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The feasibility and opportunity of nanostructured and defect-engineered electrodes for exceptional performance and stability of
solid oxide fuel cells operating at intermediate temperatures (500–700°C) are reported in this study. The electrode is designed
with infiltrated La0.4Sr0.6MnO3-δ (LSM) nanoparticles as oxygen reduction reaction catalysts on an yttria-stabilized zirconia
(YSZ) nanofiber scaffold with a controlled sintering temperature of 800–1200°C for optimized nanostructures and defect
concentration of the nanofiber scaffold. Nanostructured electrode with the lowest sintering temperature of 800°C exhibits ~8.1
times higher specific surface area and ~1.6 times higher oxygen vacancy concentration than that with a sintering temperature
of 1200°C. The cell with a sintering temperature of 800°C demonstrates an outstanding performance of ~2.11 and 1.09W/cm2

at 700 and 600°C, respectively, with excellent stability for 300 h under the current density of 1.5 A/cm2 at 750°C.

1. Introduction

Solid oxide fuel cell (SOFC) is an ecofriendly energy conver-
sion device using hydrogen as fuel, which has high thermo-
dynamic efficiency and high-power density without carbon
emissions [1, 2]. However, high operating temperature (over
800°C) is one of the most challenging issues, causing high
manufacturing and maintenance costs and thermal degrada-
tion of the material and system [3, 4]. Thus, extensive
attempts have been investigated to lower the operating tem-
perature to the intermediate temperature (IT) range (500–
700°C) for widespread commercialization [5–7].

Among the various factors that hinder lowering the
operating temperature, the polarization resistances at the
electrodes have been the biggest hurdle since they increase
exponentially as the operation temperature is lowered, dom-
inantly contributing to the overall resistance [8–10]. One of
the most promising approaches to achieve the reduction of
the polarization resistances at the electrodes is to fabricate
nanostructured electrodes with enlarged reaction sites and

facilitated reaction kinetics, which can considerably reduce
the operating temperature, while maintaining the electro-
chemical performance [11–13]. Recently, nanofiber-based
electrodes have been fabricated by precursor-based electro-
spinning for expanded sites for the oxygen reduction reac-
tion (ORR), demonstrating substantially higher peak power
densities compared to powder-based electrodes [14–18].
Defect engineering, which controls the concentration and
distribution of the charged defects, is another important
approach that can significantly lower the activation energy
for ORR, enabling the effective operation at IT range
(<700°C) [19, 20]. Representatively, reducing the grain size
at the surface of oxygen ion conducting electrolytes
(Y0.08Zr0.92O2-δ [YSZ] or Gd0.1Ce0.9O2-δ) can significantly
increase the oxygen vacancy concentration, thereby facilitat-
ing the oxygen incorporation and charge transfer at the tri-
ple phase boundaries [21, 22]. Therefore, designing the
nanostructured electrode with electrospun nanofiber-based
electrolyte scaffolds and infiltrated electrode nanoparticles
can be a rational strategy for enlarged reaction sites or
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contact points between the electrolyte and electrode and to
open the possibility for further engineering of defect chemis-
try at their interfaces [9, 10].

However, except for a few reports, this strategy has not
been extensively used for SOFC electrodes, mainly because
of the difficulties in nanofiber layer integration onto the elec-
trolyte surface, resulting in poor adhesion and significant
interfacial resistances [14, 23]. In general, the adhesion
between two layers can be improved by sintering at high
temperature for facile necking [24]. However, such high sin-
tering temperatures can deteriorate the nanostructures and
engineered defects through the agglomeration of nanoparti-
cles to reduce the surface energy and consequent rearrange-
ment of charged defects [4, 25, 26]. Therefore, the design
and fabrication strategies to fully utilize the advantages of
the nanostructured and defect-engineered electrodes while
securing the sufficient adhesion between the electrolyte and
electrode are essential in developing IT-SOFCs with higher
performance.

In this study, we present the exceptionally high perfor-
mance of IT-SOFC through the nanostructured and defect-
engineered electrodes. We designed the electrode structure
with infiltrated La0.4Sr0.6MnO3-δ (LSM) nanoparticles as
ORR catalysts onto the yttria-stabilized zirconia (YSZ)
nanofiber scaffold. In particular, the bonding layer between
the electrolyte and nanofiber scaffold enabled control of
the sintering temperature in the range of 800–1200°C, thus
engineering the nanostructures and defect concentration of
the nanofiber scaffold, while securing sufficient adhesion.
The nanostructured electrode with the lowest sintering tem-
perature of 800°C for the nanofiber scaffold exhibited ~8.1
times the higher specific surface area and ~1.6 times higher
oxygen vacancy concentration compared with those with
the sintering temperature of 1200°C. Consequently, the cell
with the sintering temperature of 800°C demonstrated the
outstanding performance of ~2.11 and 1.09W/cm2 at 700
and 600°C, respectively, surpassing the previously reported
YSZ electrolyte-based cells composed of the state-of-the-art
cathode materials. Under the current density of 1.5A/cm2

at 750°C, nearly no degradation was observed for 300 h,

which validates the feasibility and opportunity of the nano-
structured and defect-engineered electrodes for the develop-
ment of IT-SOFCs with high performance and stability.

2. Experimental

2.1. Preparation of YSZ Nanofiber. Three types of YSZ nano-
fibers were fabricated by the electrospinning process; 10wt%
of polyacrylonitrile (PAN, Sigma-Aldrich) was completely
dissolved in N,N-dimethylformamide (DMF, Alfa Aesar)
for proper viscosity of the solution at 70°C for 24 h. YSZ pre-
cursors (Y(NO3)2·6H2O and (CH3CO2)xZr(OH)y, Sigma-
Aldrich) (0.1M) were dissolved with a certain molar ratio
in the solution to form the fluorite phase of
(Y2O3)0.08Zr0.92O2-δ. The final solution was vigorously stir-
red at 70°C until the complete dissolution. The fully dis-
solved solution was transferred into an injection pump
using a 27-gauge needle (NNC-PN-27GA, NanoNC). The
fiber solution was introduced with a fixed rate of 8ml/h
using a syringe pump, and an electric field of 1.5 kV/cm
was adjusted with a high voltage. A grounded aluminum foil
was used as the collector for the electrospun nanofibers. as-
spun nanofibers were sintered with two different ramping
steps. First, the ramping rate was set as 5°C/min up to
280°C. After 1 h at 280°C, the ramping rate was changed to
3°C/min up to 800, 1000, and 1200°C for 3 h, respectively.

2.2. Fabrication of Single Cells. For the electrochemical eval-
uation, the anode-supported cell was fabricated. NiO pow-
der (Kojundo Chem. Lab), YSZ powder (Tosoh), and
poly(methyl methacrylate) (Alfa Aesar), in a ratio of
6 : 4 : 1, were mixed into 20ml of ethanol. Additionally,
0.3ml of the powder dispersant, KD-6 (Croda), and the
binder, polyvinyl butyral (Sigma Aldrich), was added into
the solution. Then, the solution was ball-milled for 24 h.
Completely dried anode powder was pressed with 40MPa
for anode support formation with a thickness of 0.5mm
using a hydraulic press and sintered at 1000°C for 3 h. The
anode functional layer (AFL) and electrolyte layer were
formed by spin-coating. The AFL solution was prepared
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Figure 1: Fabrication process of the nanostructured cathode and cross-sectional images. (a) Illustrations of the LSM-infiltrated YSZ
nanofiber-based nanostructured cathode fabrication process. (b) Cross-sectional SEM images of overall single cell with zoomed-in LSM-
infiltrated YSZ nanofibers (yellow) and LSM-infiltrated YSZ powder layer (blue).
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Figure 2: Continued.
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with a mixture of NiO and YSZ powders with a 6 : 4 weight
ratio dispersed into the ethanol, adding a binder, ethyl cellu-
lose (50 cps, Sam Chun), and a dispersant, KD-6. The YSZ
electrolyte solution was prepared with the same recipe using
only YSZ powder. Spin-coating process was applied for the
deposition of 20μm AFL and 5μm YSZ electrolyte layers,
and they were cosintered at 1400°C for 3 h to evaporate the
unnecessary organic components and obtain the dense
YSZ electrolyte. For the cathode fabrication, the YSZ powder
and YSZ nanofibers were deposited through the screen-
printing process for a thickness of 5μm and 30μm, respec-
tively. First, the YSZ powder layer for providing sufficient
bonding between the YSZ nanofibers and electrolyte surface
was sintered at 1200°C for 3 h. Then, the YSZ nanofibers sin-
tered at 800, 1000, and 1200°C as composite cathode scaffold
were sintered at 800°C for 3 h. To form the LSM nanoparti-
cles onto the YSZ scaffolds, 0.6M of LSM precursor solution
was prepared. Each cation precursor (La(NO3)3·6H2O
(Sigma-Aldrich), Sr(NO3)2 (Sigma-Aldrich), and
Mn(NO3)2·6H2O (Alfa Aesar)) was dissolved in ethanol
and DI-water, using a volume ratio of 5 : 5 at a molar ratio
of 0.6 : 0.4 : 1. For the dispersion of the solution, Triton-X
100 (Sigma-Aldrich) was dissolved by adding 5wt% of
LSM precursor. The LSM solution, 21μl, was dropped into
the YSZ nanofiber scaffolds, to create the LSM nanoparticles
using a micropipette. After the injection, the infiltrated solu-
tion was dried at 80°C for 1 h and sintered at 800°C for 3 h to
form the perovskite phase of the LSM nanoparticles. Plati-
num paste (5542, ESL) was screen printed as the current col-
lector in a thickness of 5μm, followed by the sintering at
800°C for 1 h.

2.3. Characterization. In order to characterize the YSZ NF
structures and fabricated electrode, scanning electron
microscopy (SEM, JSM700F, JEOL) and transmission elec-
tron microscope (TEM, JEOL, JEM ARM200F) were used.
Selected area electron diffraction (SAED) analysis and X-
ray diffraction (XRD, Bruker Corporation, D8 Advance)
with Cu Kα radiation (λ = 1:5406Å) at 25°C (room temper-
ature) were used to confirm the crystallinity and phase for-
mation of the synthesized NF-based composite cathode.
The specific surface area of YSZ NFs was confirmed via
Brunauer-Emmett-Teller method (BET, BELSORP-mini II)

with nitrogen atmosphere at a temperature of -196°C
(77K). The chemical properties were characterized using
X-ray photoelectron spectroscopy (XPS, ESCA Lab 250
XPS spectrometer, VG Scientific Instruments) with a mono-
chromatic Al Kα source. In order to evaluate the electro-
chemical characteristics including the electrochemical
impedance spectroscopy (EIS) and current-voltage curves
(I-V curves) of a single cell, a potentiostat (Interface
1010E, Gamry Instruments) was used. The single-cell test
was conducted with a bias of 50mV in a temperature range
of 550–750°C and in the frequency range of 100–106Hz. The
cathode side was exposed to the ambient air, while a gas
mixture of 97% H2 and 3% H2O with a flow rate of 100 sccm
was supplied to the anode side. The electrochemical stability
test was conducted with a constant current density of 1.5A/
cm2 at 750°C for 300h.

3. Results and Discussion

Figure 1 shows the schematics of the fabrication process of
YSZ nanofiber-based NiO-YSZ anode-supported single cell
and cross-sectional SEM images. The NiO-YSZ anode-
supported single cell platform was fabricated by following
the details in the experimental section and displayed in
Figure 1(a). Onto the thin YSZ electrolyte with a thickness
of ~4μm, the porous YSZ powder scaffold in a thickness of
~6μm was screen printed as a bonding layer with a sintering
temperature of 1200°C for sufficient adhesion between the
electrolyte and nanofiber-based electrode. This bonding
layer is particularly important to enable the low sintering
temperature for the nanofiber-based electrode; otherwise,
the excessive thermal energy due to the high sintering tem-
perature for sufficient adhesion between the electrolyte and
nanofiber-based electrode substantially leads to an increase
in the grain size and agglomeration, which causes the struc-
tural merits of the nanofiber-based electrodes, including the
high oxygen vacancy concentration and high specific surface
area, to be lost [23, 27, 28]. YSZ nanofiber scaffolds with the
sintering temperature of 800, 1000, and 1200°C were depos-
ited onto the bonding layer at a thickness of 30μm. Thereaf-
ter, LSM precursor was infiltrated into the nanofiber
scaffolds for cathodic functionalization with a sintering tem-
perature of 800°C. Considering the typical sintering

100 nm

(i)

Figure 2: Surface morphologies of YSZ nanofibers and LSM-infiltrated YSZ nanofibers. SEM images of (a) NF 800, (b) NF 1000, and (c) NF
1200. TEM images of (d) NF 800, (e) NF 1000, and (f) NF 1200. SEM images of LSM-infiltrated (g) NF 800, (h) NF 1000, and (i) NF 1200.
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temperature of 1200°C to secure sufficient electrode necking
and adhesion in the fabrication of LSM/YSZ composite elec-
trodes, the relatively low sintering temperature of infiltrated
LSM precursors of 800°C for phase formation further allows
for control of the sintering temperature for the nanofiber-
based electrodes from 800 to 1200°C to fully utilize the struc-
tural advantages of the nanofiber-based electrodes [29, 30].
We denoted the YSZ nanofibers with the sintering tempera-
ture of 800, 1000, and 1200°C as NF 800, NF 1000, and NF
1200, respectively.

Figure 2 shows the surface morphologies of YSZ nanofi-
bers as a function of the sintering temperature in the range
of 800–1200°C. Figures 2(a)–2(c) and 2(d)–2(f) show the

SEM and TEM images of NF 800, NF 1000, and NF 1200,
respectively. All nanofibers showed the solid-type structure
with similar diameters of 200–250nm. However, they
showed distinct nanostructures, especially the particle size,
depending on the sintering temperatures: 10–15, 30–50,
and 100–130nm for NF 800, NF 1000, and NF 1200, respec-
tively. SAED patterns in Figures 2(d)–2(f) and Figure S1
show the continuous ring patterns in NF 800, the ring/
dotted patterns in NF 1000, and the dotted patterns in NF
1200, indicating the smaller grain size with the lower
sintering temperature. Figures 2(g)–2(i) show SEM images
of NF 800, NF 1000, and NF 1200 after LSM infiltration,
exhibiting similar surface coverage and particle size of LSM
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Figure 3: Structure and chemical properties of YSZ nanofibers as a function of the sintering temperature. (a) XRD patterns of YSZ (111)
and LSM (110) peaks, (b) adsorbed/desorbed N2 volume change measured by BET analysis, (c) changes in the average grain size and
specific surface area as a function of the sintering temperature, (d) deconvoluted O 1s photoelectron spectra of LSM-infiltrated YSZ
nanofibers, (e) deconvoluted Mn 2p photoelectron spectra of LSM-infiltrated YSZ nanofibers, and (f) changes in oxygen vacancy
concentration ð½V ∙∙

O�/½O×
O�Þ and the average Mn oxidation state as a function of the sintering temperature.
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Figure 4: Continued.

6 International Journal of Energy Research



nanoparticles regardless of the sintering temperature for
YSZ nanofibers. In addition, EDAX elemental mapping in
Figure S2 shows the uniform dispersion of LSM
nanoparticles onto YSZ nanofibers.

Figure 3 quantitatively evaluates the effects of the sinter-
ing temperature on the structural and chemical properties of
the YSZ nanofibers. Figure 3(a) shows the changes in
FWHM of YSZ (111) peak as a function of the sintering tem-
perature, indicating the smaller grain size with the lower sin-
tering temperature. Figure S3 shows the full range of XRD
spectra of LSM-infiltrated YSZ nanofibers, confirming the
desired phase formation of YSZ and LSM without
secondary phases with the sintering temperature greater
than 800°C [31]. Figure 3(b) shows the measured specific
surface area of YSZ nanofibers by BET analysis through
the N2 adsorption/desorption isotherms, indicating the
higher specific surface area with the lower sintering
temperature [14]. Figure 3(c) quantitatively compares
changes in the average grain size and specific surface area
as a function of the sintering temperature, confirming the
smaller grain size and larger specific surface area with the
lower sintering temperature. For example, the average
grain size decreased by 49% from 48:5 ± 3:3 nm in NF
1200 to 24:4 ± 2:4 nm in NF 1000 and by 79% to 10:3 ± 2:2
nm in NF 800. At the same time, the specific surface area
increased by ~2.3 times from 3:43 ± 0:45m2/g in NF 1200
to 8:01 ± 0:72m2/g in NF 1,000 and by ~8.1 times to 27:86
± 2:1m2/g in NF 800. Such substantial changes in
structural properties can accompany changes in the
chemical properties of YSZ nanofibers. In particular,
oxygen vacancy concentration can be higher with the
smaller grain size of YSZ nanofibers because the lattice
oxygen near the grain boundaries more easily loosens the
oxygen-to-metal bond than that in the grain bulk, resulting
in the lower oxygen vacancy formation energy [32, 33].
Figure 3(d) shows the O 1s photoelectron spectra of YSZ
nanofibers with deconvoluted three binding states of the
oxygen in lattice (Olattice), oxygen vacancy (Ovacancy), and
hydroxyl group (Ohydroxyl) [34]. Figure 3(f) quantitatively
compares the ratios of the fitted area of Ovacancy to that of
Olattice, ð½V ∙∙

O�/½O×
O�Þ, which can represent the oxygen

vacancy concentration, as a function of the sintering
temperature, confirming the higher oxygen vacancy
concentration with the lower sintering temperature [21, 35,
36]. For example, the oxygen vacancy concentration
increased by 30% from ~0.104 in NF 1200 to ~0.149 in NF
1000 and by 13% to ~0.169 in NF 800. In contrast to the
significant changes in YSZ nanofibers, infiltrated LSM
nanoparticles showed almost identical structural and
chemical properties regardless of the sintering temperature
for YSZ nanofibers. No noticeable difference was observed
in FWHM of LSM (110) peaks in Figure 3(a), indicating
the similar average grain sizes of the infiltrated LSM
nanoparticles as shown in Figure 3(c). There was also no
noticeable difference in Mn 2p photoelectron spectra with
deconvoluted binding states of Mn2+, Mn3+, and Mn4+ in
Figure 3(e), indicating the similar average oxidation states
of Mn, 2.96–3.03, as shown in Figure 3(f). Therefore, we
can conclude that the structural and chemical properties of
YSZ nanofibers were effectively tuned by controlling the
sintering temperature without changing those of infiltrated
LSM nanoparticles. In particular, the lowest sintering
temperature of 800°C enabled the highest specific surface
area and oxygen vacancy concentration of YSZ nanofibers,
which are highly desired at the interfaces between the
electrode and the electrolyte for facilitated ORR
kinetics [36].

We evaluated the electrochemical performance of
LSM-infiltrated YSZ nanofiber-based nanostructured cath-
odes with a NiO-YSZ anode-supported single cell configu-
ration in a temperature range of 550–750°C. Figures 4(a)
and 4(b) demonstrate the I-V-P curves of LSM-infiltrated
YSZ nanofiber-based single cells at 700 and 600°C, respec-
tively. The maximum power densities (MPDs) of LSM-
infiltrated YSZ nanofiber-based cells were substantially
improved with the lower sintering temperature, exhibiting
an MPD of 2.11W/cm2 at 700°C with NF 800 cell, which
was 1.21 times higher than that of NF 1000 cell (1.74W/
cm2) and 1.34 times higher than that of NF 1200 cell
(1.58W/cm2). The improvement in MPD was more pro-
nounced with the lower operating temperature. For exam-
ple, NF 800 cell exhibited an MPD of 1.09W/cm2 at
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Figure 4: Electrochemical performance evaluations of LSM-infiltrated YSZ nanofiber-based nanostructured cathodes in a NiO-YSZ anode-
supported single cell configuration. I-V-P curves measured at (a) 700°C and (b) 600°C, (c) MPD comparison with other reported values, (d)
Nyquist curves measured at 700°C and 600°C under OCV condition, (e) Arrhenius plots for ohmic and polarization resistances, (f) DRT
analysis at 700°C, and (g) galvanostatic measurement of the NF 800 cell with the constant current density of 1.5 A/cm2 at 750°C for 300 h.
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600°C, which was 1.30 times higher than that of the NF
1000 cell (0.84W/cm2) and 1.47 times higher than that
of the NF 1200 cell (0.74W/cm2). These trends, the higher
MPD with the lower sintering temperature and the more
improvement with the lower operating temperature, were
consistent in a measured temperature range of 550–
750°C as shown in Figure S4. To the best of our
knowledge, the MPDs of NF 800 cell greatly surpass the
previously reported values of YSZ electrolyte-based cells
with LSM or YSZ/LSM as cathode materials, typically
developed for operation at higher than 700°C as shown
in Figure 4(c) [37–50].

The highMPD of NF 800 cell is primarily attributed to the
significantly reduced electrode resistance (Rpol) with the lower
sintering temperature for YSZ nanofiber scaffolds. Figure 4(d)
shows that NF 800 cell exhibited the smallest Rpol of
0.15Ωcm2 at 700°C and 0.30Ωcm2 at 600°C, which were
37.5% and 47.3% smaller than those of the NF 1000 cell,
0.24Ωcm2 at 700°C and 0.57Ωcm2 at 600°C, and 48.3% and
53.8% smaller than those of the NF 1200 cell, 0.29Ωcm2 at
700°C and 0.65Ωcm2 at 600°C, respectively. Figure 4(e) shows
that activation energies for Rpol decreased with the lower sin-
tering temperature from 0.54 eV for NF 1200 cell to 0.52 eV
for NF 1000 cell and 0.46 eV for NF 800 cell. Distribution of
relaxation time (DRT) analyses, which can identify the specific
frequency range of the electrochemical reactions, indicate that
the improved electrode performances are mainly attributed to
the facilitated ORR kinetics, especially at the interfaces
between the cathode and electrolyte. Figure 4(f) shows five
distinct peaks (P1A, P2A, P1C, P2C, and P3C) from DRT
spectra of all cells measured at 700°C. The associated reactions
with each peak are listed in Table S3 [37, 51]. The anode-
related peaks (P1A and P2A) show no significant differences
because the anode support, anode functional layer, and
electrolyte were identically fabricated for all cells. However,
the cathode-related peaks, in particular, P2C and P3C,
substantially decreased with the lower sintering temperature,
which correspond to charge transfer reaction and oxygen ion
transport at the interfaces between infiltrated LSM
nanoparticles and YSZ nanofibers, respectively. Therefore,
the substantial decrease in Rpol of NF 800 cell can be
ascribed to the structural characteristics of YSZ nanofibers
enabled by the low sintering temperature: the significantly
high specific surface area for extended reaction sites at the
electrolyte/electrode interfaces and the high density of grain
boundaries for active surface oxygen exchange due to the
high concentration of oxygen vacancies. However, the ohmic
resistance (Rohm) remained the same as 0.04Ωcm2 at 700°C
and 0.08Ωcm2 at 600°C with the same activation energies
for Rohm of 0.53 eV regardless of the sintering temperature,
indicating no significant impact on the ion conduction due
to the high density of grain boundaries, which might induce
the increase in the ohmic resistance.

It should be noted that the MPDs of NF 800 cell are
higher or at least comparable to those of YSZ electrolyte-
based cells with state-of-the-art cathode materials such as
La0.6Sr0.4CoO3-δ, La0.6Sr0.4Co0.2Fe0.8O3-δ, Sm0.5Sr0.5CoO3-δ,
Ba0.5Sr0.5Co0.2Fe0.8O3-δ, and PrBa0.5Sr0.5Co1.5Fe0.5O5+δ, typi-
cally developed for operation below 700°C because of their

high ORR activity in IT regime. However, their poor stability
even below 700°C is a critical weakness to overcome [52–55].
In this concern, the excellent stability of NF 800 cell under
the significantly high current density of 1.5A/cm2 at the high
operating temperature of 750°C as shown in Figure 4(g) dem-
onstrates its high potential for effective operation in the IT
range. Therefore, our results may open opportunities for uti-
lizing stable but less reactive materials in the IT range for
high performance and stability through structural and chem-
ical engineering with nanofiber-based electrodes.

4. Conclusion

We successfully demonstrated the significantly high perfor-
mance of a NiO-YSZ anode-supported single cell by design-
ing the electrode with LSM catalyst infiltration onto the
defect-engineered YSZ nanofiber scaffold. A bonding layer
between the nanofiber layer and electrolyte enabled full uti-
lization of their beneficial characteristics while securing suf-
ficient adhesion. We verified that lowering the sintering
temperature toward 800°C exhibits ~8.1 times higher spe-
cific surface area and~1.6 times higher oxygen vacancy con-
centration than that sintered at 1200°C. Consequently, it
demonstrated remarkable peak power densities of ~2.11
and 1.09W/cm2 at 700 and 600°C, respectively. More impor-
tantly, it surpasses previously reported YSZ electrolyte-based
cells despite the use of the most conventional materials, YSZ
and LSM. Great sustainability for 300 h at 750°C further
proves the feasibility of the nanostructured and defect-
engineered electrodes for IT-SOFCs with high performance
and stability.
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