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Load forecasting is an integral part of the energy study unit to schedule the generating unit by the load demand. Many studies
were conducted on load forecasting based on real power demand; however, very few papers were published on reactive power
demand. In this research work, an attempt has been made to predict the requirement of reactive power as a function of
demand for real power. Household loads are considered for evaluating the demand for reactive power as a critical load. The
attempt has been made based on the data collected from the laboratory experimental setup for one year. The load forecasting
requires time series analysis of the data set along with error minimization between predicted values and actual value; therefore,
the global flower pollination algorithm along with Holt-Winters’ exponential model has been used to predict the reactive
power. Autoregressive integrated moving average (ARIMA) and seasonal autoregressive integrated moving average (SARIMA)
models have been used as benchmarking models to evaluate the effectiveness of the model under various conditions. Python-
developed model has been used to predict the demand for reactive power, and a MATLAB model has been developed to
optimize the cost function. A detailed comparative analysis of the proposed model along with some well-established optimized
models such as GA, PSO, and FPA has been presented related to evening peak demand for a microgrid architecture in
Conclusion. The analysis includes median values of different quantities such as nMBE, nMAE, nRMSE, and RMSE.
Normalized MBE, indicating underestimation and overestimation, is negative for ARIMA but 0.42 for HW-GFPA during
validation and 0.43 for the testing data set. Normalized RMSE, measuring the variance between actual and forecasted values, is
lowest at 0.803 for proposed HW-GFPA during validation and 0.799 for testing.

1. Introduction

The term “load” in load forecasting applications usually refers
to active power (kW) or energy (kWh). There are few papers
or articles on reactive power prediction. Many important
processes are based on the correct understanding of reactive
power such as voltage/VAR optimization, power quality
improvement, frequency control, and steady-state power flow
analysis [1]. Therefore, accurate reactive power forecasting is
necessary for power engineers to understand future reactive

power profiles and improve the quality of grid operations at
the transmission and distribution level [2, 3].

In recent years, the commercialization of smart grids and
the liberalization of energy markets have created additional
demands for accurate reactive power prediction [4, 5]. In
literature, the day-ahead and hour-ahead planning of distri-
bution energy resources requires reactive power forecasts to
ensure compliance with grid limits [6]. These forecasts are
necessary at the aggregate level and point load level to
achieve good planning. The impact of reactive power on
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optimal power flow solutions in smart grids and microgrids
was discussed [7]. Reactive power forecasting is also relevant
to the power market. In many countries, power markets only
manage active power trades at regular time intervals. Nonethe-
less, reactive power projections test the technical feasibility of
energy pathways from power plants to consumers by trans-
mission system operators reconfiguring market systems when
technical boundary conditions are violated [8, 9]. Moreover,
reactive power forecasting is expected to become a fundamen-
tal input for the reactive power market shortly [10, 11].

As already mentioned above, the current practice of
reactive power prediction consists of multiplying the active
power prediction by a factor related to the average power
factor or using a simple method that relies on the experience
of grid operators [12, 13]. Several scientific papers deal with
the prediction of reactive power. Artificial neural networks
have been proposed to predict reactive power in houses
and substations. Neural networks have also been presented
in a probabilistic framework to predict reactive power in
bulk utility buses [14, 15]. Another approach based on linear
and piecewise linear relationships between active and reactive
power was used to build a regression model of reactive power
[16]. The Takagi-Sugano fuzzy method is applied to the
ultrashort-term prediction of active and reactive power [17].

Reactive power forecasting based on fuzzy logic requires
framework verification for each stage of approval. Again,
rationalizing each step is also not feasible for analyzing the
boundary condition [18]. This also affects the accuracy setting
and enrolling capacity of the system. It also lacks hypothesis
testing, which is required to validate the model under partial
variation conditions. Furthermore, ANFIS involves a very
complex structure and gradient learning strategies for its real-
ization [19]. The ANFIS model becomes more complicated
and, at the same time, also requires more computational time.
The design of the membership function dynamically also
requires a very complex analysis [20]. It is required to handle
seven parameters at the input to predict the demand for reac-
tive power in a microgrid. The seven parameters include
voltage, frequency, time stamp, number of nonlinear load
connected, temperature, real power drawn, and power factor.
To address such a large number of data sets, it is required to
go for regression analysis, which will combine all the input
to predict the output at any instant of time for 5 minutes or
300 sec. Thus, short-term forecasting can be best modeled by
the autoregressive integrated moving average (ARIMA)
model. Here, in this research work, a seasonal variation to
ARIMA has been added to make it simpler and practically
feasible. These ARIMA and SARIMA models will act as base
models or benchmarking models. The research paper has the
following contributions and outcomes:

(i) The dynamic optimization model for reactive power
prediction based on real power demand and six
parameters has been modeled using a global flower
pollination algorithm

(ii) The developed framework (algorithm) is accurately
forecasting the short-term demand of reactive power

The rest of the research article has been organized as
follows: Section 2 represents the problem formulation based

on the proposed scheme as mentioned above. Two bench-
marking models such as ARIMA and SARIMA have been
discussed under the benchmarking model of Section 4. A
detailed result analysis has been described in Section 5
followed by the conclusion discussed in Section 6.

2. Problem Formulation

In order to analyze the reactive power forecasting based on
the real power and consequent price prediction, a time series
model can be designed. The flow of reactive power (Q) is a
function of voltage and real power drawn over a period of
time. Therefore,

Qt ~ T 0, δ2 ∀t ∈Q, 1

where Qt represents the reactive power drawn over time t
and δ represents the functional parameter of voltage. Taking
convolution of eq. (1) must satisfy

conv Qt ,Qu = δ2ζtv∀ t, u ∈Q 2

The convolution method applied over eq. (2) results in
the establishment of the white noise signal Qt t∈Q ~WN
0, δ2 . Now, in order to analyze standard independent time
series data, the system can be modeled in terms of the linear-
independent model. Let us compare and model a linear time
series signal RT t∈Q, representing real-time power trans-
ferred between two identified buses as a function of reactive
power flow data. Therefore,

Rt − 〠
T

i=1
ψiRt−i =Qt + 〠

T

i=1
θiQt−i ∀t ∈Q 3

Equation (3) shows that the flow of both real and reactive
power including losses can be made the same with the rest of
the white noise data. Both the time and its time inverse are on
the same plane of operation; therefore, the series can be
modeled in terms of the ARIMA model of the two different
(p, q) processes. Figure 1 shows the contour for reactive
power energy for the scaled area x.

So, defining for a set of periods of data by equation θi = 0,
the ARIMA function can be written as

Rt − 〠
T

i=1
ψiRt−i = θt 4

Equation (4) represents the series analysis of reactive
power modeled on influenced as a function of real power
and constant ψi over a period of time. Again, from a regres-
sion analysis point of view, this model is termed an ARI-
MA(p) process. Similarly, the ARIMA(q) process becomes

Rt =Qt + 〠
T

i=1
θiQt−i ∀t ∈Q 5
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Again, from eq. (4), for ψi < 1, eq. (4) can be written as

Rt = 〠
N

j=0
ψjQi−j + ψN+1RT− N+1 6

Applying energy to eq. (6), it becomes

E RT − 〠
T

i=1
ψiRt−i

2

= ψ
2N+2
i E R2

t− N+1 ⟶ 0 ∀N ⟶∞

7

Now, solving eq. (7) for T ⟶∞, it becomes

lim
T⟶∞

E RT − 〠
T

i=1
ψiRt

2

= 〠
N

i=1
ψ2N+2
i E R2

t− N+1 ⟶ 0 ∀N ⟶∞,

8

lim
T⟶0

E
2
T
Rt − 〠

T

k=0
Rt = 〠

N

i=1

ψ2N+2
i

3 Rt ⟶ 0 , 9

lim
T⟶0

E 2 ∂Rt

∂t
− 〠

T

k=0
〠
T

L=0

∂2Rt

∂t2
= 〠

N

i=1

2 2N + 1
3 ψ2N+1

i Rt ⟶ 0 , 10

or

E Rt = 〠
∞

m=0
ψmE qn−m k = 0 11

Here, eq. (11) represents the unique existence solution of
eq. (10). Now, deriving the covariance function, it becomes

γk = E Rt+kRt = 〠
N

i=1
〠
∞

m=0
ψi+mE Qt+K ⊕Qt+N 12

Again, further deriving eq. (12), the energy content of the
system becomes

E DRtn − T St0 − T St−n
2 ≤Dk 〠

m−1

k=0
tnk+1 − tnk

2 13

Again, on simplification, eq. (13) becomes

E DRtn − T St0 − T St−n
2 ≤Dk Q

n
t t, R tnk+1 − tnk

14

Therefore, the inline optimization becomes

E DRtn − T St0 − T St−n 2 = 〠
m−1

k=0
W Nn

k Qn+1
k −Qn

k ,

15

s t =
lim

n⟶∞
E DRtn − T St0 − T St−n

2 = WT2

2 + N −
1
2 T

Qn
k ≤ Rn

k ≤Qn
k+1

16

The energy density equation presented in eq. (16) shows
the Gaussian distribution based on probability theory. The
empirical confidence can be taken into consideration for
evaluating the interpolation. Keeping in view the spikes pres-
ent in the waveform, in this work, Gaussian flower pollina-
tion algorithm (GFPA) is used instead of the flower
pollination algorithm (FPA). The merits of GFPA over FPA
are listed below.

(i) Easy in segregating the collateral spike

(ii) Step size can be varied in accordance with spike
length

(iii) Analysis of periodic exponential term with respect
to seasonal variation in reactive power demand

Now, the modified optimization equation becomes

DRtn Qiter+1
t = DRtn Qiter

t + L DRtn Qiter
t −Qiter−1

t

+ exp −
d Qiter

t ,Qiter+1
t

2

2e2

17

Being a seasonal regression on time series data, the
exponential decaying part presented in eq. (1) converges
itself to a solution. A detailed process of flowchart is
presented in Figure 2.

3. Data Collection and Analysis

Reactive power analysis over a time period requires a rigor-
ous evaluation of load performance for both linear type and
nonlinear type of loads. Therefore, two simulation test

E (Q)

Net scalable area “x”

Change in reactive
power amplitude

t

A

Figure 1: Contour for reactive power energy.
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models have been created inside the lab one with 20 kVAR
load and 30 kVAR load. Both the loads are connected to
the microgrid through two different sources such as solar
PV and battery. The 20 kVAR load consists of high-speed
blowers, heaters, and 7 induction motors (each 2hp). In
order to capture the line power data such as time stamp,
reactive power, real power, current, and energy consump-
tion, a phasor measurement unit has been installed at each
nodal point. Here, the nodal point represents the load termi-
nation point. All the loads were connected to the main grid

through the line scheduler (TPS2301 and SLVS277) with a
preloaded time setting. This enables the operator to create
an artificial transition between loads, thereby enabling the
PMU to capture the required power quality. Thus, the data
collected from PMU was saved into a CSV file for further
analysis, testing, and evaluation.

The data were collected every 15 seconds for three
months. After the collection of the data depending upon
the type of load, the data were segregated into 5 different
clusters based on their nominal, ordinal, interval, and ratio.

Start

Create dataset

Testing
dataset

Apply
regression and
evaluate new

data point

5-fold
validation

Gaussian
system design

GFPA
modelling

Distance
evaluation and

redundancy
check

Search space
creation and
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Update each
point

GBest Qgbest Qpbest
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t = t + 0.1
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best value

Update new
search space
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A

Figure 2: Process flowchart for GFPA-enabled prediction system.
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All the data have undergone a redundancy check for incom-
plete data sets like inserting the unavailable data wherever
necessary or deleting a particular set of data. Table 1 shows
the basic statistical analysis of PMU data.

The data has been separated from each other based on
the null hypothesis. As observed in Table 1, the mean value
is lowest for 45 days of data, i.e., -0.223. This signifies that
the data points as collected from PMU are not far away from
each other. This also signifies that, at no condition, the null
hypothesis is rejected. The average standard deviation by
consolidating all the data is limited to 1.01%, which is much
smaller than the allowed statistical deviation of 5%. Again, as
observed, the kurtosis is lightly tailed, which means that the
data are not highly deviating from its normal distribution.

Table 2 represents the null hypothesis analysis of the
cluster. As seen, the R-square error is gradually decreasing
from cluster C-15 (days) to C-90. This means that as we
approach a large data set, the data set becomes more viable
for a time series analysis because the goodness of fit has also
increased. The average standard error by considering all the
clusters becomes 0.698 (average). This signifies that 69.8% of
data can take part in the regression analysis, as they repre-
sent how distinct the data are inside the data set. The varia-
tion in the df1 and df2 lies in the range of 0.99 and 1.

This section of the data analysis part represents that all
the clusters of data are arranged in proper order as desired
by the time series algorithm. All the statistical analysis as
shown in Tables 1 and 2 has been utilized by the bench-
marking model for further analysis in the next section.

4. Benchmarking Model

4.1. ARIMA. The autoregressive integrated moving average
time series model is an amalgamation of differenced autore-
gressive and moving average models, i.e., a combination of
past output and some random noise. The AR in ARIMA rep-
resents the autoregression aspect of time series analysis on its
data, MA signifies the moving average of errors, and I stands
for integration, indicating that the data has been differenced
with its previous values. Therefore, modifying eq. (15) in
terms of ARIMA,

DRtn = I +w1T Stt−1 +w2T Stt−2+⋯ +wnT
Stt−n + Et +N1Et−1 +N2Et−2+⋯ +NmEt−m

18

Equation (18) represents the ARIMA model reactive
power forecasting. Here, n represents the autoregressive, and
m represents the moving average error. T Stt−1 represents
the random noise. Now, based on eq. (18), two ADF models
have been modeled with two different P values. The critical
parameters for the order of (1, 1, 2) have been evaluated.
Table 3 shows the ADF statistics for different P values.

Table 4 shows the ARIMA model error analysis for the
order (1, 1, 2). Here, in Table 4, the minimum standard devi-
ation has been observed for Ar.L1.D value of 0.213 and that
of -0.455 for 0.975 accuracy level. Similarly, Table 5 repre-
sents the ARIMA modulus status for the order (1, 1, 2).

Tables 6 and 7 represent the ARIMA model error analy-
sis for the order (2, 1, 2) and modulus status. As shown in
Table 6, the minimum standard error of 0.116 was recorded
for Ar.L2.D value. Similarly, the corresponding probability
value is 0.772, and that of the upper boundary is 0.262.
The corresponding moving average value is 0.307 (std.
error). This signifies that the system becomes valid under
the upper limit of -0.211 to 0.262.

Figure 3 shows the autocorrelation analysis with 1st-
order difference and 2nd-order difference of the original
reactive power demand series. The higher-order difference
analysis has been conducted to find any possible good solu-
tion. It is observed that the autocorrelation error for the
second difference is very small as compared to the first-
order difference. Again, for 91 number of observation, the
AIC is 1306.99 and BIC is of 1322.058. Similarly, the HQIC
becomes 1313.07.

Figure 4 represents the forecasted reactive power as a
function of real power demand for 20 days. Here, the analy-
sis has been carried out for 95% of the confidence interval.
Similarly, Figure 5 shows the rolling mean and standard
deviation analysis for the original forecasted data. The roll-
ing standard deviation shows the deviation from the average
of the reactive curve. Here, it can be found that the maxi-
mum deviation is 0 07 × 104.

4.2. SARIMA. Seasonal ARIMA is one of the most widely
used forecasted models. The direct modeling of the SARIMA
model can be modeled by using SARIMA p, d, q × P,D,
Q . Here, p, d, q represents the nonseasonal component,
and P,D,Q represents the seasonal parameter.

Figure 6 represents the autocorrelation function plot for
the SARIMA model. As observed, the initial spike = 1 and
seasonal spike = 10. It clearly depicts that autoregression is
having order 1 and seasonal AR is of order 1.

Similarly, Figure 7 represents the partial autocorrelation
for SARIMA. As observed from the figure, the initial lag
spike is at 1, and that of the seasonal spike lies at 10. It
means that it has a moving average of 1, and that of the
seasonal dependent average order is also 1.

Based on the order and class as obtained from Figure 7,
Table 8 represents the SARIMA fit model with respect to
reactive power time series data.

The autocorrelation has a direct impact on the partial
correlation with an order of 50.37% as reported by Ljung-
Box. Similarly, a probability of 87% dependency has been
observed from the result analysis. The heteroskedasticity
factor has been found to be 0.58, which determines the
monotonicity involved in the prediction process.

The standard residual plot along with the histogram is
plotted in Figure 8. As observed here, the mean residual plot
is zero and all the residuals are uncorrelated. This states that
the model is well fitted with the data and p, q, d values.

4.3. Extreme Gradient Boosting (XGBoost). The XGBoost is
the application-oriented model of random forest (RF).
XGBoost adjusts the weight of weak learners, thereby
improving the forecasting rate of each tree. XGBoost
improves the generation of complex data sets by avoiding
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Table 1: Basic statistical analysis of PMU data.

Parameters 15 days 30 days 45 days 60 days 75 days 90 days

Mean 0.073 0.016 -0.223 0.115 0.083 0.067

Standard error 0.0089 0.0019 0.0026 0.00138 0.0099 0.008

Median 0.17 0.21 0.16 0.16 0.19 0.23

Mode 0.07 0.09 0.10 0.26 0.34 0.31

Standard Deviation 0.0411 0.052 0.0816 0.0922 0.161 0.183

Kurtosis -1.06 -1.13 -1.17 -1.23 -1.27 -1.09

Skewness -0.279 -0.288 -0.363 -0.419 -0.421 -0.393

Table 2: Null hypothesis analysis of cluster.

Cluster (days) R R-square Adjusted R-square Std. error df1 df2
C-15 -0.88 -0.22 -0.346 0.831 1 1

C-30 -0.93 -0.34 -0.408 0.866 1 1

C-45 -0.96 -0.42 -0.456 0.785 1 0.99

C-60 -1.08 -0.48 -0.462 0.911 0.99 0.99

C-75 -1.13 -0.53 -0.346 0.785 1 0.99

C-90 -1.17 -0.57 -0.471 0.803 0.99 0.99

Table 3: ADF statistics analysis for two different P values.

Model P value
Critical parameter

1% 5% 10%

ADF-1 1.20 10-6 -3.50 -2.89 -2.58

ADF-2 2.21 times 10-10 -3.50 -2.57 -2.37

Table 4: ARIMA model error analysis for the order (1, 1, 2).

Parameter Coefficient Std. error Z P > z 0.025 0.975

Constant 0.2171 1.116 0.195 0.846 -1.970 2.404

Ar.L1.D value -0.8928 0.213 -3.996 0.000 -1.331 -0.455

ma.L1.D value -0.1489 0.260 -0.572 0.569 -0.659 0.361

ma.L2.D value -0.8511 0.260 -3.276 0.002 -1.360 -0.342

Table 5: ARIMA modulus status for the order (1, 1, 2).

Model name Real Imaginary Modulus Frequency

Ar.1 -1.12 +0.00j 1.12 0.5

Ma.1 1.00 +0.00j 1.00 0.0

Ma.2 -1.17 +0.00j 1.17 0.54

Table 6: ARIMA model error analysis for the order (2, 1, 2).

Parameter Coefficient Std. error Z P > z 0.025 0.975

Constant 0.2193 1.150 0.191 0.849 -2.035 2.473

Ar.L1.D value -0.830 0.323 -2.569 0.012 -1.463 -0.197

Ar.L2.D value 0.0338 0.116 0.290 0.772 -0.194 0.262

ma.L1.D value -0.1873 0.308 -0.609 0.544 -0.790 0.416

ma.L2.D value -0.8125 0.307 -2.647 0.010 -1.414 -0.211
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overfitting of the curve against the data set. The nonlinearity
relationship among the complex data set can be handled by
providing additive training on each data point, where each
previous state of iteration solution (n − 1) is considered as
an actual forecast. This enables high-dimensional feature
space analysis. Mathematically,

ŷ i = 〠
t

i=1

P ŷ x
i−1 + P ŷ x

i

t
19

In eq. (19), i represents the iteration level, and t represents
the time series data of each level. ŷt represents state of data, and

that of ŷ x
i−1 represents the previous state of data. Equation

(19) offers a wide range of hyperparameter selection, which
enables the operator to optimize the model performance.

XGBoost parameter analysis for regression study has
been presented in Table 9. Figure 9(a) represents the

predicted vs. actual graph of reactive power demand with a
learning rate (L-Rate) of 0.032. As observed, the sample
has an associate rule of 0.11. The associate rule here repre-
sents the probability of data points inside the data set or
how closely they are related to the data of different data sets.
The result shows that (Figures 9(b) and 9(c)) the maximum
probability of 0.14 can be achieved with the data set of L-
Rate and that of 0.34 for tree analysis. Figures 9(d)–9(f)
represent feature importance vs. feature index for three
different learning rates. As observed in Figure 9(d), the
feature importance is positive for sample-3 only. This means
that the accuracy of the model in determining the feature
prediction is 0.02 which is very low. In Figure 9(e), the fea-
ture importance becomes positive for two samples with the
highest value of 0.2 and with a learning rate of 0.067. There-
fore, it can be assumed that there exists a scope for further
improvement. In the 3rd trial in Figure 9(f), all 3 samples
have shown positive feature importance with a maximum
accuracy level of 0.43.

Table 7: ARIMA modulus status for the order (2, 1, 2).

Model name Real Imaginary Modulus Frequency (kHz)

Ar.1 -1.1508 +0.00j 1.1508 0.5

Ar.2 25.70 +0.00j 25.70 0.00

mA.1 1.001 +0.00j 1.001 0.00

mA.2 -1.2306 +0.00j +1.2306 0.5
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Figure 3: Autocorrelation analysis with 1st-order difference and 2nd-order difference.
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5. Result Analysis

The experimental setup for the proposed work has been
started with data collection for reactive power from the
laboratory-operated critical load. Three months of continu-
ous data have been collected, i.e., May 2022 to July 2022,
through the phasor measurement unit (PMU) from various
sensitive points. The data has been tested for redundancy
check using Python programming, and wherever the data
was missing is filled with mean data from that series.

In order to create a proper mathematical optimization
model for its validation with respect to the problem-

formulated modeling, a curve fitting analysis has been car-
ried out over the data set. Four different methods of curve
fitting have been applied to the data set such as sine
order-8, interpolant, polynomial, and smoothening order-
4. The detailed statistical analysis of the method is shown
in Table 10.

Figure 10(a) represents the sum of the sine curve fitting
for different samples. An 8-order fitting model has been
applied. As observed, 7 38 × 105 numbers of the sample have
been used to predict the sample. Root mean square error
(RMSE) has been observed for the smoothing spine curve
(Figure 10(b)). As observed, only 112 numbers of the

0.8

0.2

–0.2

0 5 10

Autocorrelation

15 20

1.0

0.6

0.4

0.0

Figure 6: Autocorrelation function plot for SARIMA.

0.8

0.2

–0.2

0 5 10

Partial autocorrelation

15 20

1.0

0.6

0.4

0.0

Figure 7: Partial autocorrelation for SARIMA.

Table 8: SARIMA fit model with respect to reactive power time series data.

Parameter Coefficient Std. error Z P > z 0.025 0.975

ar.L1 -1.1571 0.264 -5.25 0.00 -1.974 -0.940

ar.L2 -0.4891 0.137 -3.56 0.00 -0.758 -0.220

ma.L1 -0.0046 2751.87 -1.67 1.00 -5393.57 5393.56

ma.L2 -0.9954 2739.04 -0.00 1.00 -5369.41 5397.42

ma.S.L4 -0.9122 8.393 -0.109 0.913 -7.36 15.53

ma.S.L8 -0.0863 0.783 -0.110 0.912 -1.62 1.44

Sigma 2 0.2848 783.49 0.000 1.00 -1535.33 1535.90
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samples have been outside the boundary of the fitted curve.
Similarly, polynomial and interpolate analysis has been
presented in Figures 10(c) and 10(d). Overfitting and under-
fitting of the curve have been found in Figures 10(a) and
10(d). Therefore, in this research, article curve fitting model
of the smoothing spine has been taken into consideration for
further analysis.

In order to optimize the local sample on the smoothing
spine, curve global flower pollination-based optimization
has been applied in accordance with the optimization equa-
tion as presented under eq. (27) and eq. (28). Algorithm 1,
presents the pseudocode used in the pollination algorithm

for the global optimization of the curve, here referred to as
the reactive power fitted curve.

Figures 11 and 12 represent the cost function optimiza-
tion for two different cost functions of c1 = 0 17 and c2 =
0 21. It is observed that the error in tracking the trajectory
path is limited to 0.026 for c1 and 0.022 for c2. At about
10.00 sample time (Figure 12), the actual direction of opti-
mization is the same as that of trajectory. Based on this,
Tables 11 and 12 represent a detailed comparative analysis
of different optimization algorithms such as PSO, GA, and
FPA. Here, FPA shows better performance for 750 samples
of observation with min. deviation of 0.47.
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Figure 8: (a) Standard residual plot. (b) Histogram plus estimated density. (c) Normal Q-Q. (d) Correlation plot.
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Figure 13(a) represents the fitness function analysis for
FPA with an initial pollen level of 2.33, enabling reactive
power optimization. It determines the closeness of the opti-
mized solution to the set point. Here, 5-fold cross-validation
has been applied to find the mean fitness value at 4603.58.
Figure 13(b) shows the current best individual. Here, a sam-
ple pollination size of 10% has been used for the evaluation
of the distance between two conjugate pollens. In order to
find the best local optimized solution, the average distance
between two pollen has been maintained at 0 03 × 10−3 as
shown in Figure 13(c). Fitness scaling for each individual is
presented in Figure 13(d). Here, expectation vs. the raw
score is presented. As noticed for a score level of 4603, a
maximum expectation of 4 has been found. Similarly, each
individual’s fitness is presented in Figure 13(e), where a
fitness value of 4000 is found for every individual. The selec-
tion function for each individual is presented in Figure 13(f).
Here, individuals 6 and 9 have been taken into consideration
for further analysis because these individuals have the high-
est number of children. Similarly, Figure 14 represents the
flower pollination optimization with an initial pollen level
of 3.07.

In order to analyze the data using Holt-Winters’ expo-
nential smoothing, the following steps have been followed:

(i) Prepare the data set to find about trend and seasonal
patterns

(ii) Linearity inside the elements of the data set is
established

(iii) Identification of seasonal multiplication or addition
for prediction over the data set

In this paper, the data set has been tested for both seasonal
multiplication and additionmodels evaluating the effectiveness
of the system. Table 13 shows the seasonal multiplication
method under different weight conditions, and Table 14 shows
the additive method under different weight conditions. Algo-

rithm 2 shows the pseudocode for reactive power prediction
using Holt-Winters’ exponential model.

Figure 15 represents the reactive power flow/demand
over 3 different months. Three different patches of reactive
power demand have been evaluated. Figure 16 shows the
distributed seasonal trend of the reactive power samples.
The trend pattern of the data reveals that the prediction is
a linear combination of exponential data and sine waveform.
Here, a residual of 1 unit has been observed. The seasonal
pattern has an accuracy level of 0.98 units, which is 7.09%
efficient as compared to ARIMA and 11.38% efficient as
compared to the SARIMA model. As desired, the additive
and multiplicative trends of the proposed model merge at
the end of 3 months of data. However, there exists an RMSE
level of 3.28 between the two sets of predictions.

Figure 17 represents Holt-Winters’ additive and multipli-
cative trend analyses for reactive power prediction. The
prediction has been done for 5min intervals of time for the
next 5 days. The error between additive and multiplicative
forecasting is merged together and found to be zero. This indi-
cates that the prediction is accurate for all seasonal variations.

Table 15 represents the prediction for an 8-day evening
peak using HW model. As observed during 8-9 pm, maxi-
mum evening peak has been observed of a maximum magni-
tude of 917.415MW on day 3, with an average demand of
843.39MW on day 1. All the peak values were also validated
against their actual values based on the history data set.
Table 16 represents a comparative analysis of error matrices
between the benchmarking model and the proposed model.
The median analysis of different quantities such as nMBE,
nMAE, nRMSE, and RMSE has been conducted. Normalized
MBE, which evaluates the underestimation and overestima-
tion of data inside a data set, is found to be negative for
ARIMA, whereas the least positive value of 0.42 has been
found for HW-GFPA under validation. Similarly, for the
testing data set, it is 0.43. The normalized RMSE, which
determines the variance present in between actual measured
values and forecasted value, is 0.803 (least) for proposed
HW-GFPA for validation and of 0.799 for testing.

Table 9: XGBoost parameters for regression analysis.

Cluster level Parameters Range SHAP Associate rule

Sample-1

Objective Squared error — —

L-Rate 0.032 0.04 0.11

Max.Depth 2.86 13 0.11

Bytree 0.51 0.7 0.28

Sample-2

Objective Squared error — —

L-Rate 0.067 0.048 0.12

Max.Depth 3.34 14.15 0.12

Bytree 0.58 0.80 0.31

Sample-3

Objective Squared error — —

L-Rate 0.070 0.053 0.14

Max.Depth 3.80 14.99 0.12

Bytree 0.66 0.90 0.34
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Figure 9: Reactive power forecasting: (a) sample-1 with a learning rate of 0.032, (b) sample-2 with a learning rate of 0.067, (c) sample-3 with
a learning rate of 0.070, (d) feature index for sample-1, (e) feature index for sample-2, and (f) feature index for sample-3.

Table 10: Comparative analysis of different curve fitting techniques.

Type
R-square Adj-R DFE RMSE

Ref. Test Ref. Test Ref. Test Ref. Test

Sum of sine 0.50 0.4077 0.40 0.2073 50 68 20 29.93

Smoothing spine 0.99 0.725 0.30 0.312 25 36 50 42.13

Polynomial 0.20 0.218 0.30 0.33 70 83 50 37.41

Interpolate 1 1 NaN NaN 1 0 0 NaN
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Figure 10: Continued.
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Figure 10: Curve fitting model: (a) sum of sine curve, (b) smoothing spine, (c) polynomial, and (d) interpolate model.

Require: Define objective function, f Q = q q1, q2, q3 ⋯qn
Ensure: the Initial optimal solution for the reactive power cost function, Initialize qn

for DRtn = 1 IterationNo count do
for =1: N do
Plot initial distribution for Qn

k ,Qn+1
k ;where Q=reactive power

Random choose p,d,q
perform pollination eq. (27)
find new optimized solution
check the boundary eq. (28)
update pollen

end for
end for

Algorithm 1: Reactive power local sample evaluation.
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Table 11: Comparative analysis of different optimization algorithms for cost function: c1 = 0 17.

Sample Algo. DRtn Mean E(DRtn) Min

300

PSO 1.11 0.37 0.82 0.01

GA 1.17 0.42 0.73 0.22

FPA 1.15 0.44 0.71 0.01

450

PSO 3.81 0.49 4.64 2.15

GA 5.47 2.98 2.98 5.47

FPA 2.98 2.98 0.49 2.98

600

PSO 5.47 2.15 0.49 4.64

GA 5.47 0.49 1.32 2.98

FPA 1.32 5.47 5.47 5.47

750

PSO 0.49 0.49 2.15 4.64

GA 1.32 3.81 4.64 4.64

FPA 2.98 5.47 -0.34 2.15

Table 12: Comparative analysis of different optimization algorithms for cost function: c2 = 0 21.

Sample Algo. DRtn Mean E(DRtn) Min

300

PSO -1.08 -1.69 -1.32 -1.99

GA -1.03 -1.65 -1.39 -1.82

FPA -1.04 -1.63 -1.41 -1.99

450

PSO 2.54 1.85 -2.28 -0.22

GA -0.22 2.54 -0.22 1.85

FPA -2.28 2.54 0.47 -0.22

600

PSO 2.54 -2.28 0.47 0.47

GA -0.90 -0.22 -2.28 -0.90

FPA -1.59 -2.28 2.54 1.85

750

PSO -1.59 0.47 -0.90 -0.90

GA -2.28 0.47 0.47 1.16

FPA 1.85 1.16 0.47 0.47
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Figure 13: Flower pollination optimization with initial pollen level 2.33: (a) fitness vs. pollen generation, (b) current best individual, (c)
average distance between individual, (d) fitness scaling, (e) fitness of individual, and (f) selection function for children/pollen.
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Figure 14: Flower pollination optimization with initial pollen level 3.07: (a) fitness vs. pollen generation, (b) current best individual, (c)
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Table 13: Seasonal multiplication method under different weight conditions.

Month (0, 0.1) Error (0, 0.4) Error (0, 0.6) Error (0, 1) Error No. of sample

May-22 203, 66 8, 0.13 78, 71 8, 0.13 112, 57 11, 0.38 114, 78 84, 0.85 028

June-22 248, 04 11, 0.72 83, 59 8, 0.22 104, 63 11, 0.38 117, 34 79, 0.90 1047

July-22 132, 81 11, 0.64 117, 61 9, 0.73 97,61 13, 0.77 133, 64 81, 0.92 1047

Aug-22 141, 73 9, 0.98 118, 57 7, 0.88 103,72 11, 0.84 170, 55 79, 0.62 1093

Table 14: Seasonal additive method under different weight conditions.

Month (0, 0.1) Error (0, 0.4) Error (0, 0.6) Error (0, 1) Error No. of sample

May-22 138, 43 98, 0.33 137, 49 77, 0.37 142, 59 63, 0.38 117, 29 6, 0.67 1028

June-22 126, 38 91, 0.48 128, 41 78, 0.44 147, 63 67, 016 121, 69 6, 0.38 1047

July-22 132, 40 93, 0.55 117, 39 92, 0.51 123, 52 61, 0.87 128, 68 7, 0.61 1047

Aug-22 135, 47 87, 0.51 133, 56 87, 0.58 134, 50 54, 0.66 133, 81 11, 0.74 1093

Require: Define map evaluation, f Month =m m1,m2,m3 ⋯m4
Ensure: Monthly reactive power sample data

Value: Predict distinct boundary error
if Data no trend no season then

Apply exponential smoothing
else

if data no season then
apply Holt-Winters’ model
Predict reactive power for each month
add(error valuation, measure)

end if
end if

Algorithm 2: Reactive power prediction: Holt-Winters’ exponential model.
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Figure 15: Reactive power sample over three different months.
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Figure 17: (a) Holt-Winters’ single exponential smoothing graph. (b) Holt-Winters’ additive and multiplicative trends.

Table 15: Prediction using HW model for 8-day evening peak analysis.

Sample time (PM) D1 D2 D3 D4 D5 D6 D7 D8

5-6 937.285 746.834 886.056 917.408 870.676 864.006 881.823 800.852

6-7 874.765 838.080 771.428 899.362 814.018 777.647 833.484 723.414

7-8 792.601 777.439 701.350 767.383 920.583 918.354 742.873 765.647

8-9 850.266 726.181 917.415 785.319 689.934 908.772 882.846 825.250

9-10 762.078 920.868 916.909 745.847 895.593 728.439 770.720 837.624

Average 843.399 801.880 838.632 823.064 838.161 839.443 822.349 790.558
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6. Conclusion

In this research paper, an attempt has been made to find the
reactive power demand based on the usage of real power.
Out of 1st-year load data, only three months of critical load
reactive power has been taken into consideration from the
lab experimental setup.

The problem formulation, as discussed in Section 2,
reveals that reactive power forecasting can be modeled based
on the load demand. After detailed modeling, it is under-
stood that the global flower pollination algorithm can be best
suited for the point-by-point optimization of the system.
Again, in this research paper, Holt-Winters’ model has been
used for forecasting reactive power.

In order to validate the robustness of the proposed
model, ARIMA and SARIMA models have been taken into
consideration as the benchmarking models. The GFPA has
been validated against PSO and GA regarding its effective-
ness in predicting the time series data for two different cost
functions. Again, under the result section, a detailed sample
forecasting for three different situations such as normal
load, critical peak demand during the day time, and critical
peak demand during the night time has been presented as
forecasted reactive power for 8 days in the month of
August 2022, which is also validated in terms of MAPE
and average error of actual data during that time interval
for the same month.

The result analysis shows that the proposed Holt-
Winters’ model enabled with GFPA can predict effectively
reactive power based on the active power against ARIMA
and SARIMA models. In this research article, unit price
commitment based on reactive power has not been taken
into consideration; however, future work can be made based
on this research matter.
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