU carbon quota futures
and the two datasets.

In this paper, 95 types of modes should appear theoreti-
cally through coarse-grained processing, but only 74 modes
appear in practice. Figure 6 displays an analysis of the cumu-
lative distribution of nodes’ weighted outdegree. In the fig-
ure, approximately 26.81% of the nodes account for
80.96% of the total weighted outdegree. The weighted out-
degree of the correlation fluctuation modes has the charac-
teristics of a power law distribution, that is, a few nodes
are connected to most nodes in the network, and the net-
work with power-law characteristics belongs to the scale-
free network. It indicates that there are fluctuating modes
in the correlation of the EU carbon quota futures price
and the industrial and energy-related index time-varying
network that are statistically significant and nonrandom,
and a few fluctuation modes contribute significantly to
the transmission process to a considerable extent. It can
be seen that if the correlation transformation between
the EU carbon quota and the industrial and energy-
related index is sought, the key modes and their character-
istics can be identified, and the direction of their transfor-

mation mode can be found, which will offer pertinent
investment recommendations to international investors
with varying risk tolerances.

3.2. Identifying Key Correlation Fluctuation Modes. In this
paper, the weighted outdegree is applied to identify the key cor-
relation fluctuationmodes. This index is a comprehensive index
of the local information of the complex network nodes. The
greater the value, the higher the transmission capacity of the
node. The weighted outdegree of a node is defined as follows:

wout
i = 〠

j∈Ni

wij, 7

where wout
i denotes the weighted outdegree and Ni and wij

denote the number of neighboring nodes of node i and the
weight of node i to node j, respectively.

Figure 6 indicates that the node’s weighted outdegree
conforms to the characteristics of a power law distribution.
In this paper, according to the ranking of the weighted out-
degree of the correlation fluctuation modes, as shown in
Table 3, it is revealed that the weighted outdegree of the first
five modes is notably higher than that of the remaining
modes, thus identifying these modes as key correlation fluc-
tuation modes. The first mmrrm mode indicates that the EU
carbon quota futures price has a moderate positive correla-
tion with the MSCI developed/energy I index and MSCI
global/energy I index, a comparatively weak positive correla-
tion with the MSCI emerging/energy I index and Dow Jones
industrial index, and a moderate positive correlation with
the West Texas crude oil futures price (WTI). In this mode,
the EU carbon quota futures are positively correlated with
the other four groups of international indices and the futures
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Figure 7: The proportion of transmitted objects in the main transmission submodel (weighted outdegree is not less than 120).
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price of crude oil; however, this strength is relatively low com-
pared with the strong and comparatively strong positive corre-
lation, indicating that the probability of stocks falling or rising
simultaneously is not high. In this scenario, it is suggested that
international investors can portfolio their investments in EU
carbon quota futures and several other stocks or futures to
avoid an excessive concentration of funds.

3.3. Transmission Mode. There are 74 types of modes in the
time-varying evolutionary network of correlation fluctuation
modes constructed in this paper. In theory, there will be 74
× 74 connecting edges for the mutual conversion of modes;

however, in practice, there are only 254 edges. It shows that
the main transmission modes are controlled by a few correla-
tion fluctuation modes, which significantly affect the network
information transmission. Figure 7 is the proportion chart of
the top 5 key correlation fluctuation mode transmission
objects. In the figure, the horizontal coordinate represents
the transmission objects, the number 1 on the x-axis denotes
transmission to itself, and the vertical coordinate denotes the
probability of correlation fluctuation mode transmissions.

Mode mmrrm propagates to itself with a probability of
89.88%. The mode rrrrr propagated to itself with a probabil-
ity of 90.91%. The mode mmrrr propagated to itself with a

Community1 Community2

Community3 Community4

Figure 8: Clustering effect in dynamic correlation evolutionary networks (community 1 : 27.03%; community 2 : 32.43%; community
3 : 35.14%; community 4 : 5.41%).

Table 4: Characteristics of community structure.

Community1 Community2 Community3 Community4

Number of network nodes 20 24 26 4

Number of network edges 63 73 83 8

Average shortest path length 3.014 3.191 3.901 2

Average clustering coefficient 0.47 0.512 0.494 0.333
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probability of 89.08%. Modal MMmmm and rrrNr transmit
to themselves with a 93.68% and 91.41% probability, respec-
tively. The five key modes are transmitted to themselves with
a high probability and are relatively stable in the transmis-
sion process, indicating that when the key modes appear,
the correlation fluctuation mode tends to maintain its own
state for a period of time. International investors are advised
to refer to these key modes when making investment
choices. For example, in the MMmmm correlation fluctua-
tion mode, the EU carbon quota futures price has a strong
positive correlation with the MSCI developed/energy I and
MSCI global/energy I stocks and has a moderate positive
correlation with the MSCI emerging/energy I, Dow Jones
Industrial Average, and West Texas crude oil futures. In
the next period of time, it will still maintain its own status
with a probability of more than 93%. At this time, interna-
tional investors can make investments according to the fluc-
tuation of the EU carbon quota futures price. Meanwhile,
investors with a risk appetite can choose to invest in the
EU carbon quota futures portfolio, MSCI developed/energy
I, and the MSCI global/energy I stocks.

3.4. Clustering Effect. The convenience of cluster analysis
makes it an effective way to comprehend the impacts of fluctu-
ation clustering during transmission. An effect of fluctuation
clustering is that some correlated fluctuation modes transform
each other more frequently. Under the condition that the slid-
ing window length is 5 days, the transmission network nodes
in this study are divided into 4 communities according to
the transmission frequency between the nodes. The node
transmissions within the same community are closer, and
the probability of node transmissions is higher than that of
intercommunity node transmissions, indicating that the corre-
lation fluctuationmodes of the EU carbon quota futures prices

and the industrial and energy-related indices within the com-
munity have a relatively high transmission frequency, and the
conversion between the modes is relatively stable.

As can be seen in Figure 8, four communities contain
different modal types, respectively, and five key modes are
distributed in communities 0, 1, and 2. Community 0 con-
tains two key modes, mmrrm and mmrrr. Community 1
contains two key modes, rrrrr and rrrNr, and community
2 contains the key mode MMmmm. Table 4 also shows the
characteristics of different sizes, connectivity, and degree of
clustering of communities in the complex network, reflect-
ing the diversity of transitions between different modes in
the time-varying network of EU carbon quota futures prices
and industrial and energy-related indices. Community 0 is a
relatively small community with 20 nodes and 63 edges. The
average shortest path length is 3.014, indicating that it is easy
to convert between nodes in the community, and the con-
version period is about 3 days. At the same time, the average
clustering coefficient is 0.47, which means that a certain
degree of small groups are formed within community 0.
Community 1 has 24 nodes and 73 connected edges, the
average shortest path length is 3.191, and the clustering coef-
ficient is 0.512, which indicates that the nodes in community
1 have tighter modal transmission, representing a tighter
subnetwork. Community 2 is the largest community with
26 nodes and 83 links, with an average shortest path length
of 3.901 and a clustering coefficient of 0.494. This means
that the information transmission within the community
may need to pass through more intermediary nodes; com-
munity 3 is the smallest community with only 4 nodes and
8 connected edges, but the average shortest path length is
2.0, and the clustering coefficient is 0.333, which indicates
that the modal transmission within the community will be
very fast and direct.
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Figure 9: A graph of four communities over time.
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An analysis of the community networks in complex net-
works helps to understand the characteristics of the commu-
nity networks in detail. Figure 9 shows the distribution of
associations over time, from which we can see the distribu-
tion of communities to which the wave fluctuation modes
belong over time. The modes for most of the selected time
periods are in community 2 and community 3. As shown
in Table 4, communities 2 and 3 contain 72.98% of the node
numbers and 61.41% of the edge numbers of the entire net-
work, indicating that various types of correlation fluctuation
modes in the time-varying correlation evolutionary network
are frequently transformed in communities 2 and 3. Accord-
ing to the calculation, the average path length between nodes
is 5.448, indicating that the average conversion cycle of the
fluctuation modes of the correlation between the price of
EU carbon quota futures, international stock indices, and
crude oil futures is 5 days. Focusing on community networks
in detail, for example, in community 2, there is the largest

average clustering coefficient, and there are relatively short
average shortest paths. The fluctuation modes of correlation
in community 2 are observable and very closely connected,
and the transmission is more stable. This indicates that
when the mode type of the correlation fluctuation between
the price of EU carbon quota futures and the industrial and
energy-related index belongs to the second community, it will
be transmitted stably with the mode type in the second com-
munity for a period of time. International investors can invest
by looking at the modal types within the community.

3.5. Transmission Intermediacy. A node with high interme-
diation centrality means that it is located on the shortest
path between many other modal pairs, which means that it
acts as a mediator in the transmission process and is an
important condition for changes in the modalities of the
correlation fluctuations between communities so that some
information about future changes in the correlation
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between the EU carbon allowance futures prices and the
industrial and energy-related indices can be made available
to international investors from the mediating modalities. This
allows some information on future changes in the correlation
between the EU carbon allowance futures prices and the
industrial and energy-related indices to become available to
international investors from the medium model.

Figure 10(a) indicates that 28.38% of the nodes possess
77.19% of the transmission mediating capacity of the entire
network, and the first 6 correlation fluctuation modes bear
38.87% of the mediating capacity of the network. It is also
found that some correlation fluctuation modes with high
weights have higher mediating abilities.

As shown in Figure 10(b), among the four types of
modes with higher mediating abilities than the other
modes, three of them are not only key modes in the
dynamic correlation evolution network of the EU carbon
quota futures price and the industrial and energy correla-
tion index but also have high mediating abilities and have
a significant impact on the transmission process between
the modes. For example, modal mmrr (BC = 0 409059
,wout

i =247), modal MMmmm (BC = 0 39936,wout
i =174),

and modal mmrrr (BC = 0 250404,wout
i =174) have both a

high mediating power and high weight. From the perspec-
tive of the centrality of complex network intermediaries,
the emergence of such modes is a precursor to the change
in the relationship among EU carbon quota futures prices,
global stock market indices, and crude oil futures prices,
and international investors ought to focus on the emer-
gence of the media modes.

4. Discussion and Conclusions

In this paper, the daily data from January 2013 to December
31, 2022, during the time period were taken as the sample size
interval. The time-varying t-copula model was used in combi-
nation with the complex network theory, time-sliding window
idea, and coarse-grained method; the correlation fluctuation
modes were taken as nodes, and the conversion between the
modes and the conversion frequency was taken as the edge
and weight. Therefore, a dynamic correlation evolution net-
work with a weighted direction was constructed to study the
dynamic correlation evolution characteristics between the
EU carbon futures prices and the industrial and energy-
related indices. The study found the following:

The study finds that the time-varying evolution network
of the EU carbon quota futures price and the industrial and
energy-related index is a typical scale-free network, indicat-
ing that there are several primary types of correlation modes
between the EU carbon quota futures price and the indus-
trial and energy-related index. Only a few of the modes are
closely related to other modes, and most of the modes are
less related to other modes. From 2013 to the end of 2022,
the settlement price yield of the EU carbon quota futures
showed a positive correlation with the yield of the industrial
and energy-related indices on the whole; however, the corre-
lation intensity was slightly different. The correlation rela-
tionship between the price of the EU carbon quota futures
and the MSCI developed/energy I index, as well as the MSCI

global/energy I index and WTI futures price, is stronger than
that between the EU carbon quota futures price and the
MSCI emerging/energy I index and Dow Jones Industrial
index. It shows that the evolution of the correlation between
the EU carbon quota futures price and the industrial and
energy-related indices is complicated and dynamic.

Secondly, the dynamic correlation evolution network
between the settlement price of the EU carbon quota futures
and the industrial and energy-related indices can be estab-
lished to effectively identify the critical correlation fluctuation
modes that have a significant position in the conversion pro-
cess. International investors can start with the key modal char-
acteristics and the direction of their transformation patterns.
When the fluctuation correlation between the EU carbon
futures prices and the industrial and energy-related indices
within 5 days is relatively weak and positive, the key modes
are conveyed to themselves with a likelihood exceeding 90%,
indicating that the key modes will be sustained over a duration
of time when they appear. International investors with risk
aversion can choose an investment portfolio of EU carbon
quota futures and other stocks or futures to avoid an excessive
concentration of funds.

Third, international investors should pay attention to the
clustering effect in modal transmissions. As shown in the
long-term distribution analysis, the fluctuation modes of
the 5-day correlation are mostly in community 2 and com-
munity 3, indicating that once the 5-day correlation between
the settlement price of the EU carbon quota futures and the
industrial and energy-related index enters the node state of
community 2 or community 3, it is likely, with a relatively
high probability, to undergo an internal transformation
and remain in this state for an extended period. Interna-
tional investors are advised to anticipate the movement of
the underlying relationship and pace their investments
accordingly at this time.

Finally, through the analysis of the characteristics of
node intermediation abilities, it was found that the key
modes have high intermediation abilities, simultaneously
offering investors with precursor information on a change
in the correlation between the EU carbon quota futures
and the industrial and energy-related indices and helping
international investors to more accurately predict the state
of stock prices in the next period.

In summary, this paper not only provides ideas for the
study of the correlations between multiple variables but also
has reference implications for international investors. Future
analyses based on this study should explore the evolutionary
characteristics of the dynamic correlations across different
time scales and markets.
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