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Renewable energy technology is suitable for reducing energy consumption and emissions, and the corresponding impact on
energy poverty has aroused tremendous attention. This paper proposed the best-worst method- (BWM-) based quality
function deployment (QFD) approach within interval-valued intuitionistic fuzzy number (IVIFN) to select the appropriate
renewable energy technology for energy poverty alleviation. QFD is firstly used to explore the relationship between energy
poverty reduction requirements (CRs), renewable energy technology selection criteria (TRs), and correlation among TRs.
Interval-valued intuitionistic fuzzy (IVIF) BWM is then applied for obtaining the correlation among CRs. After that, the IVIF-
QFD method is used to attain the weight of TRs, which are then used to evaluate the renewable energy technology alternatives
through IVIF-VIKOR approach. The six representative renewable energy technologies, including wind energy, solar energy,
biomass (direct combustion, combined heat and power, and gasification), and hydropower have been selected in the decision
model, and the result shows that the large-scale hydropower could be selected as the best choice to reduce the energy poverty
issues, whose interval numbers is [0, 0.2925]. Except for prioritization of the selected technologies, findings of this paper could

also contribute to developing sustainable renewable energy policies and energy roadmaps.

1. Introduction

Renewable energy (RE) developed rapidly among various
energy resources all over the world and has been considered
as having tremendous potential to benefit society [1]. It has
been estimated that by 2050, solar and wind will provide
more than 95% of energy and the corresponding expendi-
tures would reduce from €51/MWh in 2015 to €53/MWh
in 2050 [2]. Renewable energy resources can be a useful tool
for realizing the electrification in far-flung villages [3],
because these resources, such as wind, solar, and biomass,
could produce electricity for people located in off-grid and
remote areas to increase their living standards and contrib-
ute to the economy of the regions [4]. Meanwhile, the
Russian-Ukraine crisis impels the EU to depend less on tra-
ditional fossil fuels and accelerate renewable energy develop-

ment to satisfy energy consumption for survival [5].
Therefore, increasing renewable energy consumption could
alleviate energy poverty (EP) all over the world [6]. EP is
defined as the inaccessibility to clean energy and efficient
facilities and deep reliance on traditional fossil fuels for
cooking [7]. Around one billion people are having limited
access to electricity, and most of them live in Africa [8]. At
the same time, merely 50% of residents in Sub-Saharan
Africa are electrified [9]. More specifically, besides develop-
ing countries, severe EP conditions have also been confirmed
in developed countries, including Canada [10], Spain [11],
and Germany [12]. Severe EP conditions have challenged
worldwide energy systems, threatened sustainable develop-
ment, and attracted various attentions, because it has done
harm to health, caused gender inequality, and led to envi-
ronmental pollution. In this background, countries have
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struggled with developing suitable renewable energy
resources to alleviate EP [13]. Therefore, identifying appro-
priate renewable energy technology to effectively alleviate
EP is a meaningful topic to be explored [14, 15].

In general, selecting renewable energy resources to alle-
viate EP is a typical multicriteria decision-making (MCDM)
problem to be tackled by the MCDM method. Among vari-
ous MCDM approaches, quality function deployment
(QFD) is a useful tool to transform customer requirements
(CRs) into technical features. QFD is capable of combining
customer demands with technology characteristics quantita-
tively; in this way, the function of the selected technology is
in accord with customer expectations [16, 17]. However,
although QFD could transform customer demands into
meaningful and practical action, the vagueness of customers’
expectations and corresponding technical requirements
(TRs) further complicate the problem [18].

In this study, to reflect the uncertainties of evaluation
and display the diversities among different decision makers
(DMs), QFD is combined with the interval-valued intuitio-
nistic fuzzy (IVIF) sets to deal with the uncertainty in cus-
tomers’ EP alleviation demands for selecting the practical
renewable energy technology. The proposed IVIF-QFD pre-
sents a comprehensive framework to display the relationship
between various EP reduction expectations and correspond-
ing TRs. Then, the IVIF best-worst method (BWM) is pro-
posed to calculate each criterion weight of customer
demands, because it can reflect uncertainty, vagueness, and
subjective opinion from experts, and maximize the assess-
ment accuracy [19]. After that, filling in the house of quality
(HoQ) and calculating weights of all TRs enable DMs to
focus on the most critical technical criteria [19]. However,
it is insufficient to merely identify the most critical technical
criteria; real-life problems require us to select the most suit-
able technology to directly alleviate EP. In this regard, a
compromise method is needed to assist decision makers in
achieving a final result with many contradictory criteria
involved [20]. VIKOR approach could prioritize the alterna-
tives and display the mutual concession between different
alternatives [21]. Besides VIKOR, another MCDM tech-
nique such as technique for order preference by similarity
to ideal solution (TOPSIS) [22] could also prioritize various
alternatives. However, TOPSIS approach obtains the ranking
result by considering the distance between negative and pos-
itive ideal solution, without any relative distances consid-
ered. From this point of view, IVIF-VIKOR is an
appropriate compromise solution to show the mutual con-
cession between different alternatives [20]. Therefore,
IVIF-BWM and IVIF-VIKOR approaches are integrated
into traditional QFD in this study, which improves the effi-
ciency of dealing with complicated decision-making prob-
lems to provide a rational and practical result.

This paper aims at proposing an integrated model IVIF
BWM-QFD-VIKOR for selecting renewable energy technol-
ogy to reduce EP. Firstly, it uses interval-valued intuitionistic
fuzzy numbers (IVIENs) to improve the traditional fuzzy set
by introducing membership and nonmembership functions
and uncertainty degrees. After that, to better figure out the
EP reduction expectations, IVIF-BWM is used to obtain
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the weight of each criterion by showing the vagueness and
uncertainty during the decision-making process. Further,
the IVIF-QFD method could accurately understand the rela-
tionship between EP reduction expectations and renewable
energy technology requirements associated with them. This
quantitative information ensures that the selected technical
criteria could satisfy the EP reduction requirement. Finally,
based on weights of technical criteria, the IVIF-VIKOR is
used to prioritize alternatives by considering their mutual
concession for identifying which renewable energy technol-
ogy prioritizes over others for EP alleviation.

This paper is structured in the following sequence: Sec-
tion 2 conducted the overview of EP and renewable energy
technology; Section 3 involved the preliminary and specific
stages for the proposed IVIF BWM-QFD-VIKOR approach;
Section 4 used a case study to demonstrate a novel method
in real life. The discussion is given in Section 5; conclusion
of results and recommendations for further studies are pre-
sented in Section 6.

2. Literature Review

2.1. Energy Poverty and Renewable Energy Technology. EP is
a relatively novel conception with tremendous implications
[23, 24]. It is widely confirmed that limited access to modern
energy has a severe socio-economic-environment impact
[25], leading to health problems [26, 27], income inequality
[28], and severe environmental issues [29, 30]. It is closely
related to the quality of life of human beings and needs to
be paid more and more attention for its alleviation [31].

Currently, the realization of EP reduction relies on accel-
erating transformations of energy structures, which means
utilizing modern energy instead of fossil fuels [32]. By
employing the subnational dataset of China, the low-
carbon energy transition can significantly lead to EP allevia-
tion by increasing energy service and clean energy consump-
tion [32]. Using 2012, 2014, 2016, and 2018 data from China
Family Panel Studies (CFPS), Hong et al. [33] empirically
revealed that increasing clean energy consumption could
reduce the chance of households suffering from EP. The
rapid expansion of renewable energy industries could also
help reduce reliance on fossil fuels and realize EP reduction
[34]. Based on the Annual data from 2000 to 2014 of 64
countries all over the world, Zhao et al. [6] investigated the
impact of renewable energy consumption on EP alleviation
and revealed that renewable energy could alleviate global
EP and improve energy efficiency. After investigating the
8239 households from 25 provinces of China, Wang et al.
[35] found that renewable energy technology can signifi-
cantly alleviate EP. More specifically, solar photovoltaic
(PV), a representative RE, could increase energy access in
regions, where accessing electricity is costly and difficult, to
reduce EP [36, 37]. According to household-level data in
Ghana, Obeng et al. [38] investigated the relationship
between solar energy and poverty and discovered that solar
PV could assist EP alleviation; Zubi et al. [39] also obtained
similar findings. Other research explored that solar installa-
tion would decrease household electricity expenditure and
improve EP [40, 41].
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2.2. Renewable Energy Technology Selection and MCDM
Methods. MCDM approach has been used in various energy
problems, such as energy planning, energy resource alloca-
tion, and energy policy [42, 43]. For the complexity of the
energy system and the multidimensional characteristics of
sustainability, Mardani et al. [44] declared that different
dimensions should be considered to make reasonable energy
planning. Compared with a single criterion, the MCDM
method could consider the various conflicting criteria to
obtain integrated decision-making [45]. Therefore, to choose
suitable renewable energy technology considering multiple-
involved criteria comprehensively, MCDM technology is a
suitable approach. Mardani et al. [44] overviewed 196 papers
ranging from 1955 to 2015 related to energy planning and
revealed that MCDM methods have been used in energy
planning. For example, Lee and Chang [42] used four
MCDM approaches—WSM, VIKOR, TOPSIS, and ELEC-
TRE—to select renewable energy resources for electricity
generation. Colak and Kaya [46] proposed an integrated
MCDM model, which combines the fuzzy analytic hierarchy
process (FAHP) and fuzzy TOPSIS method to prioritize the
renewable energy alternatives in Turkey. Sitorus and Brito-
Parada [47] used the hybrid MCDM method to select renew-
able energy technologies by considering both subjective and
objective multiple criteria. Ullah et al. [48] used an inte-
grated model by combining fuzzy AHP, fuzzy TOPSIS, fuzzy
EDAS, and fuzzy MOORA to plan the on/off grid hybrid
renewable energy supply. Besides, fuzzy VIKOR [49] has
also been applied in renewable energy source evaluation.

2.3. Research Gap. As mentioned above, plenty of studies
have explored the relationship between EP and renewable
energy technology and proposed the models to select the
optimal renewable energy technology. However, some
research gaps still need to be further discussed:

(i) Although scholars agree that it is necessary to use
renewable energy to alleviate EP, most of the current
research is about the influence of solar energy on EP
alleviation. However, the impact of other renewable
energy sources, such as wind, hydro, and biomass
energy on EP reduction has not been explored. Con-
sequently, the black box of the impact of main
renewable energies on EP has not been fully opened
yet and further research is urgently needed

(ii) Previous research mainly used hybrid methods for
renewable energy technology selection; on the other
hand, the customer requirement has not been con-
sidered in selecting the most suitable energy technol-
ogy, which involves in the interaction between
customer demands and technology requirements

This study fills these research gaps and proposes a
framework to prioritize renewable energy technology for
EP alleviation. This framework allows us to find out the
solution for promoting renewable energy technology and
identify which renewable energy technology prioritizes over
others. The possible contributions of this study are as
follows:

(i) It comprehensively considers the impact of six rep-
resentative renewable energy technologies to dis-
cover their relationship with EP alleviation

(ii) It determines the weight of customer demand crite-
rion with IVIF-BWM by considering not only the
interaction among criteria but also the uncertainty
and vagueness of the decision-making process

(iii) It transforms the customer demands into technical
features with the IVIF-QFD for ensuring that the
function of the selected technical criteria is in
accord with customer expectations

3. Methodology

This paper proposes a new model by combining BWM,
QFD, and VIKOR with IVIFNs to prioritize different alter-
natives. Even though intuitionistic fuzzy set (IFS) provides
the DMs with functions of memberships and nonmember-
ships, interval-valued intuitionistic fuzzy set (IVIES) is supe-
rior at coping with the complicated problem by equipping
elements of these two functions at interval level [50]. Three
stages have been included, as shown in Figure 1. In this
study, we consider the CRs as EP reduction requirements
and TRs as renewable energy technology selection criteria.
In the first stage, the weight of CR (EP reduction) criteria
in QFD is calculated by using IVIF-BWM. The next stage
calculates the correlation among CRs and TRs (renewable
energy technology selection criteria) in QFD, which are fur-
ther combined with the weight of CRs to obtain the weight
of TRs. These weights are finally used in stage 3 within the
interval-valued intuitionistic fuzzy number- (IVIFN-) based
VIKOR method to prioritize the appropriate renewable
energy technology for EP alleviation.

3.1. Preliminary. In this section, a few fundamental concep-
tions of IFS and IVIFS have been presented.

Definition 1 see ([51]). Assume that X = {x;,x,,---,x,} is a
set. A fuzzy set A’ in X is as follows:
A= {(x%uy (x)]x € X)) (1)

Where pt,/ : X — [0, 1] is the membership function and
p, (x) is the membership degree of x € X to A’

Definition 2 see ([52]). Assume that X = {x;,x,, -+, x,} is a
set, an IFS A is:

A= {(xpy (%), va(x)x € X)) (2)

Where p,(x) and v,(x) represent the membership
degree and nonmembership degree of x to A, respectively,
satisfying for all x € X, 0 <y, (x) + v, (x) <1, and p, (x), v,
(x) €]0,1].



Definition 3 see ([52]). Let X be a nonempty set, an IVIFS A
is as follows:

A= {(x iz (x), T3 (0) |l € X)}. 3)

Where f1;(x) = [yg,yg] c[0,1] and ¥3(x) = [vﬁ, vg] clo
,1] are membership interval and nonmembership interval
of x € X to A, respectively, satisfying max fi; (x) + max v;(x

)<1,Vx € X. m;(x) = [k, 7Y] is the hesitation interval of x
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Definition 4 see ([53]). Suppose that

A= {< z[ﬂﬁ(xi)’ﬂg(xi)} [VLA(xi)’V,%](xi)DViGX}’
B= {< z[!‘lLé(xi%P‘g(xi)]’ [V%(xi)’vg(xi)]ineX}’

then the basic arithmetic is defined in the following
formulas:

toA,whereng=1—yA X,nA—l—‘uA—vi
A+B={(x [‘uA ],[v (x;),v xl)]>|x,»€X}
{< [ (xz)]’[vlé(xz)’ g(xt)]>|x’ex}
[’l xl) ( )+MB( ) MA( ) AuB( )]

AB= {(x

i)’#}f(xi)]’ [V,L;(xi)’v,%’(xi ]>
Al (60 ()] [va (), vy (%
{< X [.”f}(xi) uE(x;), MA( i) Mé’(xi)]’ > }
|x; € X
[Vj/i(xi) + V%(xi) - Vf}(xi) : Vlé(xi)> V,%](xi) + Vg(xi) - Vf:'((xi) : Vg(xi)]

Definition 5 see ([54]). a=( [a, b], [ ¢, d]) is an IVIFN, with
the following condition: 0<a<b<1,0<c<d<1,and b+
d < 1. The score function S(a) and the accuracy function H
(a) of a are expressed in the following formulas:

S(a):w) (6)
H(a)=a+b;c+d. )

Definition 6 see ([55]). Let a; = ([ay, b}, [¢;, d;]) and a, = (]
a,, by}, [c,, d,]) be two IVIFNs and comparisons are as follows:

(1) If S(a,) > S(a, ), then a, > a,

(2) If S(a,) = S(a,), then
(a) If H(a,) > H(a,), then a, > a,

(b) If H(a,) =H(a,), then a, = a,

Definition 7 see ([56]). Assume that a; = ([a;, by}, [¢;, d;])
and a, = ([a,, b,), [c,»d,]) are IVIFNs, and the Hamming
distance is:

(Jay = ay] + by = by| + [¢; — 63| + |d, — d;|).

(8)

|

Dy(ay, a,) =
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Stage I: Calculate the relative importance of
Energy Poverty Reduction

Stage II: Calculate the weights of Renewable Energy Technology Selection

(TRs) criteria within IVIF QFD

requirements (CRs)

Step 1.1 Select the best criterion
and worst criterion

Energy poverty
reduction requirements

Step 1.2 Compare the best criteria
with the other criteria

Step 2.1 Develop the IVIF relationships
matrix between CRs and TRs

Step 2.2 Obtain the IVIF weights of TRs

Step 1.3 Compare the other criteria

Stage III: Determine the ranking of alternative through IVIF-VIKOR

with the worst criterion

Step 3.1 Construct assessment matrix for alternatives

Step 3.2 Transform the linguistic terms into IVIF values

weights of each DM

Step 3.4 Calculate the group utility and individual regret values

Step 1.5 Obtain the aggregated optimal

Step 3.5 Obtain the interval Q; value

weights for all DMs through ITFWA operator

Step 1.4 Obtain the optimal criteria |

Step 3.6 Rank the alternatives

Step 3.3 Calculate positive and negative ideal solutions |

F1GURE 1: Flowchart of the methodology.

Definition 8 see ([57]). Let a, = ([a;, b], [c;» d)])(i=1,2, -, n)
be IVIFNs and interval-valued intuitionistic fuzzy-weighted
averaging (IIFWA) is the I[VIF-weighted averaging operator.
IIFWA : R* — R, where R is the set of IVIFNs, A=
(Ajs Ay - A,) " is the weight vector of a, with Y7 A, =1.
Then, aggregated IVIFN value is expressed in the following
formula:

IIFWA, (a,, a5, -+, @) = A3, ®@ Xya, ® - ® N,

©)

n’n*

Equation (9) could be transformed into the following
formula:

IEWA, (dy, &y, -+ &)

= ({1— ﬁ(l—ai)’\’,l— ﬁa—bi)*f

i=1

3.2. A Proposed Model. The proposed model combines
BWM, QFD, and VIKOR with IVIFNs to prioritize the eval-
uated alternatives. Firstly, the IVIF-BWM is proposed to cal-
culate the weight of CR criteria, by considering the
vagueness and uncertainty of experts and interaction among
criteria. Then, the correlations among CRs and TRs are
obtained through IVIF-QFD. After that, by combining the
correlation coefficient and CR weights, the TR weights are
calculated. Finally, TR weights are applied in Stage 3 through
IVIE-VIKOR approach to rank the different renewable
energy technologies for EP alleviation.

C=(C,,Cy
with the weight of each expert being expressed as A=
(A]; A’Z’ tty AZ)T, ZiZIAk = 1, and 0< Ak < 1.

-,C,) is criterion set. DM, is k, expert

Stage 1. Calculate the relative importance of energy poverty
reduction requirements (CRs).

Five steps are involved in the IVIF-BWM approach [19]:

Step 1. Select the best criterion and the worst criterion.
The selection process is up to experts’ opinions.

Step 2. Compare the best criterion with other criteria.
Best-to-others vector is evaluated by DM, in the following
formula [19]:

~(k (k) ~(k ~(k
Rﬁa): (”E;R”’Eaz)"“’rén))- (11)
Where ?(k) = ([~L AN AN den he IVIF
Bj yBj,yBj], [ij,ij]) enotes the

degree of the best criterion Cy over the criterion C; given
the k,, decision maker (DM).

Step 3. Compare the other criteria with the worst crite-
rion. Other-to-worst vector is assessed by DM, in the fol-
lowing formula [19]:

(k)

1w>

(k)

rZW’ .

()

~(k ~
Ry = (7 - Faw (12)

Where 7’}{2 = ([ﬁJLW, ﬁjl‘]N], [T/jLW, T/jl‘],\,])(k) denotes the IVIF

degree of criterion C; over the worst criterion Cy, given ky,

DM.
Step 4. Obtain the optimal criteria weights of each DM.



6
Suppose G)E; = ([ 5 > [V Vg]) >‘UW ([ i),
Vi, v%])“‘) k) _ (6], v v ])<k The optlmal welght

k)

should satisfy that for each pair of wB /a)- and a)] /wW ,

(k )/w(W) | and \( /wW)) ?jw\ with all C;

being minimized. The opt1ma1 crlterla weights of each DM
are obtained by solving the following equation [19]:

we have |(@

min &,
s.t.,
(x) ) (k) k (k
’#fé +V];< ik .V]L.U_ng >‘ge,foraHCj,

e <>‘

U |Ss forall Cj,

k
i vy
k k k
‘Vg Dt ® >‘ <& forall C,
‘Vé}(k) +l® _yg® ‘ <e,forall C,
O A B A l"jLW(k)’ <e¢, forall Cjp

’#]U(k) + VVUV(k> _ #](J(k) 'V%U{)

_ #j(\]N(k)’ <e¢, forall G
_ ijW(k)’ <e¢, forall Cj,

]W(k ‘ <eg forall C

Y s(a) -

=1

-

s(a)j.k)) >0, forall C;.
(13)

After solving Equation (13), the optimal weights @*) =
(@0;, @, ---,d)n)<k> and &* with k; DM are obtained. The
value of ¢* is closer to zero, showing the higher pairwise com-
parison consistency [58].

Step 5. Obtain the aggregated optimal weights of all DMs
through ITFWA operator [57].

The aggregated optimal weight of criteria @ = (@, @,,
.-+, @,) can be calculated in the following formula [57]:

(14)

The score of each w; can be obtained and the crisp
weight number of each criterion is shown in the following
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TaBLE 1: Linguistic scale and corresponding IVIFNs [57].

Membership and
nonmembership degrees

([0, 0.2], [0.5, 0.8])
([0.1, 0.3], [0.4, 0.7])
([0.2, 0.4], [0.3, 0.6])
([0.3, 0.5], [0.2, 0.5])
([0.4, 0.6], [0.2, 0.4])
([0.5, 0.7], [0.1, 0.3])

([0.6, 0.8], [0, 0.2])

([0.7, 0.9], [0, 0.1])

([0.8, 1.0], [0, 0])

Linguistic variable

Absolutely low (AL)

Very low (VL)

Low (L)

Medium low (ML)
Approximately equal (AE)
Medium high (MH)

High (H)

Very high (VH)
Absolutely high (AH)

equation:
j=12,--,n. (15)

Stage 2. Calculate the weights of renewable energy technol-
ogy selection (TR) criteria within IVIF-QFD.

This phase includes 2 steps to build the QFD [59]. These
steps indicate how renewable energy requirements (TRs)
affect the EP reduction requirements (CRs) and consist of
the relationships existing between CRs and TRs under the
IVIF environment. The following steps calculate the absolute
weights of TRs.

Step 1. Develop the IVIF relationship matrix between
CRs and TRs on QFD. Experts express their judgments on
the correlation matrix between CRs and TRs using IVIFNs
given in Table 1.

Step 2. Obtain IVIF weights of TRs. The main contribu-
tion of IVIF-QFD is to determine which TRs are of critical
importance to satisty the CRs. The absolute weights of TRs
are then calculated by integrating both the absolute weight
of CRs and the relationship matrix.

To obtain the IVIF weights of TRs, IVIF weights of
CRs (w;) are multiplied by IVIF relationships (R R;;) through

Equanon (16) [59].

TW, =Y "Ry, j=1,2,-
j

'>n$i=1)21"'am- (16)

Where 1~2]i denotes the fuzzy relationship matrix between
CRs and TRs; @; denotes the weight of CRs; TW; indicates
the total weight of TRs.

Each IVIF weight of TRs has been divided by the total
IVIF weights of TRs for calculating the normalized IVIF
weight of TRs as in Equation (17) [59].

S(TW;)

MW = 5 serw)y-

(17)

Where N(TW;) is the normalized IVIF weight of TRs.
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TaBLE 2: Comparison of interval numbers [61].

Minimum interval number between [aL, aU] and [bL, bu}

When aV < bt =

[at, aV]< b1, bY]

When ab < bF <aV < bV, if a

When al <b" <aV <bY, ifa

[a",a U] < [bL, Y

[bL bU [aL Jav
av )< [bL, bY]
[bL bU [aL JaV

Stage 3. Determine the ranking of alternatives through IVIF-
VIKOR.

Six steps are involved in the application of IVIF-VIKOR
[60, 61].

Step 1. Construct assessment matrix for alternatives.
Obtain the hybrid evaluation for the alternatives, from
which the qualitative criteria use the linguistic terms as
shown in Table 1 and quantitative criteria use interval value.

Step 2. Transform linguistic terms into IVIF values. The
IVIF value is used to construct the group decision matrix (
X), which includes p alternatives and m criteria. X is defined
as

%= [k (B0), 5 (B> [V ) v )] (18)

Where k=1,2,---,pand i=1,2,---,m
For interval values, f|; is the evaluation of ky, alternative
concerning iy, criterion and is not an exact number, known

as fy; € [fio fial-
Step 3. Calculate the positive and negative ideal solu-
tions. The positive and negative ideal solutions for IVIFNs

are fl* in Equation (19) and f; in Equation (20) [60], and
for interval values are f* in Equation (21) and f~ in Equa-
tion (22) [61], respectively.

~ %

fi = 5D g GD] Vi G VIGED] (19)

Where [p7 (%7) = max (5 (%iq))» ¢ (7)) = max (p (%i4))]

A ED) = max(vi (%)), vi (7)) = max(v] (%)) and

A max (

fi = G GO [EED)EED] (20

Where [ (%) = max(u (), 1Y (57 ) = max( (i)

L 5) = max(v (), v (5) = max( 5

£ =i b= { (maslie ) o (masfljie ) |
= ]’ 2, ceem,

(21)

£ =t = { (mastlier ) or (maxsilier) |

= 1) 2’ cee, M.
(22)

Where I is benefit criterion and ] is cost criterion.

Step 4. Calculate the group utility and individual regret
values. The group utility values and individual regret values
for IVIFN are S(A;) in Equation (23) and R(4,) in Equation
(24), and for interval value are [Sk, S] in Equations (26) and
(27) and [Rf, RY] in Equations (28) and (29) [61], respec-

tively.
S(Ak)=2 N(TWI)ZE:?i; , (23)
a(f %)
R(Ay) = max N(Twi)m , (24)
where

W5 (%7) = 5 () | + |5 (R7) = 4 (R |

a(fima) = 3| +AED -G+ ED -G |
+|”%(’~C:)_ﬂlf\(5‘k1’ |7T i) ”A(xm)|
)~ )+ [ 1)~ )|

d(7 5 ) =3 | HlhEn —vhEn|+ pED -

+‘7r4 (%) e (56,_)’ + ‘ng

i (&) =3 (%))

(25)

Computing [SF, S{] and [RE, RY] interval as below:

Sk=Y N(TW)) (; :5}1)

iel

+ Y N(TW,) (fllﬂ:j:>k= L ps

i€]
(26)
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Y =Y N(TW,) <J} :J]?) + Y N(TW), (J}E :;) k=1,p,

iel i€]
(27)
RE = max { N(TW,) fi-fa iel,N(TW,) fu1i ie] bk
* S-S \fi-f
:]’ .’p,
(28)
RV = max {N(Twi) (; ff) ie I, N(TW,) <J;g _Jf) ic ]} k
=1, p,
(29)

where N(TW,) is weight of the criterion C,.
Step 5. Obtain interval Q = | i, QE] ;k=1,2,---,p, by
following equations [60, 61]:

(85 =$") (Ri-R")

m+(l—v)m, (30)

L
Q=v

s R
Q'g_v(Sk‘—S*) +(1-v) (R]i—R*)' (31)
Where

S = mkinS£, S = ml;axS,E],
(32)
R* = mkinRi, R = mkaxR,lcj.

v is the weight of the maximum group utility, here let v
=0.5.

Step 6. Rank the alternatives. Based on the VIKOR
method, the alternative with minimum Q([Qf, Qf]) ranks
first and is selected as the compromise result. Q, k=1, ---,
p are interval numbers and the corresponding comparison
rules are presented in Table 2. The parameter a(0 < a< 1)
is the optimal level of DM, with rational DM « = 0.5.

4. Case Study

The case study is used to illustrate multicriteria assessment
of renewable energy technology for EP alleviation to exam-
ine the feasibility of the proposed IVIF BWM-QFD-
VIKOR approach and to explore how the proposed inte-
grated method is applied in real life.

4.1. Case Study Description of the Renewable Energy
Technology for EP Alleviation. The rapid expansion of
renewable energy industries could help reduce reliance on
fossil fuels in daily life and realize the target of carbon emis-
sion reduction [34]. Appropriate usage of renewable energy
resources could benefit electricity production. Nevertheless,
barriers, including technical, economic, environmental, and
social factors, challenge the development of renewable
energy technology [62]. Selecting the suitable renewable

TABLE 4: The best and the worst criteria.

The best evaluation The worst evaluation

DM

criterion criterion
DM1 CR2 CR4
DM2 CR3 CR5
DM3 CR1 CR5

TaBLE 5: Linguistic terms for pair-wise comparison of criteria [19].

IVIFNs
Equally important (EI) ([1.0, 1.0], [0.0, 0.0])
Weakly important (WI) ([0.5, 0.6], [0.3, 0.4])
Strongly important (SI) ([0.6, 0.7], [0.2, 0.3])
( LI D
( L[ )]

Linguistic terms

0.7, 0.8], [0.1, 0.2
0.8, 0.9], [0.1,0.2

Very important (VI)
Absolutely important (AI)

energy resource is one key barrier to realizing EP alleviation,
and limited method exists for solving the problem [3]. This
is a complicated decision-making problem with many tech-
nical, economic, environmental, and social issues consid-
ered. Therefore, this paper contributes to selecting the
optimal renewable energy technology for EP alleviation by
using the proposed MCDM method.

Assume the six renewable energy technologies including
wind energy (A1), solar energy (A2), direct combustion (A3),
combined heat and power (CHP) (A4), gasification (A5), and
hydroenergy (A6), among which A3-A5 belongs to biomass.
Wind energy (A1) has been used for a long time to grind grain,
sail ships, and pump water, which could be changed into
mechanical, electrical, and heating energy through wind turbine
[63]. Solar energy (A2) converts solar radiation into other types
of energy, including heat and electricity. Solar photovoltaic con-
version process is widely used for generating electricity from
solar energy [3]. Biomass is one of the renewable energy origi-
nating from organic materials [3]. Currently, there are mainly
three technologies for energy generation related to biomass-
direct combustion (A3), CHP (A4), and gasification (A5).
Hydropower (A6) is a kind of renewable energy resource from
water body [63]. By constructing hydropower plants, hydro-
power can be transformed into electricity.

Most renewable energy technology selection criteria uti-
lized currently consist of economical, technical, social, and
environmental factors. The economical factor evaluates the
economic feasibility, considering investment cost, operation
and maintenance cost, and service life [45]. The technical
factor explains technology from maturity, efficiency, and
reliability perspective [64]. Technology maturity presents
the existing applications and improvement capability of the
technology. Efficiency is assessed by the efficiency coeffi-
cient. Technology reliability could reflect the probability of
operation with no failures happening. Social factors are asso-
ciated with human being, including job creation [64] and
social impact [65]. Job creation reflects that the adopted
technologies create employment opportunity. Social impact
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TaBLE 6: The pair-wise comparison for the best criterion over the other criteria.
. Other criteria
DMs  Best criterion CRI CR2 CR3 CR4 CR5
DM1 CR2 ([0.5, 0.6], [0.3, 0.4]) ([1.0, 1.0], [0.0, 0.0]) ([0.5, 0.6], [0.3, 0.4]) ([0.6, 0.7], [0.2, 0.3]) ([0.6, 0.7], [0.2, 0.3])
DM2 CR3 ([0.5, 0.6], [0.3, 0.4]) ([0.6, 0.7], [0.2,0.3]) ([1.0, 1.0], [0.0, 0.0]) ([0.6, 0.7],[0.2,0.3]) ([0.7,0.8], [0.1, 0.2])
DM3 CR1 ([1.0, 1.0], [0.0, 0.0]) ([0.5, 0.6], [0.3, 0.4]) ([0.6, 0.7], [0.2, 0.3]) ([0.7, 0.8], [0.1, 0.2]) ([0.7, 0.8], [0.1, 0.2])
TaBLE 7: The pair-wise comparison for other criteria over the worst criterion.
o Other criteria
DMs Worst criterion CR1 CR2 CR3 CR4 CR5
DM1 CR4 ([0.7, 0.8], [0.1, 0.2])  ([0.8, 0.9], [0.1, 0.2]) ([0.5, 0.6], [0.3, 0.4]) ([1.0, 1.0], [0.0, 0.0]) ([0.6, 0.7], [0.2, 0.3])
DM2 CR5 (f0.7,0.8], [0.1, 0.2]) ([0.7,0.8], [0.1,0.2]) ([0.8,0.9],[0.1,0.2]) ([0.6,0.7],[0.2,0.3]) ([1.0,1.0],[0.0,0.0])
DM3 CR5 ([0.8,0.9], [0.1,0.2]) ([0.6,0.7],[0.2,0.3]) ([0.7,0.8],[0.1,0.2]) ([0.6,0.7],[0.2,0.3]) ([1.0,1.0],[0.0,0.0])

could identify and quantify the human risk and consequence
of certain technology. Environmental factor refers to poten-
tial environmental impact of renewable energy technology,
which mainly includes land use and CO, emissions. Land
use refers to a certain range of landscapes required to meet
the requirement of the project [64]. CO, emissions reflect
the emission reduction to the atmosphere by renewable
energy technology [66]. The abovementioned criteria could
be classified into benefit criterion (the higher the better)
and cost criterion (the higher the poorer). The parameters
of criteria for different renewable energy technologies and
the criterion type are presented in Table 3.

This study selected 5 indicators to reflect EP perfor-
mance, including the percentage of the population having
access to clean fuels and technologies for cooking to the total
population (CR1); percentage of the population having
access to electricity to the total population (CR2); percentage
of rural population with access to electricity to total rural
population (CR3); percentage of urban population with
access to electricity to total urban population (CR4); and
log of the electric power consumption per capita (CR5).
These indicators have already been utilized in previous
research [25, 31], which reflect an increase of these variables
showing a decrease in EP.

4.2. Implementation. Based on the abovementioned case
study, this section empirically demonstrates the proposed
IVIF BWM-QFD-VIKOR approach to select the most suit-
able renewable energy technology to reduce EP, including
3 stages.

Stage 1. Calculate the relative importance of energy poverty
reduction requirements (CRs).

To calculate the weight of each criterion, three groups of
DMs were invited to conduct focus group meeting, respec-
tively, by applying the IVIF-BWM. Two groups of DMs,
including DM1 and DM2, come from university and gov-
ernment, respectively. The rest of the group is from the con-
sultancy company. The weights of the decision-making

group are A = (0.333,0.333,0.333)".

TaBLE 8: Weights of evaluation criteria.

Evaluation criteria Weights

CR1 0.367447823
CR2 0.299165523
CR3 0.224190784
CR4 0.050321881
CR5 0.058873989

Step 1. Select the best and worst criteria. The best and worst
criteria have been decided by each decision-making group as
shown in Table 4.

Step 2. Compare the best criterion with the other criteria
based on Table 5. The comparison result has been listed in
Table 6.

Step 3. Compare the other criteria with the worst criterion
based on Table 5. The comparison result has been presented
in Table 7.

Step 4. Obtain the optimal criteria weights of each DM.

The optimal criteria weights of each decision-making
group are obtained through Equation (13). The model is
solved with the help of Lingo 17.0. For instance, the model
of DM1 is presented in the following formula:

min &,
s.t.,
WO 4 vf“) os V]P“) - 0.5‘ <e,
RO U O U 0.6‘ <s,

vém + yJL-“) - 0.3’ <e

vy W - 0.4’ <ej=13,

L(1)

‘P‘z + vém — yé(l) -vé(l) — 0.6‘ <g,
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0+ A0 00 0] <
’vgm L 0.2’ <e,

)vg(l) +‘u;}(l> - 0.3‘ <g,

L L@ _ L L)

‘yl +vy - —0.7‘Ss,
’yi](l)+vf —yij(l Ul)—O.S’Ss,

vf(l) + ‘ui(l) - 0.1’ <g

’vy(l) + /,44U(1> - 0.2’ <g,

‘”é(l) Y ORI OO 0.8‘ <e,
QI 4 00 0w U 0.9’ <s,
A 4 - 0] <
W -02] <e,

WO A0 -l 0 0] <,
’Mga) +pV VU 0.6‘ <eg,
’ng b _ 0.3’ <e,

vg(l) + ‘ui/(l) - 0.4‘ <g,

‘yé(l) + vi(l) — yé(l) . vi(l) - 0.6‘ <g,

vy _ u() Ul)
.”5 +V4 —Us

- 0.7’ <g,

‘vé(l) + ‘ui(l) - 0.2’ <g

(33)

The solution of the abovementioned model, which is the
optimal criteria weight of DM;:

11
@\ = (]0.3940,0.4940], [0.0774, 0.0774])V)
@) = ([0.5226,0.6303], [0.0774,0.0774])V
@5 = (0.2402,0.3146], [0.2774,0.2774]) V), (34)
@ = ([0.1940, 0.2940], [0.2221, 0.2660]) "
@) = ([0.2655, 0.3578], [0.1774,0.1774]) )

Step 5. Obtain the aggregated optimal weights for all DMs.
The DM weight in IIFWA operator is defined as A=

(0.333,0.333,0.333)". The aggregated optimal weights for
all DMs are obtained by using Equation (14) in the following
formula:

([0.4246, 0.5050], [0.9225, 0.8953]),

(
(

0.3897, 0.4686], [0.8889, 0.8627]),

)
)
), (35)
)
)

Sr
Il

[
[
[
[

b ]
b ]
0.3776,0.4493), [0.8194, 0.7953)
0.2286,0.2910), [0.8074, 0.7657)),
b ]

=(
w; = (]0.2360, 0.3279], [0.8029, 0.7399]).

The crisp weight number of each criterion is obtained
through Equation (15) in Table 8.

Stage 2. Calculating the weight of renewable energy technol-
ogy selection (TR) criteria within IVIF-QFD.

Step 1. Develop the IVIF relationships matrix between CRs
and TRs on QFD.

The correlation efficiency between CRs and TRs is
obtained by asking the decision-making group to evaluate
the impact of each TR on each CR through IVIF judgment,
which are presented in Table Al and corresponding IVIF
linguistic terms are in Table A2 within supplementary
material. The relationship matrix is presented in Table 9
after using Equation (14) to integrate the opinions from 3
decision-making groups.

Step 2. Obtain the IVIF weights of TRs.
The IVIF weights of TRs are obtained through Equation
(15). The IVIF weight of TR11 can be calculated as follows.

TW, =w, * R, + w, * Ry, +w; *1~231 +w, * Ry, + ws *RSI
=0.3674 * ([0.5176,0.7282], [0,0.2718])
+0.2992 * ([0.6362,0.8410], [0,0.1590])
+0.2242 * ([0.6694,0.8737], [0,0.1590])
+0.0503 * ([0.5617,0.7842], [0,0.2158])
+0.0589 * ([0.2630,0.4755], [0.2470,0.5245])
= ([0.5457,0.5885], [0,4.5093E08]).
(36)

Defuzzify the IVIF weights of TRs. The defuzzification
of the IVIF weights of TRs is calculated as in Equation (6).
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TaBLE 9: Relationship matrix between CRs and TRs.

TR11 TR12 TR13 TR21 TR22 TR23 TR31 TR32 TR41 TR42
([0.5176,  ([0.2884, (o, ([0.5234,  (0.0345, (102386, ([0.1756, 1000, ([0,
cry 07282l 04983],  0.1998],  07586],  02346],  04403],  0.3783], 652] [(i 0.1998],  ([0.6362, 0.8410],
[0, [0.2293,  [0.5003, [0, 04645,  [02523,  [03111, 7 482)])’ [0.5003, [0, 0.1590])
02718])  05017])  0.8002]) 02414])  0.7654])  0.5597])  0.6217]) : 0.8002])
([0.6362, ([0.2386,  ([0.0716, ([0.599%, ([0.0716,  ([0.5688,  ([0.4149, ([0.0716,
CR2 0841], [0 0.4403], 0.2729], 0.5234] 0.2729], 0.7707], 0.6362], ([0.4149, 0.2729], ([0, 0.1998],
'0 159’]) ’ [0.2523, [0.4221, ['0 0])’ [0.4221, [0, [0, 1], [0, 0]) [0.4221, [0.5003, 0.8002])
’ 0.5597]) 0.7271]) ? 0.7271]) 0.2293]) 0.3638]) 0.7271])
([0.6694,  ([0.3393, ([0.1381, ([0.5234, ([0.1036, ([0.6694, ([0.3783, ([0.3303,  ([0.0716,
crs 04737L 05617,  03393],  07586],  03045),  0.8737],  0.59%],  0.599],  0.2729], ([0, 0.1998],
[0, [0, [0.3561, [0, [0.3919, [0, [0, [0, [0.4221,  [0.5003, 0.8003])
0.1262]) 0.4383]) 0.6607]) 0.2414]) 0.6955]) 0.1263]) 0.4004]) 0.4004]) 0.7272])
([0.5617,  ([0.1678,  ([0.0716, ([0.4755, ([0.0678,  ([0.5617,  ([0.4149, ([0.2630,  ([0.0716,
Cra 07842, 03681],  02729],  0.6960], 02679,  07842],  0.6362],  04957],  0.2729], ([0, 0.1998],
[0, [0.3306,  [0.4221, [0, [0.4313, [0, [0, [0, [0.4221,  [0.5003, 0.8004])
02157])  0.6319])  0.7271])  0.3040])  0.7321])  0.2158])  0.3638])  0.5043])  0.7273])
([0.2630,  ([0.0345, ([0, ([0.3158,  ([0.0345, ([0.5836, ([0.4683, ([0.0678, ([0,

Crs 04755l 02346,  0.1998],  05234),  02346), 0.7997],  07112],  0.2679],  0.1998], ([0.6362,0.8410],
[0.2470, [0.4645, [0.5003, [0.2083, [0.4645, [0, [0, [0.4313, [0.5003, [0, 0.1590])
0.5245]) 0.7654]) 0.8002]) 0.4766]) 0.7654]) 0.2003]) 0.2888]) 0.7321]) 0.8002])

TaBLE 10: Correlation-based weights of TRs.

TRI11 TR12 TR13 TR21 TR22 TR23 TR31 TR32 TR41 TR42
0.1623 0.0945 0.0414 0.1480 0.0432 0.1384 0.1070 0.1305 0.0375 0.0971
TaBLE 11: The positive (/} l* ) and negative (f i_) ideal solutions regarding IVIF.

The positive ideal solution (fj ) Negative ideal solution (f’;)
i (%) v () ; (3) i (%) 7 (0) 7 Ax)
7~ L, 75 s Loy U
[z boua 7 va vy Ul [ 0] A [z bua 7] vitva Yl [ 4

Technical maturity 0.8 1 0 0.2 0.4 0.6 0.2 0.4 0 0.4

Reliability 0.8 1 0 0.2 0 0.2 0.5 0.8 0 0.5

Social impact 0.4 0.6 0.2 0.4 0 0.4 0 0.2 0.5 0.8 0 0.5

The example of the weight of TRI1 is computed as fol-
lows:

_ 0.5457 +0.5885 - 0 — 4.5093E08

(Crisp value)TW,; 3

=0.5671.

(37)

Calculate the normalized IVIF weights of TRs. For
example, the normalized weight of TRIl is obtained
through Equation (17), shown in the following equation:

S(TW,)

N(TW)) = =1
21S(TW;)

=0.1623.

1) (38)

The correlation-based weights of TRs are presented in
Table 10. The weights in Table 10 will be treated as input
of the IVIF-VIKOR method.

Stage 3. Determine the ranking of alternatives through IVIF-
VIKOR.

Step 1. Construct assessment matrix for alternatives.

The selected alternatives are evaluated based on litera-
ture review, which is shown in Table 3.

Step 2. Transform the linguistic term into IVIF value.

In the assessment matrix, the qualitative evaluation can be
converted into IVIEN through linguistic scales in Table 1, and
the evaluation of alternatives is given in Table A3 within
supplementary material.

Step 3. Calculate the positive and negative ideal solutions.

The positive ideal solution (PIS) (fl*) and negative ideal
solution (NIS) (f:) for IVIFNs are obtained through Equa-
tions (19) and (20), whose corresponding solutions are given
in Table 11. The positive (f*) and negative (f~) ideal solu-
tions for interval numbers are calculated by Equations (21)
and (22) , shown in Table 12.



International Journal of Energy Research

13

TaBLE 12: PIS and NIS for interval numbers.

Annual operation

Initial investment .
and maintenance

Service life

Efficiency/capacity Job creation Land requirement

Emission

0, ; 2 _
(USD/kW) cost (USD/KW-year) factor (%) (jobs/MW) (m“/GWh) (kg CO,-eq/MWh)
PIS 1200 14 35 85 22.9 126 2
NIS 6820 83 20 12 7.8 25000 160

TaBLE 13: S and R interval numbers.

1558 K]

[Re - R

Wind energy
Solar energy

Direct combustion

[0.4537, 0.5125]
[0.4964, 0.7667]
(0.3612, 0.4972]

0.1384, 0.1383]
0.1480, 0.1617]
0.1305, 0.1305]

[
(
(
[0.1480, 0.1623]
[
[

CHP [0.5191, 0.7284]

Gasification [0.4849, 0.6712] 0.1480, 0.1480]
Hydropower [0.1005, 0.3307] 0.0609, 0.0852]
TaBLE 14: Q interval numbers.

[Q > Q]
Wind energy 0.6475, 0.6917]

[
Solar energy [0.7268, 0.9972]
Direct combustion [0.5390, 0.6411]
[
[

CHP 0.7438, 0.9712]
Gasification 0.7182, 0.8580]
Hydropower [0, 0.2925]

Step 4. Calculate the group utility and individual regret
values.

Group utility and individual regret values for IVIFNs are
S(A;) in Equation (23) and R(A, )in Equation (24), for inter-
val value are [Sf, S{] in Equations (26) and (27), and [R, R]
in Equations (28) and (29), respectively. The result is pre-
sented in Table 13.

Step 5. Obtain interval Q, =[Qf, QY];k=1,2,--,p, by
Equations (30) and (31). The results are shown in
Table 14. §* =0.1005, S™ =0.7667, R* =0.0609, and R™ =
0.1623

Step 6. Rank the alternatives. Using ranking rules in
Table 2 and step 5, the result is shown as follows: A6 > A3 >
Al>A4>A2>A5.

5. Discussions

This paper proposes a novel renewable energy technology
selection model for EP alleviation by integrating BWM-
QFD-VIKOR methods with IVIFNs as a new scientific eval-
uation method. The proposed model is a rational and prac-
tical approach to improving the efficiency of renewable
energy selection. At first, the importance degree of each
CR and the correlation between CR and TR have been
assessed in IVIFNs instead of traditional crisp numbers,
which ensures a more accurate assessment from DMs. Next,
the IVIF-BWM method calculates the importance degree of
CRs by considering the relationships among criteria and the

uncertainty and vagueness of decision-making process.
Finally, the proposed IVIF-QFD approach transforms the
customer demands into technology features to ensure that
all selected technical criteria are in accord with customer
expectations. Thereby, the selected renewable energy tech-
nology could better satisfy the demand for EP reduction
requirements.

5.1. Managerial Implication. This paper can be introduced to
the policy-maker for selecting appropriate renewable energy
technology to alleviate EP by considering the ranking result.
According to the result of IVIF-QFD, we obtain that the
most significant CRs for EP alleviation is access to clean fuels
and technologies for cooking (CR1), and the most important
technology requirement is the initial investment (TR1). The
correlations among CRs are examined by IVIF-BWM, which
could assist to calculate the related relationships more accu-
rately [70]. The result of the IVIF BWM-QFD-VIKOR
approach presents that the most rational renewable energy
technology is hydropower (A6) to reduce EP. The ranking
of other alternatives is direct combustion (A3), wind energy
(A1), CHP (A4), solar energy (A2), and gasification (A6),
respectively. The result reflects that DMs could adopt the
proposed model to take appropriate measures for EP
alleviation.

6. Conclusions

This study proposed an integrated BWM-QFD-VIKOR
model under IVIFNs to select suitable renewable energy
technology for EP alleviation. In terms of MCDM tech-
niques, an integrated BWM-QFD-VIKOR technique is a
new method, having limited researches adopt them individ-
ually. It is the first time to combine all the methods, which
represents one of the scientific contributions of this study.
Current research always uses the crisp number to deal with
the weight of CR and the relationship between CR and TR.
Information missing is likely to occur because the vague-
ness of subjective evaluation could not be fully reflected
by crisp numbers. IVIF number has been used in this
study to present the vagueness and uncertainties of DMs
while making evaluation. IVIF-BWM has been proposed
in this study to calculate the weight of CRs by considering
not only the interaction among criteria but also showing
the vagueness of decision-making process. After that, the
IVIF-QFD could accurately understand the relationship
between EP reduction expectations and renewable energy
technology requirements, which enables the selected tech-
nical features to satisfy the EP alleviation requirements.
Finally, based on the importance degree of different tech-
nical features, the IVIF-VIKOR could prioritize renewable
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energy technologies by considering the mutual concession
among alternatives. According to the result of the case
study, the most significant feature of CR is access to clean
fuels and technologies for cooking (CR1). The most
important features for TRs are initial investment (TRI)
and capacity factor (TR5), respectively. With the effective-
ness of the proposed model, it has been confirmed that
hydropower is the most important renewable energy
resource for reducing EP.

Limitations still exist in this study. The data of this paper
is collected from previous studies, and future work can do
some dynamic evaluations in several consecutive years to
explore the ranking difference among renewable energy
technology. It would also be interesting to adopt other
methods to investigate the influencing mechanism of renew-
able energy technology on EP.
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