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Health monitoring is an essential task for lithium battery systems. Recently, with the development of data-driven methods, deep
learning has been successfully deployed for state-of-health (SOH) estimation. However, existing models trained using raw samples
directly usually contain noise due to sensor errors. To enhance the performance of SOH prediction, short-term segments are
extracted for SOH estimation based on reasonable SOC ranges. To address the measuring error that exists in the voltage and
temperature samples, the reconstructed feature series (RFSs) is designed to restrain the signals’ noise. Then, a CNN-GRU
network with attention mechanism is proposed to achieve SOH estimation based on short-term RFSs’ samples. To further
enhance accuracy, a parallel structure is designed to fuse the feature information from both streams, raw samples, and RFSs in
a reasonable manner. The performance of our proposed method is validated over a wide range of experiments on the Oxford
battery degradation dataset, where the RMSE and MAE averaged 0.582% and 0.524%, respectively, demonstrating its forward
estimation performance.

1. Introduction

New energy vehicles have received particular attention due
to their superior environmental performance. Lithium-ion
batteries have found applications in this field due to their
flexible operation, fast response, and high-cost performance
[1, 2]. Operation practice manifests that accuracy and
dependable health monitoring technique has become an
important part of lithium-ion battery application system
[3, 4], and the principal mission is to predict the state of
health (SOH) of lithium-ion batteries, giving important
advice for battery management system (BMS) maintenance.
Currently, various approaches to battery SOH prediction
have been investigated, which fall into two categories:
model-based and data-driven [5, 6].

For the model-based methods, electrochemical models
(EMs) [7] or equivalent circuit models (ECMs) [8] are
employed combined with the analysis of complicated elec-
trochemical reaction inside the cell. In Reference [9], the
summary and comparison of battery modeling techniques

were given, providing ideas for the follow-up research. Liu
et al. systematically returned EMs and discussed trends and
challenges for further research [10]. Zhang et al. developed
a ternary proportional-integral estimator for capacity esti-
mation using EMs [11]. Yu et al. proposed a joint prediction
method for state of health and state of charge (SOC) estima-
tion based on the second-order ECM [12]. Wei et al. devel-
oped a joint estimation of SOC and SOH on multiple
timescales using Kalman filter and recursive least squares,
respectively, which is convenient for practical application
on the premise of ensuring accuracy [13]. Kalman filter
[14], particle filter [15], and other filtering algorithms are
generally deployed to achieve SOH estimation. Model-
based methods have achieved acceptable accuracy on battery
health statue estimation. Nonetheless, the estimation accu-
racy of model-based approaches depends primarily on
the model structure and prior knowledge. The limited rep-
resentation of electrochemistry reaction or complexity of
partial differential operations both restricted the model-
based approaches’ application [16].
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Data-driven approaches are one type of artificial intelli-
gence (AI) techniques that have been extensively investi-
gated for battery state prediction and extended battery life
strategy [17, 18]. The selection of health features (HFs)
and the structure of the model are two key parts that affect
the performance of SOH estimation [19]. For HFs’ extrac-
tion, the commonly utilize trick is the incremental capacity
(IC) analysis and thermal voltammetry method. Stroe and
Schaltz deployed spikes, spike voltage, and spike acreage of
IC to describe and estimate the aging process [20]. To
address the noise in the differential operation, Li et al.
smoothed the 3.8V-4.1V IC curve with a Gaussian filter
[21]. While in some cases, valuable information may be
eliminated by such filtering [22, 23]. To handle the condition
that operating voltage outside the IC peak range, Wei et al.
designed the morphological IC features and voltage entropy
information combined with artificial neural network for
SOH estimation [24]. In addition, voltage curves of charging
phases have been widely used for feature extraction. Yang
et al. selected the length, slope, and area of the charging
phase as features for SOH estimation [25]. However, this
causes time-consuming problems and is inflexible. From
the present research, BP neural network [26], support vector
regression (SVR) [27], and Gaussian process regression
(GPR) [28] have been employed for battery capacity estima-
tion combined with meaningful HFs.

Recently, deep learning techniques have attracted
increasing attention to reinforce the adaptability of the afore-
mentioned processes and reduce the influence of artificially
designed features. Deep neural networks consist of multiple
layers which can capture the complex nonlinear knowledge
related to degradation data from initial data, such as terminal
voltage, current, and surface temperature [29, 30]. Convolu-
tional neural network (CNN), recurrent neural network
(RNN), and stacked denoising autoencoder have been
applied to battery SOH estimation [31–33]. As a variant of
CNN, Hong et al. [34] established a novel HI to predict the
state of health (SOH) of battery based on dilated CNN. Ren
et al. [35] designed a parallel SOH prediction framework
including CNN and long short-term memory (LSTM), and
autoencoder is introduced to extract more valuable informa-
tion from original signal. Li et al. [36] developed a deep
LSTM network applying partial charging profiles, and
estimation error fell to 0.76% for the online battery SOH pre-
diction. To improve the model generalization, Che et al. joint
the transfer learning technique to gated recurrent unit (GRU)
to estimate the remaining useful life using partial voltage
curves [37].

However, in the existing literature, it is common to
leverage the entire charging curve for model training, which
may not be available from battery operation. Some articles
realized the SOH estimation using the short-term charging
curves [38], but the extraction of the partial curve is usually
based on the statistical characteristics of the curves [39],
without considering SOC during the charging process,
which inevitable loss some actual meaning. Meanwhile,
these approaches make direct use of raw data, which often
contains measurement noise. This stochastic noise may
influence the accuracy of the SOH estimation for these

approaches. To address the above issues, in this paper, we
capture the charging curve based on the SOC of the charging
phase. Then, the reconstructed feature series is designed
to suppress the noise in the raw signal. In addition, an
attention-based CNN-GRU model is proposed to enhance
SOH estimation. The main contributions of this paper
can be summarized as follows.

(i) A short-term segment is extracted based on the
reasonable SOC operating range. RFSs are subse-
quently proposed to suppress the noise contained
in the raw voltage and temperature signals

(ii) An attention-based CNN-GRU model is proposed
to achieve battery SOH estimation. A parallel
framework is further designed to fully exploit the
information from raw samples and RFSs

(iii) Extensive experiments demonstrate that the pro-
posed method can achieve SOH prediction with
limited data, improving estimation robustness and
accuracy

The reminder of this paper is arranged as follows:
Section 2 elaborates the procedure of short-term curve
extraction and RFSs’ construction. Section 3 gives the struc-
ture of our attention-based CNN-GRU model. The compre-
hensive comparison results of the proposed approach are
discussed in Section 4. Finally, the conclusions are provided
in Section 5.

2. Degeneration Data Analysis

2.1. Data Description. In this paper, the Oxford battery deg-
radation data [40] are utilized for battery SOH prediction,
and the detailed test scheme is as follows.

Eight Kokam cells from Oxford battery degradation
dataset are charged with constant current- (CC-) constant
voltage (CV) charging scheme, and the urban Artemis driv-
ing condition test is then deployed for the cell every 100
cycles. The nominal capacity of the battery is 750mAh,
and the test temperature is set to 40°C. Test data including
current, voltage, and surface temperature are sampled every
second. The detailed test procedure and the degradation
results are depicted in Figure 1.

2.2. Short-Term Profile Extraction. The choice of training
samples inevitably affects the accuracy of the SOH predic-
tion. Due to its relatively fixed charging protocol, the voltage
and temperature series of the CC charging process will be
analyzed and fed into the proposed model to implement
the SOH estimates in this paper. In existing studies, the
entire charging curve is generally trained by the model,
which is not possible in real-world vehicle scenarios. Hence,
we would like to estimate the SOH in combination with the
short-term charging curve. The feasibility of deploying such
an approach is clarified in detail below.

The charging operation in real scenarios usually depends
on the current remaining SOC of the electric vehicles (EVs).
Thus, it is easy to think of using SOC to segment the sample
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during the charging phase. Reference [41] introduced that
20% to 80% SOC is the common use interval for battery
charging in a research report on EVs. The dependence of
the terminal voltage on SOC of cell1 can be seen in
Figure 2. It is clear that the relationship between SOC and
voltage changes periodically with the number of cycles.
During each cycle, the voltage of the cell increases as the
state of charge increases. This elaborates that the terminal
voltage is an extrinsic feature of the charging state and can
be considered as an alternative indicator of SOC.

Distribution statistics of SOC in degeneration process of
eight cells are depicted in Figure 2(b). It can be concluded
that the terminal voltage is typically around 3.75V-4.01V
when the SOC ranges from 20% to 78%, in agreement with
the real operation process of EVs. We want to use partial
curves instead of the entire charging profile to predict the
health status of the cell, which is more flexible and practical
for applications in cloud battery management systems. With
this in mind, from 3.75V, six segments equidistantly spaced
0.05V apart are selected. In addition, the corresponding
temperature samples are also chosen as input to the model.
To rapidly predict the battery SOH, 300 samples were
selected from each partial voltage and temperature profile.
The effect of sample size will be discussed in Section 4.1.
The detailed process of extracting the six short-term profiles
is shown in Figure 3.

2.3. Reconstructed Feature Series. As shown in Figure 3, due
to the measuring error, the voltage and temperature are
both fluctuations, especially for the temperature samples
in Figure 3(b), which may have some negative impact on
SOH estimation under direct utilization of raw noisy sig-
nals. In this section, a series of reconstructed feature series
(RFSs) is designed to address the noise existing in the raw
measured samples. Two time-domain statistical features,
which have been proven to be feasible in [13], are calcu-
lated from the partial voltage and temperature curves: root

mean square (RMS) and variance. Given a specified time
interval T , the mean value of the sample flow from voltage
and temperature is calculated as follows.
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The challenge is to apply these features to describe the
sequential information of the measured signal. Thus, we
construct RFSs by computing these features with different
time intervals. As shown in Figure 4, given a sample of
input data of length T , the variance and root mean square
are computed at different time-lengths t, increasing from 1
to T , so that the length remains the same as the original
one. Then, the computation is concatenated as follows.

HRFS XCÀ Á

= concat Hmse XS, 1
À ÁÀ

, Hvar XS, 1
À ÁÀ

,
Hmse XS, 2

À ÁÀ

, Hvar XS, 2
À ÁÀ

,⋯,

Hmse XS, T
À ÁÀ

, Hvar XS, T
À ÁÀ Á

:

ð2Þ

Reconstructed samples from voltage and temperature
sensors are concatenated as operations according to

~X = concat HRFS XVÀ Á

,HRFS XTÀ ÁÀ Á

: ð3Þ
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Figure 1: Testing procedure and degradation results for the battery.
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The RFSs, taken at 100, 1000, and 2000 cycles of the data,
are illustrated in Figure 5. The RMS values are smoother than
those of the original sample and maintain a similar trend to
the original signal as the number of cycle increases. The same
can be found for the variance values, where the trend changes
associated with aging are more pronounced compared to the
original signal, especially for the temperature signal.

With our proposed RFSs, the noise in the minima data is
constrained. At the same time, sequence acquisition is con-
venient for online operation, and aging information can be
easily extracted. This enhances the accuracy of the SOH
estimate.

3. Model Structure

3.1. CNN-GRU. The CNN-GRU network, which is one of the
main units of the proposed model, can extract aging informa-
tion from spatio-temporal dimensionality. The CNN-GRU

module consists of a one-dimensional convolutional neural
network (1D-CNN) and two GRU layers, respectively, which
can be seen in Figure 6. The input data are short-term RFSs’
samples with the shape ofM × 300 × 4, whereM is the num-
ber of total cycles. After that, the spatio-temporal features of
the measured data can be extracted to better describe the
aging process of the battery. The output of the CNN-GRU
network can be calculated as follows.

Ct = σ Ws ∗ Xt + bsð Þ,
zt = σ Wzit +Uzht−1ð Þ,
rt = σ Writ +Urht−1ð Þ,
~ht = tanh Whit + rt ∘Uhht−1 + bhð Þ,

ht = 1 − ztð Þ ∘ ht−1 + zt ∘ ~ht ,

ð4Þ
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Figure 2: The relationship between terminal voltage and SOC. (a) Variation of voltage with SOC. (b) Distribution statistics of SOC in
aging process.
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where Xt is the RFSs designed above, it is the output of the
CNN layer, Ws and bs are the weight and bias of the CNN
model, ∗ is the convolution operator, zt and rt are the output
of update gate and reset gate at the previous moment t, σ

denotes the sigmoid activate function, W and U represent
the weight and parameter matrix of GRU unit, respectively,
ht denotes the state at time t, and ~ht is the candidate state,
and ∘ is the Hadamard product.
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3.2. Attention Mechanism. Attention models have been
designed to extract the intrinsic characteristics of samples
and enhance the speed and performance of feature proce-
dures. It is well known that the information provided by
the voltage and temperature at different times may have dif-

ferent effects on the SOH prediction. To overcome short-
comings of the RNN model in highlighting important
information, the self-attention (SA) process is deployed to
focus on the degraded features that are profitable to health
monitoring and decreasing less beneficial ones. The integra-
tion process of the attention mechanism and the CNN-GRU
model is illustrated in Figure 7.

As shown in Figure 7, after obtaining the attention
weight of each time step, the final output Ho

t of the
attention-based CNN-GRU is calculated as weighted sum
of the output of CNN-GRU ht as follows:

Ho
t = 〠

n+1

k=1
αkht−n+1, ð5Þ

where n + 1 is the size of flows; αk is the attention value at
time t-(k-1). The attention values αk are expressed as
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The scores e = ðe1, e2, e3 ⋯ en+1Þ denote the importance
of each position in the time series, and it can be computed as

et = vs tanh WsCt +Ushtð Þ, ð7Þ

where et is the score of each time period; vs, Ws, and Us are
the hyperparameters to be learned.

4. Experiments

The full procedure of the developed method on SOH estima-
tion is illustrated in Figure 8. First, six short-term data are
explored based on a reasonable range of SOC operations.
The RFSs are obtained by computing the root mean square
and variance in each voltage range. To train the model, the
RFSs and the corresponding real SOH of the first four data-
sets, namely, cell 1 to cell 4, are deployed for model training.
Cross validation is applied to this process. Of the four sub-
samples, three are applied as the training set, while the single
remaining one is used as the validation set for hyperpara-
meter tuning with a Bayesian algorithm. Then, the data from
cells 5-cell 6 are chosen as the test set to evaluate the perfor-
mance of the proposed model. The effects of the starting
voltage and sample size of RFSs are first discussed in the
validation procedure. Four other classical models are com-
pared with our proposed method. Finally, different inputs
involving raw signals and RFSs are applied to manifest the
effectiveness of RFSs on accuracy improvement. The pro-
posed method is performed in the TensorFlow platform.
The experiments are implemented using a workstation with
an Intel Core i7-8700 CPU and an Nvidia GeForce. The root
mean square error (RSME) and mean absolute error (MAE)
are deployed to verify the precision and robustness of the
model, and the two metrics can be calculated as follows.

RMSE =
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where L is the length of forecast data and ŷi and yi represent
the estimated SOH and real SOH, respectively.

4.1. The Influence of Starting Point and Sample Size. From
the above data acquisition details, the starting point of the
voltage has a huge impact on the data characteristics of the
selected segment, which will further affect the estimation
results. The average RMSE and MAE of the proposed model
at each initial voltage of 3.75V, 3.8V, …, and 4.0V are
shown in Table 1.

When the starting point of the segment is set as 3.9V,
both RMSE and MAE obtain a maximum, and the reason
for this result is the flatten tendency of the voltage and
temperature curves in (3.9V-3.95V), which can be clearly
observed in Figure 5. For 4.0V, the estimation error is
smaller than for the segment starting at 3.9V but higher
than for the sample taken from 3.75 to 3.85V. The smallest
values are obtained at 3.8V with 0.782% for the RMSE and
0.670% for the MAE, respectively. Consequently, the pro-
posed AB CNN-CRU method is able to accurately predict
the SOH over six different short-term segments of reason-
able SOC range with superior convenience and speed,
requiring only 300 samples.

As shown in Section 2.3, the segment length should first
be chosen to structure the RFSs for model training and
testing. The more samples are employed to estimate the cell
SOH, the more accurate values are likely to be obtained in
practice. However, the huge amount of data fed into the
model tends to make it more computationally burdensome.
Considering the charging scheme for the Oxford dataset,
six segments of different lengths are obtained at intervals
of 80, which implies an SOC of approximately 2% for adja-
cent segments, to evaluate their impact on health status
prediction.

From Table 2, the mean RMSE of the prediction results
using the proposed method is given for six different lengths.
The value of RMSE decreases as the segment length
increases. The RMSE is 1.751% for a length of 60 and grad-
ually decreases to 0.726% for a length of 460. The AB CNN-
GRU model can achieve RMSE of 0.782% when the sample
size is chosen to be 300. On top of this, as the sample length
continues to increase, the improvement in model prediction
accuracy is not significantly enhanced, and the computation
rate gradually decreases. Considering the trade-off between
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accuracy and computation, 300 samples are already suffi-
ciently informative for cell SOH estimation and will be set
as the final selection for follow-up validation.

4.2. Comparison with Other Approaches. In this section, the
proposed attention-based CNN-GRU (AB CNN-GRU)
approach will be compared with other advanced models.
The base models include SVR, GPR, GRU, and CNN-
GRU. The GRU and CNN-GRU models have the same
structure as the proposed model, with one CNN layer and

two GRU units. The proposed RFSs at a starting voltage
of 3.8V are chosen to estimate the SOH. Then, the pre-
dicted values combined with the true SOH are injected
into Equations (8) and (9) to evaluate the model perfor-
mance. The RMSE and MAE values for the four validated
cells based on the different approaches are shown in
Figure 9 and Table 3.

From Figure 9, the RMSE of cell5 is 1.481% based on
SVR model, 1.504% based on GPR, 1.165% based on GRU,
and 1.172% based on CNN-GRU. While, the SOH estima-
tion result of our proposed method is only 0.776%, which
is the smallest error compared to other approaches. The
same result occurs for cells 6-8, where the RMSE is all
limited to 0.9%. As known in Table 3, the mean MAE of
the four cells achieves a minimum value of 0.815%, which
is a reduction of 50.21% and 49.32% compared to the two
commonly deployed methods, SVR and GPR. The CNN-
GRU method has the second-best SOH prediction, while
our proposed method obtains better estimation performance,
benefiting from the attention mechanism that focuses on fea-
tures with respect to the degradation process. Consequently,
it can be confirmed that our proposed AB CNN-GRU
approach has the better prediction precision for battery
health monitoring.

4.3. Comparison with the Raw Samples. In this paper, RFSs
are designed to replace the raw data in selected segments
to address the noise in voltage and temperature. In this
section, the performance of the proposed RFSs on the SOH
prediction is compared with data obtained from the raw

Table 2: Average RMSE and MAE based on different segment
length.

Segment length 60 140 220 300 380 460

RMSE (%) 1.751 1.315 0.946 0.782 0.729 0.726
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Figure 8: The procedure of the proposed model for cell SOH estimation.

Table 1: Average RMSE and MAE based on different starting
point.

Initial voltage RMSE (%) MAE (%)

3.75V 0.808 0.732

3.8V 0.782 0.669

3.85V 0.890 0.843

3.9V 1.285 1.181

3.95V 1.205 1.057

4.0V 1.061 0.935
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profiles. The results of the SOH estimation at 3.8V for these
two inputs are shown in Table 4.

As can be seen in Table 4, both RMSE and MAE with
RFSs as input are improved compared to the original data
for these four cells. Based on the proposed RFSs, the average
RMSE and average MAE are 0.635% and 0.527%, respec-
tively. It can be concluded that RFSs enhance the precision
of the SOH estimation due to the noise reduction of the
sources.

The accuracy of SOH estimation based on RFSs can only
be improved to a limited extent in cases where the aging
information is already obscured by noise. To fully exploit
the features in the source data and RFSs, a parallel structure
based on AB CNN-GRU is further designed to improve the
battery SOH prediction results. The framework of the paral-
lel network is presented in Figure 10. The uplink feeds the
raw data to the proposed model, and the downlink deploys
RFSs for information extraction. Equation (10) is used to
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Figure 9: MAE and RMSE based on different approaches: (a) MAE results; (b) RMSE results.

Table 3: Average RMSE and MAE based on different methods.

Approach SVR GPR GRU CNN-GRU AB CNN-GRU

RMSE (%) 1.567 1.541 1.107 1.103 0.782

MAE (%) 1.344 1.321 0.950 0.943 0.669

Table 4: RMSE and MAE based on different inputs.

Metrics Data cell5 cell6 cell7 cell8 Average

RMSE (%)

Raw samples 0.876 0.946 0.859 0.830 0.878

RFSs 0.776 0.865 0.753 0.732 0.782

Fusion 0.529 0.630 0.629 0.541 0.582

MAE (%)

Raw samples 0.753 0.880 0.704 0.730 0.767

RFSs 0.665 0.735 0.67 0.608 0.669

Fusion 0.446 0.590 0.586 0.475 0.524

Raw samples AB CNN-GRU

Fusion FC layer SOH

RFFS AB CNN-GRU

Figure 10: The parallel structure for the two stream integration.
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Figure 11: Continued.
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obtain the fused features. The direct addition of two stream
features does not improve the dimensionality of the data,
which would be faster for SOH prediction. The parameter
of the FC layer is 8.

F =O Xð Þ +O ~X
À Á

, ð10Þ

where F is the fused feature of the two streams, O denotes
the output of the proposed model, and X and ~X are the input
from the original curve and RFSs, respectively.

The results of the SOH estimation for the raw sample,
the RFSs, and the fusions from cell 5 to cell 8 are shown in
Figure 11. The estimation results of all three methods trace
the trend of the true SOH, while the fusion method has the
best performance for comparison. As shown in Table 4,
RMSE and MAE achieve higher performance for SOH
estimation based on the parallel ensemble approach. RMSE
obtained reductions of 31.83%, 27.17%, 16.47%, and
26.09% for cell5-cell8 by fusing features from raw signals
and RFSs. For MAE, the results for all four cells are
constrained to within 0.6%. The RMSE and MAE average
0.582% and 0.524%, respectively, presenting a large improve-
ment in the accuracy of SOH estimation. To quantitatively
verify the computational burden, the training time and the
average prediction time for the three types of samples
described above are calculated. As shown in Table 5, the pro-
posed model with raw samples achieves the shortest training
time, and the fusion method has the longest training time of

59.56 s. While raw samples have a tenuous advantage in
terms of computational burden, the model training process
is usually performed offline using microcontrollers. For the
prediction time, the difference between the three is negligible,
which is acceptable considering the significant improvement
in accuracy for the fusion method. As can be seen from the
comparison results, the RFSs designed in this paper exhibit
an advantage over the raw data due to the noisy filtering trick.
Moreover, the fusion of raw samples and RFSs further
enhances the performance of the model on SOH prediction,
thus providing a novel high-precision and efficient means
for battery system health monitoring in real-world scenarios.

5. Conclusion

In this paper, six short-term segments are exploited consider-
ing a reasonable range of SOC operation, and the RFSs are
further designed to reduce the effect of noise in the voltage
and temperature signals, reflecting the effective features asso-
ciated with the degradation process. Meanwhile, to highlight
important information, attention-based CNN-GRU models
are proposed to focus on degenerate features that are profit-
able for health monitoring, while decreasing less beneficial
features. Experimentally, our proposed approach is able to
effectively enhance the SOH estimation performance com-
pared to other classical models. For the Oxford battery data-
set, a starting voltage of 3.8V with 300 samples provides the
best compromise between computational cost and accuracy
in SOH estimation. The results of the SOH estimation using
RFSs are more accurate than those of the raw samples, with
both RMSE and MAE limited to 0.8%. To fully exploit the
aging information in the raw signal and RFSs, a parallel
structure based on AB CNN-GRU is developed to fuse the
two streams, which achieves 0.582% for RMSE and 0.524%
for MAE, which is at least 33.7% and 31.7% reduction,
respectively, compared to a single stream. In this paper, the
reconstructed characteristic series have verified the feasibility
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Figure 11: The prediction results of four cells: (a) cell5; (b) cell6; (b) cell7; (d) cell8.

Table 5: RMSE and MAE based on different inputs.

Data Training time (s) Average prediction time (s)

Raw samples 42.86 0.38

RFSs 49.49 0.42

Fusion 59.56 0.46
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on the SOH estimator. The validity of RFSs will be further
investigated for other state prediction problems, including
state of charge and state of energy for lithium-ion batteries,
in our future work. For capacity regeneration phenomenon
for batteries, the uncertainty quantification will also consider
in our future work.

Data Availability

The data used to support the findings of this study have been
deposited in the Oxford Battery Degradation Dataset 1
repository (doi:10.5287/bodleian:KO2kdmYGg).
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