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Energy consumption from biofuels against fossil fuels over the past few years has increased. This is due to the availability of these
resources for production of different forms of energy, and the environmental benefit in the utilization of these resources. Ethanol
fuel production from biomass is a complex process of known challenges in the area of handling, optimizing, and future
forecasting. The existence of modelling techniques like artificial intelligence (AI) is, therefore, necessary in the design,
handling, and optimization of bioethanol production. The flexibility and high accuracy of artificial neural network (ANN), a
machine learning technique, to solve intricate processes is beneficial in modelling pretreatment, fermentation, and conversion
stages of a bioethanol production system. This paper reviews various AI techniques in bioethanol production giving emphasis
on published articles in the past decade.

1. Introduction

Energy demand continues to increase annually with much
dependence on fossil resources especially crude oil and nat-
ural gas for most chemicals and products on the market.
These fossil resources are reported to be limited for produc-
tion and processing [1, 2]. These concerns coupled with the
negative environmental effects of the production and utiliza-
tion of fossil resources on nature drive the need to search for
sustainable greener and renewable resources like biofuels as
alternative energy sources [1, 3–5]. Biofuels are fuels derived
from renewable resources. Examples include bioethanol,
biodiesel, and biogas. The applications of these biofuels are
of great benefits like fossil fuels; however, they are preferred
over fossil fuels in addressing global warming, energy, and
environmental issues. Current research in this field is
reported to continually increase owing to the knowledge
about the sustainability, availability, and ecofriendly benefits
of these fuels [1, 6, 7].

Bioethanol, an alternative biofuel, is still recognised for
its low automotive emissions and high compression ratios
for effective spark-ignition engine performances. Its high-
octane number classifies it as green gasoline blending addi-
tive or component for engine efficiency [8–10]. Although

past and recent studies acknowledge this sustainable fuel
from different biomass, its pretreatment and conversion
routes depend on several factors, which affect its yields.
These stated processes are known to employ hydrolysis
and fermentation routes which are mostly affected by
parameters such as the type of feedstock, time, and temper-
ature, among others [11, 12]. Modelling of bioprocesses
based on parameters and routes still throws a challenge
which cannot only be solved experimentally but would
require simple and efficient based prediction techniques
such as artificial intelligence technique (AI) [13]. Several
researchers [14–18] highlight the fact that the application
of AI to these bioenergy systems is limited. This translates
to the need to utilise these efficient mathematical and statis-
tical models to estimate and analyse the biomass feedstock,
production routes, expenditures, and key parameters to
ensuring a robust and efficient bioethanol production.

2. Bioethanol Production

Bioethanol is an alcohol produced from plants, wastes, and
algae, that is, first-, second-, and third-generational biomass,
respectively [9, 19]. The first-generation biomass are mostly
edible crops like sugarcane, wheat, and corn. These feedstocks
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are relatively easy to grow and harvest, which makes them a
popular choice for bioethanol production. However, the use
of food crops for bioethanol production has been criticized
for contributing to rising food prices and food insecurity in
some regions of the world [20]. The second-generation bio-
mass is considered as a great potential feedstock for high
bioethanol production rate. This is due to their less cost, avail-
ability, and sustainability [21, 22]. However, these feedstocks
(lignocellulose biomasses) require more complex processing
techniques to extract the sugars needed for bioethanol produc-
tion, making them more expensive. Some examples include
grass, cornstalks, sugarcane bagasse, wood, and wastes. On
the other hand, the third generation is from algae species.
These are highly sustainable feedstocks since they can be
grown in saline water and harsh conditions, reducing the com-
petition for land and other resources. Although reported to be
harvested multiple times per year, making them highly pro-
ductive, their cultivation process is expensive [23, 24].
Bioethanol with high octane number is an alternative blending
component for gasoline engines to reduce emissions and pro-
tect the environment, contributing to achieving sustainable
development goal 13. Common blends include the gasohol
(E10) and E85, which have bioethanol and gasoline in a
percentage ratio of 10 : 90 and 85 : 15, respectively [25, 26].
According to [27], more than one billion gallons of bioethanol
are blended with gasoline and utilized in countries like the
United States of America (USA) and Brazil. Apart from its uti-
lization as a blend component, it is also used in its pure anhy-
drous in flexible fuel vehicles in Brazil [28]. Moreover, [21]
also concluded on the recognition of bioethanol as the most
produced biofuel in these developed countries. The produc-
tion of bioethanol from the various biomass feedstocks is gen-
erally categorised into pretreatment, hydrolysis, fermentation,
and recovery stages. Pretreatment is mostly done to expose the
tissues/cells of these feedstocks by decreasing their size or
using chemicals and microorganisms for biomass degradation
to release sugars [24]. That is, most lignocellulosic feedstocks
are chemically, physically, biologically, or physicochemical
pretreated to increase concentration of fermentable sugar
yields after enzymatic hydrolysis. Some examples of physical
pretreatment include milling, mechanical extrusion, and ultra-
sonication. Chemical pretreatment has its basis to be either
acidic or alkaline. However, there also exist “green chemical
pretreatments” which employ ionic liquids and deep eutectic
solvents like choline chloride-lactic acid (ChCl-LA). Steam,
carbon dioxide, and ammonia fibre explosion are some of
the physicochemical methods [29, 30]. Biological pretreat-
ments, drawing attention currently and characterised with
short reaction time, also employ bacteria or fungal strains in
the process [31]. In acid or enzyme-catalysed hydrolysis, con-
centrated/dilute acids or enzymes are employed for the inte-
gration of cellulose into simple sugars which are then
converted into ethanol and other products through fermenta-
tion employing yeast, bacteria, or fungi [19, 21, 26, 32]. Some
enzymes employed for hydrolysis of these feedstocks include
glycosyl hydrolases (GHs) such as cellulases and hemicellu-
lases, auxiliary activity (AA) proteins, and carbohydrate
esterase (CE) [29, 33]. Also, among various fermentation
microorganisms, Zymomonas mobilis bacteria and Saccharo-

myces cerevisiae yeast are the most commonly used species
in the process. This is due to their exceptional ethanol yield
and high tolerance limits [34, 35]. Several routes and reactions
are known to occur in the pretreatment, fermentation, hydro-
lysis, and recovery stages. Some of the stages of this production
lack robustness of which the type of biomass and the prevail-
ing conditions may be impacted. These associated conditions
and parameters which may include time, temperature, bio-
mass type, chemical composition, type of enzyme, and pH
affect the feasibility of the process and yields obtained. There
is, therefore, the need to predict their interactions and effects
using efficient mathematical tools, which would help optimise
the entire production process to increase yields, while reduc-
ing costs.

3. Artificial Intelligence (AI)

The process whereby the activities of the human intelligence
are simulated using algorithms and computer science tech-
niques is known as artificial intelligence. This name is
known to be coined by John McCarthy in 1956 [36, 37].
These computer-based techniques can majorly be classified
into four categories/subfields. AI applications vary greatly
in areas of process system engineering, modelling, bioenergy
systems, optimisation of complex systems, etc. The branch
of AI mostly known to use symbols for logic deduction is
referred to as the symbolic AI. Heuristic algorithms, a pow-
erful statistical method, on the other hand, find solutions to
complex problems using either evolutional or swarm intelli-
gence. The use of connectivism and statistical learning tech-
niques to improve upon a system or task for efficiency is
known as machine learning (ML). According to [38], ML
continues to be a highly recognised AI technique in the field
of engineering due to its effectiveness [5]. A common tool
under this technique with neurons, and known for its effi-
ciency even with little or no process/system information, is
an artificial neural network (ANN). It mainly consists of
input, hidden, and output layers. The hidden layers aid in
connection formation between the input and output layers.
ANN is known to exhibit exceptional information-processing
capabilities with an adaptive approach resilient to errors. Some
common ANNs include feedforward backpropagation, counter
propagation, and radial basis function (RBF) networks, among
which the first is the known extensively used network [13].
Moreover, to increase estimation performances for a better
simulation and modelling of a process/system, the hybrid tech-
niques are also used [17, 18, 36]. Due to the limited applications
of this efficient and great tool (AI) in addressing bioenergy sys-
tem challenges, this study presents a review of AI techniques in
modelling, predicting, and optimizing of bioethanol produc-
tion. Major AI techniques with various algorithms comparison
are shown in Figure 1 and Table 1, respectively.

3.1. AI Applications in Bioethanol Production Cycle. Generally,
the production cycle of bioethanol involves the following steps;
pretreatment, hydrolysis, fermentation, and recovery. Hydroly-
sis and fermentation are known as the critical stages of this pro-
duction [6, 22, 40]. They are mostly considered as dynamic,
nonlinear, and complicated. For instance, in enzymatic
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hydrolysis of lignocellulosic biomass, enzymes break down
polymeric carbohydrates into sugar monomers, utilizing mild
operating conditions. This method exhibits high efficiency,
leading to substantial sugar recovery, while avoiding the forma-
tion of inhibitors and minimizing the risk of corrosion. Fur-
thermore, to achieve optimal performance, temperatures, pH
values, and loading times are necessary. The appropriate
enzyme to be utilized also plays significant role depending on
the substrate. On the other hand, acid hydrolysis known to be
convenient and widely employed method may require varying
temperatures and concentration for higher yields. In concen-
trated acid-catalysed hydrolysis, lower temperatures and higher
acid concentrations result in a high sugar recovery. However,
this method suffers from the drawback of high production
costs associated with acid recovery, disposal, concentration
control, and recycling. Additionally, the concentrated acid-
catalysed hydrolysis treatment poses a risk of degrading sugar

monomers due to the prevailing acidic environment which
can negatively affect the fermentation [29]. Additionally, tem-
perature and fermentation pathways play important roles in
the transformation of these monomeric sugars into ethanol.
Some common fermentation routes reported in literature
include separate hydrolysis and fermentation (SHF), simulta-
neous saccharification and fermentation (SSF), simultaneous
saccharification, cofermentation (SSCF), and consolidated bio-
processing (CBP) [23]. The most extensively used two-stage
process, where enzymatic hydrolysis is conducted separately
from fermentation, enabling enzymes to function at elevated
temperatures while the fermentation microorganisms operate
at moderate temperatures to achieve optimal performance, is
known as SHF. Although SHF of lignocellulosic biomass
ensures good enzymatic hydrolysis and fermentation, it is
mostly challenged with less yield, high production cost, and
contamination [29, 41]. In SSF, cellulose saccharification and
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Figure 1: Major AI techniques [17].

Table 1: Advantages and limitations of various machine learning techniques [17, 39].

Technique Advantages Limitations

ANN
(i) Detect complex nonlinear relations between variables
(ii) Versatile for classification/regression problems
(iii) Diverse training algorithms

(i) Independent variables need preprocessing
(ii) Complex and computationally expensive

Random forecast (RF)

(i) Scalable and adaptable for large datasets
(ii) Versatile for classification/regression problems
(iii) Ability to estimate important variables in classification
(iv) Easy to implement

(i) Slow convergence
(ii) Complex and computationally expensive

Support vector machine
(SVM)

(i) Highly robust
(ii) Less risk of overfitting
(iii) Scalable for large datasets
(iv) Versatile for classification/regression problems

(i) Computationally expensive for large
datasets

(ii) Poor performance for data with noise

Bayesian network (BN)
(i) Effective for probabilistic problems
(ii) Easy prediction of relationship between multiple

variables
(i) Not suitable for most regression problems
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monomeric sugar fermentation occur concurrently in the same
reactor, whereas SSCF approach conducts hydrolysis and sac-
charification within the same unit with fermentation taking
place simultaneously. The cost-effective process of CBP also
has enzyme production, hydrolysis, and fermentation occur-
ring in a single vessel for bioethanol production. These latter
three integrated processes (SSF, SSCF, and CBP) were intro-
duced to help overcome the limitation associated with SHF,
as they exhibit less contamination and easy process design with
higher yields [20, 21, 29, 42]. Typically, after the fermentation
of monomeric sugars, the next step involves recovering ethanol
from the fermented broth. To achieve this, the water content of
the broth is usually reduced, allowing the production of anhy-
drous ethanol. This process encounters challenges due to the
azeotropic nature of the ethanol-water solution. However, dis-
tillation techniques, which exploit the difference in boiling
points of the solution components, can be employed to over-
come this limitation. The azeotropic solution problem can be
resolved by introducing a separating agent that modifies the
relative volatility of the key component [43]. Various tech-
niques are utilized for the recovery of pure ethanol from the
fermentation broth, including adsorption distillation, extractive
distillation, vacuum distillation, membrane distillation, and
chemical dehydration. Among the conventional methods,
azeotropic distillation, liquid-liquid extraction, and extractive
distillation are commonly employed. Extractive distillation
stands out as the most extensively used technique for large-
scale operations. However, emerging techniques like perva-
poration and salt distillation are gaining attention for their
potential in future applications, particularly due to their lower
energy requirements [21]. AI technologies applied in the
stages of this cycle would be discussed in this section. Various
studies on the application of AI systems especially the ML and
hybrid techniques in production of bioethanol have been
reported by researchers. Although these studies in the litera-
ture are few, they show that these techniques are capable of
solving complex problems involving large set of variables
and are able to model and ensure optimisation of various
parameters around these processes.

3.2. AI Applications in Pretreatment and Hydrolysis. Enzy-
matic hydrolysis (EH), seen as an obstacle in the production
of bioethanol, due to the vast range of enzymes, was reported
to be effectively optimized simultaneously with fermentation
using ML technologies: random forecast algorithms (RF)
and artificial neural network (ANN). This optimisation
and achievement were successful in predicting the effect of
temperature, feedstock, and enzyme load in the production
of ethanol from sugarcane biomass. The author confirms
results were close to experimental ones and concludes on
its modelling effectiveness for a feasible bioethanol produc-
tion [11]. Empirical data was also modelled to predict the
production of bioethanol from second-generation feedstock
[12]. The modelling and prediction of the output variable
(bioethanol concentration) from these biomasses using ionic
liquids as the input variables were also done using ANN and
RF algorithms. The selection of these algorithms was based
on their capabilities of predicting not only the bioethanol
concentration but also facilitating the selection of suitable

ionic liquids for the process. They emphasised that these
ML algorithms in hybrid modelling for multistage hydrolysis
and fermentation were excellent and in agreement with
experimental results in predicting the bioethanol concentra-
tion with a coefficient of determination (R2) value of 0.961.

In another study, a comparison assessment was done
between response surface methodology (RSM) and ANN in
predicting the various components in production hydrolysis
stage for oligosaccharide mixtures from sugar beet pulp.
RSM is a statistical technique mostly attributed with principles
of randomness. Multilayer perceptron (MLP) is a feed-
forward ANN characterised by a number of neurons which
work together to generate a set of outputs for complex nonlin-
ear processes. This perceptron has three layers, namely, input,
hidden, and output layers. Enzymatic hydrolysis of sugar beet
pulp is affected by polygalacturonases to solid ratio, cellulose
activity to polygalacturonase activity ratio, and reaction time.
[15], therefore, decided to assess these factors in relation to oli-
gosaccharides using the stated statistical tools. This approach
involved the variation of several neurons in different training
and hidden layers. Findings of the comparative assessment
showed the MLP to be a valid tool in the modelling of oligo-
saccharides production from the pulp through enzymatic
hydrolysis. [44] assessed RSM and ANN techniques in the
maximation of reducing sugars in enzymatic hydrolysis stages
of bioethanol production from water hyacinth biomass. This
assessment was done from a comparative study of these tech-
niques for an optimized enzymatic saccharification. MLP once
again proved to be more effective than RSM, with an average
and optimum prediction errors of 3.08 and 0.95, respectively.

The regression/coefficient of determination R2 was used as
a benchmark in examining the effectiveness of a hybrid model
(PSO-ANN) and RSM for xylose and glucose production.
These AI systems were used to model the pretreatment and
enzymatic hydrolysis of lignocellulosic biomass to improve its
estimated yields. For the same xylose and glucose yields, analy-
sis revealed the accurate nature of the hybrid model compared
to RSM in the stages of production of these sugars. R2 of the
hybrid model for glucose and xylose were 0.9939 and 0.9479,
and that of RSMmodel were 0.8901 and 0.8439 [45]. An exper-
imental data from the pretreatment and hydrolysis of sugar-
cane bagasse using dilute acid and combined dilute acid
ozonolysis were compared with modelled results (glucose con-
centrations) from a trained ANN for bioethanol production.
The trained ANN model, multi-layer perceptron (MLP), was
reported to exhibit good estimation capabilities and agreement
with the experimental data [46].With the help and efficiency of
a MLP, [47] predicted and concluded that the sensitive opera-
tional conditions for high glucose yields in the pretreatment
and hydrolysis of sugar bagasse are low initial biomass concen-
tration and acid concentration, high enzyme concentration,
and enzymatic hydrolysis duration of 72 hours. In addition,
[8] modelled the enzymatic hydrolysis stage of a bioethanol
production from sugarcane bagasse using MLP. The neural
network combined the effects of the cellulase and β-glucosidase
loads, which successfully predicted and optimized the glucose
concentration and yield. [48] also reported on the accuracy
and efficiency of MLP model with the Levenberg–Marquardt
backpropagation algorithm in predicting the effect of substrate
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particle size, biomass loading, and reaction time on glucose
and xylose production during the enzymatic hydrolysis of
rice straw biomass.

3.3. AI Applications in Fermentation. Ahmadian-Moghadam
et al. [14] examined the ability of MLP in estimating
bioethanol concentration using sugar concentration, live
and dead yeast as the input variables for a batch industrial
fermentation process. This was done by training and com-
paring the neural network with 30 sets of data and testing
it with already existing database. The results from the com-
parison, as stated by the authors, agreed with these existing
data. The input variables were strongly related with the out-
put variable (bioethanol concentration), manifesting low
errors with high R2 values. The conclusion made from the
prediction was that the MLP is an accurate, simple, and
powerful tool for modelling a cost-effective bioethanol pro-
duction from sugarcane molasses. Industrial bioethanol pro-
duction using fermentation variables was modelled and
simulated using multilayer feed-forward neural network
and particle swarm optimisation algorithms (PSO). PSO is
recognised as an effective robust optimisation tool especially
when the modelling of a targeted output variable is of high
interest. Using 3400 data values from a Brazilian Company’s
fermentation unit, MLP was modelled and optimized with
PSO to enhance the production levels on industrial scale.
The coefficient of determination value of 0.91 obtained high-
lighted these combined trained models and algorithms can
predict accurate concentrations and effectively maximise
bioethanol production and concentration levels. This was
justified from the 10% increment obtained from this new
approach on an industrial scale [49]. In assessing the fer-
mentation stage for the production of bioethanol (output
variable) from watermelon waste, three different amounts
of yeast and fermenter agitator speeds (input variables) were
employed. Modelling and prediction of results were done
using a known precise algorithm: Levenberg–Marquardt
algorithm for MLP and adaptive neurofuzzy inference sys-
tem (ANFIS), respectively. The MLP which uses backpropa-
gation training method yielded a mean square error (MSE)

and R2 of 0.0089 and 0.9895, whereas that of ANFIS was
0.3129 and 0.9993, respectively. These results concluded on
the effectiveness of these models in production assessment
and prediction of bioethanol from this waste [50].

Esfahanian et al. [51] evaluated batch fermentation stage
for the production of bioethanol from glucose using the
yeast species: Saccharomyces cerevisiae. Three input variables
that effect on production, that is, temperature, pH, and glu-
cose concentration were modelled and optimized using RSM
and MLP. Although results from the optimisation were fairly
closed, the MLP precision was higher than RSM in the pre-
diction. This was backed with an R2 value of 0.9975 and
0.9965 for MLP and RSM, respectively. To economically
analyse the feasibility for optimal production of bioethanol,
MLP trained with the Levenberg-Marquardt algorithm was
used to model and predict bioethanol content, number of
yeast cells, and reducing sugars from intermediates and by-
product of sugar beet in a yeast batch fermentation process.
The computed values obtained showed the predictive capa-
bilities of this kind of ANN (MLP) in process decision-
making for biotechnological processes [52]. Furthermore,
an optimal process control for the fermentation of “ricotta
cheese whey” was achieved with a hybrid neural model
(HNM). The successive predictive capabilities of this model
which yielded an average percentage error of less than 10%
was attained by coupling neural network for lactose, bio-
mass, and bioethanol to mass balance equations [53].

In the application of AI in the combined critical stages
(hydrolysis and fermentation), [40] concluded on the
optimisation efficiency, cost, and time effectiveness of back-
propagation ANN in predicting reducing sugars and con-
centration from an enzymatic hydrolysis and fermentation
process. This was based on the closed average values
obtained. That is, predicted reducing sugars value against
experimental value was 175.94 g/L and 174.29 g/L, and etha-
nol concentration was 82.11 g/L and 81.52 g/L, respectively.
The MLP architecture for both stages is presented in
Figure 2. The architecture of a model depicts the structure
of connections/arrangement of neurons in the network. In
the above study, a three-layered feedforward architecture
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Figure 2: MLP architecture for (a) hydrolysis and (b) fermentation [40].
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was used. The input parameters for the hydrolysis process
were substrate loading, α-amylase enzyme concentration,
amyloglucosidase enzyme concentration, and stroke speed.
The fermentation process, on the other hand, had four inputs,
namely, reaction temperature, agitation speed, and yeast con-
centration. An intelligence technique (ant colony optimisa-
tion) was then integrated with the ANN model to optimise
both stages for reducing sugars and ethanol concentrations.

Talebnia et al. [54] developed and combined two multi-
layer perceptrons feed-forward network models to predict
time course and bioethanol concentrations. The models were
applied in the enzymatic hydrolysis and fermentation stages
to model the entire bioethanol production from steam-
exploded rapeseed straw. Betiku and Taiwo [55] evaluated
trained multi-layer feed-forward neural network and RSM
on the effect of hydraulic retention time, breadfruit hydroly-
sate concentration, and pH in bioethanol production. The
absolute average deviation between the experimental and pre-
dicted value for MLP was 0.09%, and RSM was 1.67%. The
authors based on these results confirmed that ANN was more
accurate than RSM. A summary of the hydrolysis and fermen-
tation studies in bioethanol production is presented in Table 2.

4. Conclusions

The use of ANN tool from past and recent studies is of great
importance in modelling and optimization of bioethanol

production. This is attributed to the algorithms’ flexibility and
high error tolerance for nonlinear and complex stages of produc-
tion. The frequently used input variables include number of yeast
cells, fermentation time, pH, biomass type, and number of yeast
cells. Common output variables were bioethanol concentration,
bioethanol production, reducing sugars, and yields. From the
trend seen in the various studies of this review, ANNs compared
to other AI techniques/models keep exhibiting higher prediction
accuracy and efficiency withR2 in ranges of 0.91-0.99. Therefore,
implementing these AI techniques for future studies on bioetha-
nol production processes will indeed not only ensure robustness
but also reduce costs and time during process development.
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