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An entropic coefficient of reversible entropic heat is a key parameter in determining the battery thermal responses, but its
measurement is challenging due to time consuming and inaccurate traditional methods. In this regard, an analytical approach
based on the inverse heat transfer problem is newly proposed to precisely determine the entropic coefficient with low
experiment cost. Experiments are conducted by discharging the battery under four different current rates to inversely estimate
the entropic coefficients, and the least squares regression are conducted to optimize the derived entropic coefficients. Through
the comparison with the existing potentiometric method, the experimental time can be reduced by 93.7%. Furthermore, the
accuracy of the proposed method is well verified by validating within the root mean square error of 0.848°C by comparing
with the experimental results. Through the validation processes under various operating conditions, such as low to high
current rates, charging process, dynamic loads, and different ambient temperatures, the proposed method is proven over
temperatures ranging from 10°C to 60°C. Conclusively, the proposed method can be a great alternative to replace the classical
experimental methods.

1. Introduction

For decades, lithium-ion batteries (LiBs) have been actively
used as high-efficiency energy storage devices in various
industries, from small portable electronic devices to
medium-to-large energy storage systems for electric vehicles
(EVs) or power grids. In general, the LiBs generate heat
within the cell during charging or discharging, and the
battery thermal responses become much more severe with
the continuously increased capacity and power. Thus, the
careless battery uses without the cooling system could
rapidly increase its temperature, possibly inducing thermal
degradation and accelerating the irreducible aging rate,
reducing the total lifetime [1]. A variety of battery thermal
management studies have been introduced to predict these
thermal aging effects for ensuring the safe use of batteries.
Representatively, precise SOH estimation methods for real
EV applications [2] have received a lot of attention. Along
with the development of cutting edge techniques based on
machine learning, studies on predicting thermal state of

the battery under normal conditions but also at extreme
situations like thermal runaway are being introduced [3].
Above all, studies on the battery thermal management sys-
tem (BTMS) have received a lot of attention that BTMSs
using heat passive systems such as phase change material
[4] and heat pipe [5], integrated with the classical active
cooling systems, are being actively introduced. As such, a
variety types of studies have been conducted on the perfor-
mance and safe use of the battery system, and they are all
closely related to the battery thermal behavior. For these rea-
sons, the most important thing in designing a battery system
is accurate analysis and understanding of the battery thermal
behavior. Equally, it is necessary to develop a fast and accu-
rate analytical method for battery heat sources in particular.

Thus far, numerous studies have been conducted on
analyzing the battery heat generation during operation.
According to the Bernardi equation [6] with the assumption
of negligible mixing and phase change effects [7], the battery
heat generation is primarily composed of two primary heat
sources, the irreversible joule heat and reversible entropic
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heat. The former is the exothermic heat due to the internal
resistance caused by the current flows and the latter one
owes to the entropy change (ΔS) between two active mate-
rials. Unlike the joule heat, the entropic heat could be both
exothermic and endothermic depending on the sign of the
entropy change. The entropy change can be replaced by
the entropic coefficient (∂Uoc/∂T) through the thermody-
namic relation [8], representing the temperature derivative
of the open-circuit voltage (Uoc :OCV). Since the entropy
change in the battery denotes the structural change between
the cathode and anode during charge or discharge, they can
be either positive or negative and so is the entropic coeffi-
cient. The entropic coefficient is generally differed by the
operating conditions of the battery, such as the current rate
(C-rate), which is the measure of the rate at which battery is
charged or discharged with respect to its nominal capacity,
environmental conditions temperature, and aging condi-
tion. In particular, it is highly dependent on the state of
charge (SOC) of the battery. Therefore, it is relatively diffi-
cult to measure the entropic coefficient compared with mea-
suring the internal resistance of the former joule heat.
Taking into account that the internal resistances can be
reduced or minimized via a suitable cell design, the entropic
coefficient, which is the main thermal property of the LiB,
can be a key player in determining the thermal behavior
of the battery. Consequently, it is essential to analyze the
entropic coefficients according to the battery SOC as pre-
cisely as possible.

Up till now, various methods have been conducted to
obtain the entropic coefficient of the LiBs. They are funda-
mentally based on experimental methods but can be specif-
ically divided into two categories, classical and modified
experimental methods. Representatively, classical methods
are the potentiometric method based on thermodynamic
theory and the calorimetric method using the calorimeter
[9]. They have been used for decades to measure the entro-
pic coefficient of the LiBs, and recently, several modified
experimental methods have been proposed to compensate
for the shortcomings of the preceding methods. Their
characteristics are as follows. First, the potentiometric
method analyzes the relationship between the voltage and
temperature by measuring the OCV of the battery while
changing the temperature in a specific SOC of the battery.
Then, they are determined by calculating the slope of the
OCV versus temperature. Since the potentiometric method
was first introduced by Thompson [10], it has been mostly
adopted in many previous studies on battery thermal analy-
sis. However, there is an unavoidable drawback of taking a
huge relaxation time to meet the electrical-thermal equilib-
rium state. Another experimental method is the calorimetric
method using calorimeters, accelerating rate calorimeter
[11, 12], or isothermal heat conduction calorimeter [13, 14]
to measure the battery heat generation rate during charging
and discharging. The method derives the average entropic
coefficients according to the battery SOC under the assump-
tion that the same joule heat is generated during charging
and discharging processes if the same C-rate is applied. Com-
pared to the potentiometric method, the calorimetric method
can save considerable time, but its inaccuracy is often pointed

out, and there is a fatal disadvantage that the size of the
battery is limited by the size of the equipment [15].

Recently, some new methodologies to strengthen or
replace the above traditional methods have been introduced
to measure the entropic coefficients of LiBs more accurately.
Schmidt et al. measured the entropy change via electrother-
mal impedance spectroscopy by observing the temperature
fluctuations of the LiBs by applying the sinusoidal current
with a different frequency [16]. Osswald et al. introduced
the advanced measurement protocol of classical experimen-
tal methods. They used the background correction approach
to derive the entropy profiles of LiBs, reducing the measure-
ment time from several weeks to a few days while not scari-
fying the measurement accuracy [17]. Damay et al. proposed
the advanced calorimetric method along with the improve-
ment plans of the existing calorimetric method. According
to the authors, it is possible to accurately obtain entropy-
variation as a function of SOC by creating experimental con-
ditions of high cell temperatures and low current-rates [18].
Geifes et al. extracted the entropic heat coefficient from the
pulse relaxation measurement and refined them through
least squares estimation. The method seems to be similar
to the previous potentiometric method but succeeded in
saving the experimental cost [19]. From then on, the so-
called methods used for data analysis, such as the time or
frequency domain method, were used to derive the continu-
ous entropic coefficients of the battery. Hu et al. proposed
the new method for measuring entropic coefficients based
on the hybridized time-frequency domain analysis tech-
nique. Although the method itself is similar to the existing
method, they succeeded in deriving the entropic coefficients
through the background correction from the time domain to
the frequency domain [20]. Based on this, Hu and Choe
continued to develop an improved calorimetric method with
the wavelet transform technique. Their data processing was
applied the method on the battery heat generation data
resulting from the isothermal calorimeter, successfully
improving the accuracy of the conventional calorimetric
method [21]. Similarly, Abbasalinejad et al. used the
frequency-domain method and modified it to couple with
the physics-based electrochemical-thermal battery model.
The model was used to fit the entropy of reaction and
proved its feasibility by comparing it with traditional
methods [22].

From the literature review, the classical experimental
methods are found to require too much time or reveal low
accuracy in estimating the entropic coefficients of the bat-
tery. In particular, the most used potentiometric method,
which highly depends on the linear interpolation between
intermittently measured values, cannot derive continuous
entropic coefficients as a function of SOC. Therefore, it
inevitably requires repetitive experimental processes at the
closest SOC interval as possible to obtain accurate values,
which increase the experimental time several times. The
calorimetric method likewise suffers from a low accuracy
problem from its unclear assumption. Despite some recently
presented methods to substitute the above experimental
methods, the following limitations remain clear; most of
them tried improving existing experimental methods, but it
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is recognized to yet require a considerable amount of
experimental time. Above all, there are very few studies
that verify the developed method in terms of battery tem-
peratures during operation. One of the main purposes of
measuring the entropic coefficient is to predict the battery
thermal behavior precisely; thus, it is requisite to check
whether the proposed method or newly obtained entropic
coefficients are applicable under various charging and dis-
charging conditions.

The limitation of previous studies is an excessive depen-
dency on classical experimental methods, impeding the
precise and fast measurement of the entropic coefficients.
In this context, the current study develops a new analytical
approach to estimate the entropic coefficients of the battery,
aiming to reduce the measurement time while ensuring
accuracy. An inverse heat transfer analysis (IHTA) method
is used intending to make the entropic coefficients the only
unknown parameter in the energy equation, and in this
process, the numerical generalized reduced gradient (GRG)
algorithm is mainly used to find out the optimal heat
transfer coefficient of the battery. The IHTA method is then
used to calculate the entropic coefficients continuously
according to the battery SOC, and the newly obtained values
are refined through the regression analysis and least squares
estimations to achieve representative values. Through the
comparison with the existing experimental method, the
high precision and time-efficient attributes of the proposed
IHTA method are verified. For the last, the validation
under various operating conditions such the cases of low
to high C-rates, charging process, dynamic load condi-
tions, and different ambient temperatures is mainly con-
ducted to prove the feasibility of the developed method
in predicting the battery thermal behaviors. The main
contribution of the current work is to develop the new
analytical method that can obtain the entropic coefficients
the with the utilization of the numerical technique and
minimal experimentation. Especially, the proposed method
is expected to be universally applied to any LiBs without
repetitive processes of preexperiments for battery thermal
analysis.

2. Research Approach

In most scientific problems, it is usual to solve the govern-
ing equations with given or defined boundary conditions
(causes) to predict the results, and this process is called
a forward problem. An inverse problem is an opposite
case of the forward problem, and it is named as an inverse
heat transfer problem when applying to thermal analysis.
Inverse heat transfer problems are often used to estimate
the unknown parameters in the mathematical formulation
of physical processes in thermal sciences by using the
measured data, such as temperature, from the experiment
[23]. It has been applied to various types of heat transfer
analysis in previous literature with analytical or numerical
methods, usually obtaining the thermal properties of the
material: thermal conductivity and convective heat transfer
coefficient. Focusing on that, the entropic coefficient (EC)
is similarly a unique physical property of each LiBs since

it is commonly a function of SOC [24]; it is possible to
inversely derive the value of EC by solving the inverse heat
transfer problems. From this point of view, the current
study has tried to find the ECs by building the analytical
solutions of the energy equation for the battery cell from
the boundary conditions. Since the inverse heat transfer
problems for the battery thermal model are ill posed
where most parameters are unknown, the current study
first focuses to make them clear, and section 2 illustrates
the process of defining the unknown parameters and
finally determining the ECs.

2.1. Battery Thermal Model. The lithium nickel manganese
cobalt oxide (LiNiCoAlO2: NCA) cylindrical-type battery
cell is used in the current study. It is a typical battery of
the so-called 21700 batteries with a size of 21.1mm diameter
and 70.15mm height. The nominal capacity is 4.9Ah, and
the charge/discharge voltage limits are 4.2V and 2.5V,
respectively. The specific technical specifications of the
battery with are listed in Table 1.

To predict the battery thermal responses, it needs to
realize how much heat is generated and dissipated during
its operation, and the related energy equation [26] can be
expressed in the following:

mcp
dT
dt

= _Qgen − _Qdis, ð1Þ

where m, cp, and dT/dt on the left-hand side are the mass,
specific heat, and temperature changes (dT) over time (dt)
of the battery cell. In the thermal analysis, the mass of the
battery is 69.5 g, and the specific heat is defined by Equa-
tion (2), considering the temperature-dependent property
of the LiBs.

cp = 2:29∙Tcell + 1040:5: ð2Þ

Equation (2) is from the previous work by Sheng et al.
[25], which analyzes the same type 21700 LiB as the current
study. The first and second terms on the right-hand side of
Equation (1) are the heat generation and heat dissipation of
the battery, respectively. Since both the heat generation and
heat dissipation are one of the major terms changing the bat-
tery temperature, more explanation for the battery heat gen-
eration is discussed more closely in the next section 2.2 and
for the heat dissipation in the section 2.3. Given that the
LiB is a composite material composed of five structural
layers, it has anisotropic properties [27] with two thermal
conductivities in the radial and axial directions. This may
occur a thermal gradient within the battery cell depending
on the experimental environments. It is required to use
discretization methods, such as a finite element or difference,
to solve the temperature distribution with the cell. However,
it is beyond the scope of the current work and is not covered
at this time. Instead, it is noted that the current study adopts
the lumped thermal capacitance method after checking its
applicability with the small enough Biot number (Bi) in
all heat transfer directions. The Biot number in the radial
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and axial directions under the experimental conditions is
estimated as

Bir =
hLc
kr

=
9:965∙0:004594

1:16ð Þ ≈ 0:039464 < 0:1,

Biz =
hLc
kz

=
9:965∙0:004594

23:6ð Þ ≈ 0:000194 < 0:1,

8>>><
>>>:

ð3Þ

with the maximum heat transfer coefficient (h) calculated
in the current study to verify the model validity under
the most rigorous condition as possible. The characteristic
length (Lc) is calculated as the volume and surface area
ratio for the cylinder. Considering the anisotropic charac-
teristics of the battery, the higher value of thermal conduc-
tivities in radial (kr) and axial (kz) directions is applied in
the calculation. Similar to the case of specific heat capac-
ity, the values of two thermal conductivities are referred
from the previous work by Sheng et al. [25]. Conclusively,
as the Biot number in both the radial and axial directions
is calculated as less than 0.1 [26], which is the criteria to
apply the lumped capacitance assumption; the current
study assumes there is no severe thermal gradient within
the battery cell. In applying the lumped parameter model,
the convective heat transfer coefficient (h) is a changeable
parameter different from the properties of the battery, so
the lumped model can be sufficiently applied by adjusting
ambient conditions to natural convection or semiadiabatic
conditions. In addition, in the base discharging experiment
to obtain the data used for the developed model, as the
experiments are intended to perform at low C-rate ranges
(≤1.0C) where reversible heat is relative clear, the thermal
gradient within the cell could be small with the uniform
and low current density within the cell. The more descrip-
tions on the experimental procedures are explained in the
Chapter 3 (Experiment).

2.2. Battery Heat Generation. It has been known that there
are four heat sources of irreversible resistive heat, reversible
entropic heat, and heat in side reactions and mixing process
involved in the battery heat generation. The first two heat
sources are mainly involved in the battery thermal behavior
as they are immediately responded to the internal resistance
and entropy change of the battery during charge or dis-
charge, so they are considered to be the most important in
battery thermal analysis from almost all previous literature.
The other two heat sources, the heat in side reactions and
in the mixing process, are related to the aging process of
the battery and due to the formation and relaxation of
concentration gradients within the cell, which is significant
in the dynamic charge or discharge cycle [28]. In addition,
compared to the former joule and entropic heat, the latter
two heat sources are recognized to be limited and can be
negligible in general trend for electrochemical systems with
good transport properties and for high-power applications
[29]. Considering that the batteries used in the current study
are new and tested under the constant C-rate, the irrevers-
ible resistive and reversible entropic heat are principally
focused on. To sum up, the battery heat generation can be
expressed as

_Qgen = I Uoc −V cellð Þ − IT
dUoc

dT
: ð4Þ

The former is the irreversible resistive heat due to the
electrical loss by the internal resistance of the battery. It is
proportional to the current I where the its sign is positive
for discharge and negative for charge reflecting the open-
circuit voltage (OCV, Uoc) is generally higher than cell
voltage (Vcell) for the discharge case and vice versa for the
charge case. Therefore, the resistive heat is always exother-
mic regardless of the sign of the current. The OCV is the
electrical potential difference between the cathode and anode
materials of the battery when there is no external load. Tak-
ing into account that the OCVs are critically varied by the
state of charge (SOC) of the battery [24], it is necessary to
characterize the OCV-SOC relation. Accordingly, the pre-
liminary experiment is carried out to measure them for each
state of charge, considering both the resistive ohmic and
capacitive nonohmic sources by activation and mass con-
centration. The more precise description of the above
experiment is written in section 3.2 of the experimental
procedure. On the one hand, the latter is the reversible
entropic heat by the entropy change (ΔS) between the
cathode and anode materials of the battery. In contrast
to the resistive heat, the entropic heat is either exothermic
or endothermic depending on the signs of the current and
entropic coefficient ðdUoc/dT = ΔS/nF, ECÞ, in which it is
highly related to the electrochemical reactions occurring
in LiBs and defined as the entropy change divided by
the number of electron (n) and the Faraday Constant (F).
The entropic coefficient in the current study is recognized
as the thermal property related to the total microscopic
change in entropy of within full cell of LiNiCoAlO2 cathode
and graphite anode since the entropy change in battery
occurs between two active materials due to lithium

Table 1: Specifications of the battery cell.

Item (unit) Value

Model INR21700-50G

Manufacturer SAMSUNG SDI

Cathode/anode materials LiNiCoAlO2/graphite

Electrical properties

Nominal capacity (Ah) 4.9

Nominal voltage (V) 3.63

Charging/discharging voltage
ranges (V)

2.5~4.2

Maximum current (A) 14.7 (3 C-rate)

Cycle life (end at 80% of
nominal capacity)

1,000

Physical and thermal properties

Dimension∗ (mm) 21:1 × 70:15
Mass (g) 69.5

Specific heat (J·kg-1·K-1) f = Tcellð Þ [25]
Thermal conductivity (W·m-1·K-1) kr = 1:16, kz = 23:6 [25]

∗Diameter × Height.
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concentration change. The ECs are known to be greatly var-
ied according to the state of charge of the battery, and The T
in Equation (4) is the absolute temperature of the battery in
degrees Kelvin.

2.3. Estimation of Heat Dissipation and Heat Transfer
Coefficient. During operation, the battery not only generates
the heat but also dissipates the heat. This battery heat dissi-
pation is a heat loss to the surrounding environment during
the experiment and generally consists of heat convection and
heat radiation to the surroundings. Each heat transfer rate is
different according to the shape of the battery or the exper-
imental heat transfer conditions. In particular, the convec-
tive heat transfer coefficient is commonly estimated using
empirical equations, such as the Nusselt number correla-
tions. However, it is impractical to use the empirical correla-
tion that entirely reflects the experimental conditions, and
besides, the circulating airflow to keep the stable tempera-
ture inside the chamber could prevent to find the exact heat
transfer coefficient. Therefore, the current study considers
using another method to calculate the overall and optimal
heat transfer coefficient that includes both the convective
and radiative heat transfer coefficients. The adopted method
is to track the temperature changes of the battery by cooling
the battery for a certain period, estimating the cooling rates
of the battery cell with the numerical algorithm. After finish-
ing the discharge process, the battery heat generation is
stopped as well, but the battery heat dissipation occurs con-
tinuously in nature, as seen in Figure 1(a). During the rest
time, the battery is cooled down to the ambient temperature
in the form of a nonlinear curve, and the energy equation for
the battery during the rest time can be written in

mcp
dT
dt

� �
cell

= − _Qdis, ð5Þ

where the equation states that the increase or decrease rate
of the internal energy of the battery cell is varied by the heat
dissipation rate ( _Qdis). When considering Newton’s law of
cooling, the heat dissipation rates can be calculated by

_Qdis = hA Tcell − Tambð Þ, ð6Þ

where h, A, and ðTcell − TambÞ denotes the heat transfer coef-
ficient, heat transfer surface area, and temperature difference
between the cell and the ambient. Here, the optimal value of
the heat transfer coefficient can be obtained by solving the
nonlinear cooling curves of the battery cell obtained during
the rest time displayed as the blue line in Figure 1(a). In
the present work, the nonlinear problems are solved based
on the generalized reduced gradient (GRG) algorithm. The
GRG algorithm is the typical gradient-based numerical
method often used for constrained and nonlinear optimiza-
tion problems [30]. It is similar to the widely known gradi-
ent descent algorithm [31], which is an iterative first-order
optimization algorithm used to find the optimal value that
minimizes the cost function, as seen in Figure 1(b). The cost
function is directly the error here, and by reducing the

errors, it is possible to find the optimal heat transfer coeffi-
cient for each experimental case. The related equation form
is expressed as

h = argmin mcp
dT
dt

� �
cell

− hA Tamb − Tcellð Þ
� �

: ð7Þ

The term in the square bracket of Equation (7) are the
Equation (6) and states that the change rate of the battery
thermal state (left term in square bracket) is equal to the
cooling heat transfer rate from the cell to ambient (right
term in square bracket). To sum up, Equation (7) means that
the optimal h value can be found in the direction in which
the sum of those two terms is minimized since the summa-
tion should be theoretically zero. In this study, the error is
defined as the mean square error (MSE), which is the square
of the difference between the two terms. For the iterative
computations, the initial guess for h is set to 1W·m-2·K-1,
and Figure 1(b) describes the process of finding the optimal
value that minimizes the gradient, i.e., MSE through iterative
computations. For instance, the battery temperature curves
according to h values obtained from the iterative calculations
are depicted in Figure 1(c). It also can be seen that the finally
computed optimal h predicts the battery temperature most
similar to the actual experimental value. The convergence
criteria to stop the iteration is set to be 10-6. The GRG algo-
rithm is solved using Microsoft® Excel’s Solver® add-in tool
[32], which is a powerful solver based on a spreadsheet to
optimize the nonlinear least squares data fitting. In practice,
the cooling period used in the numerical iterations is the first
1 h during which reveals a clear temperature change, as
shown in Figures 1(b) and 1(c). The heat transfer coefficients
for experimental cases are computed as values ranging from
8.127W·m-2·K-1 to 9.965W·m-2·K-1, and then used for the
proposed method to determine the ECs that is explained
more clearly in the next section 2.4. The accuracy of the
GRG algorithm to find the optimal h is verified together
during the validation process in section 4 (results and
discussion).

2.4. Calculation of Entropic Coefficient Using Inverse Heat
Transfer Analysis. All parameters except the ECs needed
for the battery thermal model are determined from the
above subsections 2.1 to 2.5. Therefore, it can be seen that
the EC is the only unknown parameter in the energy equa-
tion (Equation (1)) of the battery cell, and the prerequisites
for solving the inverse heat transfer problem are established.
If viewed as inverse heat transfer problems, the ECs can be
inversely rearranged by

dUoc

dT
tð Þ = mcp dT/dtð Þ − I Uoc −Vcellð Þ + hA Tcell − Tambð Þ

ITcell
:

ð8Þ

The above proposed process is named as the inverse heat
transfer analysis (IHTA) method for a clear description. It is
noted that the ECs are calculated transiently, considering the
battery heat generation is not constant. In solving the above
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equation, the time step (dt) is required to be set as appro-
priate to secure sufficient temperature changes of the bat-
tery (dT) as it is one of the key variables in the IHTA
method. Since the battery temperature will change accord-
ing to its heat generation rates, it will not change enough
if the dt is too short as 1 second for instance. Contrary, If
dt is too long, the ECs cannot be obtained densely enough
according to battery SOCs. From this point of view, the
current study sets dt as a value by diving the total data
by a hundred to calculate the EC every 1% SOC. Four dis-
charge cases with different C-rates (0.25C, 0.5C, 0.75C,
and 1.0C) are applied for the IHTA method to confirm
whether the ECs vary according to the C-rate and to
secure sufficient ECs according to SOC at the same time.
The cell voltage and temperature curves used to build
the IHTA method are shown Figure 2.

Since the total discharge time of the battery is different
for each C-rate condition, it is necessary to organize the
derived ECs under the same criteria rather than time (t).
Thus, the time-dependent ECs are converted to as a function
of SOC as

dUoc

dT
tð Þ⟶ dUoc

dT
SOCð Þ: ð9Þ

The SOC of the battery is estimated using the coulomb
counting method considering operational efficiency [33],
and its equation form is expressed in

SOC tð Þ = SOC t − 1ð Þ−
ð

I
3,600∙Crated∙η

dt, ð10Þ
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Figure 1: (a) Temperature changes of the battery during discharging (black line) and 3 hours rest period (blue line), (b) iterative process to
find the optimal heat transfer coefficient by minimizing the error, and (c) resulted battery temperatures during 1 hour cooling period.

6 International Journal of Energy Research



where the Crated is the 4.9Ah rated capacity of the battery.
For all experimental cases, the initial SOC of the battery is
fully charged by 100% for equal analysis. A more related
experimental method is described in chapter 3. The opera-
tional efficiency (η) is calculated by the ratio of discharged
or charged capacity per rated capacity, as shown in the
following:

η =
∑i=1Iiti
Crated

=
I1t1 + I2t2 ⋯

Crated
, ð11Þ

where the Ii and ti are the charging and discharging currents
and time periods, respectively. For the final task, the regres-
sion analysis on calculated ECs is to obtain the representa-
tive EC values. The regressed ECs are then optimized
though the least squares estimation to reduce the error
deviation between the measured value (yi) and calculated
value (ŷi) as expressed in

dUoc

dT
SOCð Þ = argmin〠

n

i=1
yi − ŷið Þ2: ð12Þ

In this study, the five regression models, a polynomial,
rational, sum of sine, Fourier’s series, and smoothing cubic
splines, are adopted for the regression analysis. Each model
is then optimized via least squares estimation in the
direction in which the difference, ðyi − ŷiÞ2, between the
measured and calculated value decreases. The related infor-
mation about each regression model and the selection pro-
cess of the best regression model are detailed in section 4.1
(determination of entropic coefficients).

2.5. Potentiometric Method. In order to confirm the feasibil-
ity of the ECs obtained from the developed IHTA method, it
is needed to compare them with those calculated from the
existing potentiometric (PM) method. In the PM method,
the ECs are determined by the voltage change in relation
to the temperature change. Therefore, the PM method in

the current study is conducted by measuring the OCVs at
five different temperatures of 15°C, 25°C, 35°C, 45°C, and
55°C, as shown in Figure 3(a), which shows the experimental
protocols of tracking the voltage changes at 100% SOC, for
instance, according to the temperature changes. At each
temperature range, the battery is rested enough for a while
to reach the electrical equilibrium state, and the rest time
is set as 3 h by confirming the voltage is changed. Hence, it
takes 18 h experimental time per one SOC point. From the
measured voltages, the ECs are determined by calculating
the slope of the voltages to the temperatures, as depicted in
Figure 3(b), and it is realized that the EC at 100% SOC is
positive as the voltage is in the linear relation with the tem-
perature. The same measurements are repeated from 100%
to 0% SOC at 10% SOC intervals to calculate the ECs at
other SOC ranges. The ECs intermittently measured by the
PM method are then compared with those by the IHTA
method, and the comparison results are described and
discussed in section 4.2.

3. Experiment

3.1. Experimental Setup. The photos of the experimental
equipment are depicted in Figure 4(a). In the battery exper-
iment, a battery cycler (PEMC 50-60, PNE Solution Co.,
Ltd., Republic of Korea) is used to load the battery cell,
and the set multimeter (34401A, Keysight Technology,
Inc., United States) measures the applying current and cell
voltage in real-time. The multimeter with built-in ampere
meter measures the direct current flowing via the electrical
cables and likewise built voltage meter measures the cell
voltage with voltage sensors, which are directly connected
to the battery jig as shown in Figure 4(b). The battery cell
is fixed with a battery jig and installed inside the environ-
mental test chamber (THC576, JinSung-PLT Co., Ltd.,
Republic of Korea), which controls the air conditions. Both
the battery cycler and environmental test chamber are
connected to the Control PC, which gives the commands
to both equipment together. The lateral surface area of the
battery is covered with the 10mm thickness insulator to pro-
tect from the unexpected fluctuation of airflow inside the
chamber, which might cool the battery unevenly. A total of
six T-type thermocouples (TT-T-3-K, Junkyoung Instru-
ment & Electric, Republic of Korea) is used to measure the
temperature: four for battery temperature (the blue colored
sensors is the safety sensor for emergency), and two for
ambient air and surrounding wall temperatures, respectively.

The 21700 battery cell used in the experiment and the
temperature measurement points for the battery is shown
in Figure 4(c). To observe the surrounding environment
around the battery cell, the temperature of the air space next
to the battery and the wall of the chamber is measured
together. All temperature data are accumulated to the data
acquisition system (PX1000, Yokogawa Electric Co., Ltd.,
Japan). The data acquisition system is connected to the
control PC to acquire the data of the applying current and
cell voltage at the same time. The main specifications of
experimental equipment with measurement accuracies are
summarized in Table 2. The experimental schematic is
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illustrated in Figure 4(d), which shows the overall installa-
tion diagram of the battery experiment and the process of
the data measurement and acquisition processes.

3.2. Experimental Procedure. The battery experiment is
largely divided into two processes of discharging and charg-

ing. Both are basically operated on constant current (CC)
mode, but in the case of charging, the battery is charged
with the constant current-constant voltage (CC-CV),
which the battery is initially charged with the CC mode,
and converted to the constant voltage (CV) mode when
the battery voltage reaches the upper limit voltage of
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Figure 3: (a) Experimental protocol of potentiometric method, and (b) the calculated entropic coefficient at 100% state of charge.
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4.2V to prevent overcharging. At the CV mode, the charg-
ing voltage remains constant at 4.2V, and the charging
current is reduced gradually until reaching the predefined
current, which is set to be 123mA in the current study.
All the set voltage and current values are referenced from
nominal specifications in the specification of product
provided by the manufacturer [35]. Prior to the main
experiments, the preexperiment of galvanostatic intermit-
tent titration technique (GITT) is adopted to preferentially
measure the OCVs of the battery at certain SOC levels. It
subjects the cell to intermittent current pulses alternating
between a CC charge or discharge and a relatively long
rest time [36], and its measurement process is illustrated
in Figure 5. Figure 5(a) shows the case of discharging pro-
cess where the battery voltage drops immediately in
response to the applied current. When the applied current
is stopped, the immediate (ΔVohm) and time-dependent
(ΔVnonohm) voltage responses during the rest time are
detected. As they are widely known as related to the resis-
tive ohmic and capacitive nonohmic sources by activation
and mass concentration in the electrochemical system, the

OCVs in the GITT are considered both the ohmic and
nonohmic resistances. Specifically, the applying C-rate in
the GITT is set to 0.2C (980mA) of standard C-rate of
the battery [35], and the rest time is set as constant 3 h
after checking that the time is sufficient enough for the
battery to reach the electrical-thermal equilibrium state
[37]. To protect the battery from the undesired degrada-
tion on cell’s lifetime and performance, the initial environ-
mental conditions for the battery are kept at normal
temperature (20°C) and pressure (1 atm) conditions [38].

As shown in Figure 5(b), the OCV measurements are
first measured during the discharge process by intermit-
tently discharging the battery by 5% SOC interval from
100% SOC to 0% of the fully discharged state, and then vice
versa intermittently charged the battery with the same
operating conditions as discharging conditions to likewise
measure the OCVs at the charge process. The data of
open-circuit voltages per state of charge measured by the
above GITT method are presented in Table 3. The entire
experimental procedures are comprised as follows and

Table 2: Specifications of experimental equipment and measurement accuracy [34].

Equipment Manufacturer Model Operating range Accuracy (F. S)

Battery cycler PNE solution PEMC 50-60
0~ 50V ±0.1%
0~ 120 A ±0.1%

Environmental chamber JinSung PLT THC576 -20~80°C ±0.5 °C

Thermocouple JIS-28G-TEF-T T-type -50~200°C ±0.5 °C

Vo
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Figure 5: (a) Current and voltage profiles in the GITT, and (b)
open-circuit voltages measurement during discharge and charge
cycle.

Table 3: Open-circuit voltages per state of charge [34].

SOC (%) Discharge Charge

100 4.162 4.173

95 4.091 4.102

90 4.072 4.077

85 4.061 4.062

80 4.014 4.015

75 3.954 3.955

70 3.914 3.913

65 3.878 3.88

60 3.814 3.819

55 3.767 3.767

50 3.718 3.722

45 3.673 3.677

40 3.636 3.641

35 3.590 3.605

30 3.540 3.551

25 3.480 3.494

20 3.438 3.447

15 3.349 3.378

10 3.219 3.246

5 3.061 3.101

0 2.957 2.957
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tabulated in Table 4. To begin with, the four base experi-
mental cases discharging from 0.25C to 1.0C at intervals of
0.25C (No.1) are performed for applying the developed
IHTA to derive the ECs according to the SOC. In order to
obtain continuous temperature data in the entire 0 to 100
SOC ranges, the battery is preferentially charged to the
100% SOC first, and then fully discharged fully discharged
to 0% SOC with the predefined C-rate. Afterward, the other
discharging cases are used for model validation under differ-
ent C-rates of low to high C-rate conditions (No. 2). The val-
idation objective of experiment No. 2 is to find out whether
the finally derived ECs are applicable in any C-rate cases.
The remaining is for the verification and in-depth investiga-
tion of the developed method under various operating
conditions. The first one is the validation under charging
process (No. 3) to check its feasibility under different charg-
ing rates based on the background that EC is highly depen-
dent on the battery SOC. The second one is the validation
under dynamic load conditions (No.4 and 5), of 10°C to
30°C. The dynamic load conditions are divided into two
modes; one is the artificially made cycle composed of repet-
itive discharging and charging process for a certain period
with different but constant C-rates, and the other is the
dynamic load conditions with very irregular current profiles
after the US06 drive cycle. The last case is the validation
under different ambient temperatures (No. 6). It is likewise
to confirm the effective temperature ranges that the ECs
are valid to accurately calculate the battery heat generation.
The objectives or remarks of each experimental procedure
are listed in Table 4 together.

3.3. Uncertainty Analysis. The uncertainty on the parameters
used in this study is analyzed to ascertain their accuracies,
and the results of the uncertainty analysis are summarized
in Table 5. The uncertainty of the parameter is generally
obtained as the sum of the systematic and random errors
in the steady state experiment. The former one is the instru-
mental or fixed error, which is related to the measurement
accuracy of the instruments, and is often provided as a con-
stant of percentages error as shown in the rightmost column
of Table 2. The latter one is the unpredictable changes in the
experiment. It is usually estimated by the standard deviation
of the measured data in the steady-state experiment but not
considered in the transient experiment, where the measured
parameters vary in real time [34]. In this regard, the uncer-
tainty is mainly estimated with the instrumental errors for
the measured parameters. The uncertainty of the calculated
parameters is calculated by the error propagation using the
root-sum-square method as expressed in

δR = 〠
n

i=1

∂R
∂Xi

δxi

� �2
( )0:5

=
∂R
∂x1

δx1

� �2
+

∂R
∂x2

δx2

� �2
+⋯+

∂R
∂xn

δxn

� �2
( )1/2

,

ð13Þ

where the ∂R, and δxi are the overall uncertainty of the
calculated parameter and the uncertainty of each individual

Table 4: Experimental procedures for model development and analysis.

No. Mode∗ C-rate (C) Tamb (
°C) Objective or remark

1 Disc. 0.25, 0.5, 0.75, 1.0

20

Derive entropic coefficients

2 Disc. 0.25~2.0 Method validation

3 Char. 0.50 Analysis on charging effects

4 Disc+char. Dynamic Analysis on variable state of charge

5 Driving cycle Dynamic US06 drive cycle (dynamic load)

6 Disc. 0.50 10, 20, 30 Analysis temperature effects
∗Disc: discharge; Char: charge.

Table 5: Uncertainty analysis of measured and calculated parameters [34].

Parameter (symbol or equation) Unit Typical value Uncertainty

Ambient temperature (Tamb) (C) 20 ±0.5
Battery temperatures (Tcell) (C) 20 ±0.2887
Open-circuit voltage (Uoc) (V) 4.162 ±0.0004162
Cell voltage (Vcell) (V) 4.2 ±0.00042
Current (I) (A) 32 ±0.032
State of charge (SOC) (%) 99.03 ±0.000009662
Resistive heat (I Uoc − Vcellð Þ (W) 3.901 ±0.05494

Heat dissipation ( _Qdis) (W) 1.632 ±0.03302
Entropic coefficient (dUoc/dt) (mV·K-1) 0.6395 ±0.02224
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measured parameter, which is used to estimate the calcu-
lated parameter. The results are presented in Table 5 with
the typical values and maximum uncertainties from the
uncertainty analysis. Hence, the remaining uncertainties of
other values of each parameter are lower than the listed
values. Accordingly, it is realized that the experimental data
is reliable for further investigation.

4. Results and Discussion

4.1. Determination of Entropic Coefficients. From the exper-
imental results of battery experiments, the four cases of
discharging at 0.25C, 0.5C, 0.75C, and 1.0C are utilized for
determining new ECs according to the SOC of the battery.
Following the step-by-step process of the IHTA method,
the new ECs are derived as the continuous form of the time
function as shown in Figure 6(a). The total discharge time of
the battery is inversely proportional to the applying C-rate
when fully discharged from the fully charged state, so the
case of lowest, 0.25C, recorded the longest discharge time,
and conversely, the case of highest, 1.0C, recorded the
shortest discharge time. It is remarkable that the calculated
ECs of all cases show a very similar trend, decreasing with
time and then increasing rapidly before ending. To compare
the trends of each case under the same standard, the ECs are
rearranged as a function of SOC as shown in Figure 6(b),
and it is confirmed that the trends of calculated ECs are
almost the same in line with the battery SOCs despite dis-
charging at different C-rates.

From the results, the values of EC to depend highly on
SOC are confirmed, as known in the previous literature,
and the applicability of the IHTA method is demonstrated.
In the view of SOC, the ECs are positive in the 60-100%
range and remain nearly zero in the middle state of 40-
60%, and negative at SOC less than 40%. Reminding the
reversible entropic term in Equation (8), it can be seen that
the entropic heat is endothermic for negative EC, and in
the opposite, it is exothermic for positive EC when the bat-

tery is discharged. However, as mentioned above, the sign
of reversible heat changes by the sign of the current (positive
for discharge and negative for charge) as well as the EC. In
this respect, the former endothermic reaction becomes the
exothermic reaction and vice versa during the charging
processes. To obtain the representative ECs applicable to
all operating conditions, regression analysis is attempted
for the derived data. The EC data in Figure 6(b) has the
anomalous feature consisting of multiple local inflection
points depending on the battery SOC, requiring the high-
order equations for the regression analysis. Moreover, since
the data can be positive or negative depending on the battery
SOC, the regressed equation should reflect it. In this regard,
the five regression models, polynomial, rational, sum of sine,
Fourier’s series, smoothing cubic splines, are adopted for
the regression analysis considering their equations form.
Through the least squares estimation following Equation
(12), the five regression models are optimized to well pre-
dict the ECs according to battery SOC. The least squares
estimations are conducted with the MathWorks® Matlab
curve fitting toolbox™ [40]. The results of the least squares
estimation are depicted in Figure 7 with the profiles of
optimized regressed models with the total.

The results from regression models of polynomial, ratio-
nal, sum of sine, Fourier’s series are illustrated in
Figure 7(a), and the remaining smoothing cubic spline is
shown in Figure 7(b), respectively. It is noticeable that all
methods predict well the tendency of the EC according to
the SOC, and for further investigation, the most precise
method is selected for further investigation. The accuracy
of each model is listed in Table 6 in terms of sum square
error (SSE), R-square (R2), and root mean square error
(RMSE), and the methods of each model and equation
forms specifically for the regression models are listed
together. Among the various models, the most accurate
model is determined based on the criteria of R2, and the
smooth spline model in Figure 7(b) is finally chosen for
the subsequent analysis. Compared to the other four models,
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Figure 6: Determination of entropic coefficients according to (a) time and (b) state of charge of the battery using inverse heat transfer
analysis method [39].
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the smooth spline is considered to best reflect the tendencies
of ECs, which are highly and randomly distributed accord-
ing to the battery SOC.

A similar trend in ECs according to the SOC of the above
result is very noteworthy. Entropy heat is literally the heat
generated due to the entropy change within the internal
structure of the battery [41]. That is, the state of the battery
changes due to the transport of lithium ions and electrons
whenever charging or discharging occurs. In other words,
when fully charged, they are extremely concentrated toward
the positive side when discharged to the negative side. At
this time, the battery is in a very unstable state. Ideally, it
can be seen that the battery is in the most stable state when
the entropy coefficient is 40-60% SOC, which is close to zero.

4.2. Comparison with Existing Method. The ECs in the PM
method are calculated by the slopes of voltage changes in
relation to temperature changes and indicated in Figure 8
with those calculated from the IHTA method. Three calcu-
lated ECs by the PM methods are displayed with the ECs

–1.0

–0.8

–0.6

–0.4

–0.2

0.0

0.2

0.4

0 10 20 30 40 50 60 70 80 90 100

En
tr

op
ic

 co
effi

ci
en

t (
m

V
·K

–1
)

State of charge (%)

IHTA (current work)
PM (15°C to 55°C)

PM (15°C to 45°C)
PM (25°C to 55°C)

Figure 8: Entropic coefficients calculated from potentiometric and
proposed methods.

–1.0
–0.8
–0.6
–0.4
–0.2

0.0
0.2
0.4
0.6
0.8
1.0

0 10 20 30 40 50 60 70 80 90 100

En
tro

pi
c c

oe
ffi

ci
en

t (
m

V
·K

–1
)

State of charge (%)

Total data
Rational

Polynomial
Sum of sine

Fourier series

(For discharge process)
endothermic

exothermic
= >0 → 

<0 → 
Qrev
⋅

Qrev
⋅

dT

dVoc

(a)

–1.0
–0.8
–0.6
–0.4
–0.2

0.0
0.2
0.4
0.6
0.8
1.0

En
tro

pi
c c

oe
ffi

ci
en

t (
m

V
·K

–1
)

State of charge (%)
0 10 20 30 40 50 60 70 80 90 100

Total data
Smooth spline

(For discharge process)
endothermic

exothermic
= >0 →

<0 →
Qrev
⋅

Qrev
⋅

dT

dVoc

(b)

Figure 7: Profiles of the entropic coefficients according to various regression models: (a) polynomial, rational, sum of sine, Fourier’s series,
and (b) smooth spline.

Table 6: Results of regression with least-squares estimations.

Model Method Equation Order SSE R2 RMSE

Smoothing spline Cubic spline least squares — — 0.615 0.973 0.0454

Polynomial Linear least squares 〠
n+1

i=1
aix

n+1−i 9 1.401 0.939 0.0596

Rational Nonlinear least squares 〠
n+1

i=1
bix

n+1−i/ xm + 〠
m

i=1
aix

m−i

 !
4/4∗ 1.384 0.940 0.0592

Sum of sine Nonlinear least squares 〠
n

i=1
ai sin bix + cið Þ 8 1.108 0.952 0.0540

Fourier series Nonlinear least squares a0 + 〠
n

i=1
ai cos iwxð Þ + bi sin iwxð Þ 7 1.084 0.953 0.0529

∗Degree of denominator/numerator.
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from the IHTA method. Though the ECs change slightly
depending on how many voltage-temperature ranges are
used to calculate the slope, it is identified that the overall
trends of the calculated ECs from the two methods are found
to be consistent, proving the feasibility of the proposed
IHTA method.

Both PM and IHTA methods basically rely on the
experiment to determine the ECs. However, there is a differ-
ence that the former completely depends on the experiment,
whereas the latter minimizes the experiment by utilizing the
numerical and analytical methods together. The differences
between the two methods are summarized in Table 7. To
begin with the required equipment for the experiment, both
methods use the battery cycler and the environmental cham-
ber, but it is noted that the environmental chamber is not
essential for the proposed method because it can calculate
the heat dissipation rates using the data during the rest time.
Nevertheless, it is recommended to use the chamber to
reduce the experimental uncertainties as possible. In the
view of measurement, the PM method measures the ECs
per each SOC intermittently, so it inevitably depends on
linear interpolation between the intermittent values to pre-
dict the ECs for the entire SOC ranges. On the other hand,
the IHTA method can obtain continuous ECs according to
the SOC, so it can flexibly and precisely predict the battery
thermal responses at any SOC. Lastly, the PM method
requires 18 h per each SOC-step to track the voltage changes
according to temperatures by repeating the process of
changing temperatures and taking a rest, as shown in
Figure 8. Thus, it takes a total 198 h considering the same
processes are repeated for 11 SOC points of 0 to 100%
SOC with 10% interval. In contrast, the proposed IHTA
method takes a total of 12 h and 20min : 500min for the four
discharge experiments and 240 minutes for cooling the
battery during the rest time. From this viewpoint, the IHTA
method can reduce the experimental time by at least
over 93.8% compared to the potentiometric method.
The required times above are the pure experimental time
required to estimate the ECs in the current study. From
the literature review, it is noted that the rest period, SOC, and
temperature ranges for the PM method may vary from bat-
tery to battery because the size, material, or electrochemical
properties of LiBs are not equal. In general, It is common to
find that the PM method takes several days to several weeks
in previous literature [15, 42, 43]. From this point of view,
the proposed method can save experimental time while
ensuring accuracy in determining the ECs.

4.3. Method Validation and Discussion

4.3.1. Discharge Process with Different Current Rate. The
representative ECs per battery SOCs estimated from the
smooth spline regression model are used to calculate the
reversible entropic heats of experimental cases. In addition
to the four cases adopted for the model development, exper-
imental cases of low (<1.0C) to high (>1.0C) C-rates ranging
from 0.25C to 2.0C are used to verify the validity of the
developed IHTA method. The validation is conducted in
terms of the temperature changes of the battery during
operation, and the experimental temperatures are directly
compared with the simulated temperatures, which are pre-
dicted from the battery thermal model when using the above
representative ECs obtained from the smooth spline regres-
sion model. The validation results are shown in Figure 9,
where the temperatures measured from the experiment are
depicted in circle symbols, and the predicted temperatures
are displayed as the black line.

The experimental values are actually measured every sec-
ond, but for the sake of clear visibility, they are expressed
every 200 seconds. Not only for the period of battery opera-
tion (displayed with certain C-rate), but also for the rest
period for 1 h is compared to validate the GRG algorithm
used to obtain optimal heat transfer coefficients in section
2.3. With the maximum RMSE of 0.36°C, it is judged that
both the IHTA method to calculate the ECs of the battery

Table 7: Comparison of conventional and proposed method to estimate the entropic coefficients according to state of charge.

Potentiometric method Proposed IHTA method

Equation dUoc/dTð Þ SOCð Þ dUoc/dTð Þ SOCð Þ =mcp dT/dtð Þ − I Uoc −Vcellð Þ + hA Tcell − Tambð Þ/IT
Method Experiment Experiment + numerical + analytical

Equipment Environmental chamber + battery cycler Environmental chamber (optional) + battery cycler

Measurement Intermittent (5 temp. points & 11 SOC points) Continuous (entire SOC ranges)

Time∗ Total 198 hours (18 h per SOC) 12 hours 20min (+1 h rest time per each disc case)
∗Pure experimental time to estimate the entropic coefficients in the current study.
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Figure 9: Validation of IHTA method under different current
rates.
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per SOC and the GRG algorithm to find the optimal heat
transfer coefficients are well validated and prove its applica-
bility for further studies. From the above results, the battery
temperature rises rapidly as the C-rates increases. Recalling
the Bernardi equation in Equation (2), the resistive joule
heat is proportional to the square of the current while the
reversible entropic heat is proportional to the current.
Therefore, it can be realized that the heat resistive heat con-
tributes more to the battery heat generation than the revers-
ible heat. This can be seen from the temperature curves that
the curves become sharper as the C-rate increases.

4.3.2. Charge Process. In the previous section, the validation
is carried out, focusing on the discharging process in which
the battery SOC decreases linearly. Therefore, for the next
proof of the proposed IHTA method, it is required to verify
its applicability in the charging process conversely. Unlike
the discharging process, the charging process is composed
of two operating modes of CC and CV. Equal to the dischar-
ging process, the charging process is initially begun with the
CC mode (0.5C in this case) and then converts to the CV
mode when reaching the maximum cut-off voltage of 4.2V
to protect the overcharge of the battery. In the CV mode,
the charging current is exponentially reduced until the
predefined current, which is set to be 123mA in the current
study. The overall current profiles under 0.5C, 1.0C, and

2.0C processes are illustrated in Figure 10(a) with the result-
ing battery SOC. The current profile of the 0.5C, 1.0C, and
2.0C discharge cases is indicated together to clarify the
difference among charging processes. The verification is
conducted likewise in the view of the temperature variations
of the battery as seen in Figure 10(b), and the calculated ECs
are applicable in the charging process as well, revealing the
maximum RMSE of 0.848°C. From the results, it is realized
that the temperature profiles between charging and dischar-
ging processes are dissimilar even though the same C-rate is
applied to the battery. In general, the temperature increases
under all charging processes are overall low that it is due
to the existence of CV mode where the applying current
decreases gradually, in which means the total battery heat
generations are likewise decreases. Besides, the unusual
trend in the temperature profile is depicted in the case of
low 0.5C discharging and charging cases. The temperature
profile of the 0.5C discharging process appears the concave
upward shape, where the uptrend of temperature increases
quite linearly at the low SOC ranges (<40% SOC), becomes
slow at the middle SOC ranges (40% ≤ SOC ≤ 60%), and
again rapidly grows up at the high SOC ranges (>60%
SOC). On the other hand, the opposite trend is realized in
the case of charging, where the overall trend of the battery
temperature draws the concave downward shape in respect
to time. This is because the signs of the charging and
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discharging current are opposite, in which the sign of the
charging current is set as positive in the current study, while
it is set as negative in reverse. Considering this in terms of
battery heat generation, since joule heat is proportional to
the square of the current, it is always exothermic regardless
of the sign of the current. In contrast, as the entropic heat
is proportional to the current, thus it can be exothermic or
endothermic depending on its sign.

To further clarify the phenomenon of entropic heat, the
calculated entropic heat is shown in Figure 10(c), and it is so
obvious that completely different trends of the entropic heat
are generated during the operation. At the early SOC range
below 40% the exothermal entropic heat is mainly generated
for the discharging process, but the endothermal heat is gen-
erated for the charging process. At the middle ranges of 40%
to 60% SOC, where the ECs are close to zero, it can be the
entropic heat generation is nearly zero. Although less than
in the early SOC range, exothermic and endothermic pro-
cesses occur in opposite tendencies likewise at the final
SOC range over 60%.

4.3.3. Dynamic Load Conditions. Thus far, the analysis has
been conducted under constant C-rate, but nearly all battery
systems, for instance, energy storage systems, EVs, and even

portable electronic devices are actually operated in dynamic
load conditions where the battery SOC varies up and down.
Therefore, it is necessary to check whether the obtained ECs
are valid in dynamic load conditions as well. For this reason,
two types of dynamic operating cycles composed of both
charging and discharging processes are prepared to investi-
gate the effects of dynamic loads on the battery; one is an
artificially created cycle, in which several charging and
discharging C-rates are repeatedly performed, and the other
is a dynamic current profile calculated according to the
actual driving cycle of US06. To begin with the former, the
applied current to the battery is determined, as shown in
Figure 11(a), with the objective to linearly increase or
decrease the battery SOC. The temperatures of the battery
measured from the experiment and predicted using the
obtained ECs are exhibited together in Figure 11(b), and
the deviations between the experiment and simulation are
shown to be less enough where the maximum RMSE is
revealed to be 0.564°C.

For more dynamic loads conditions, the very complex
current flows as shown in Figure 11(c) are applied to the
battery, and accordingly, the battery SOC is changed every
second. It is noted that the current profile of Figure 11(c)
is obtained by referencing to the previous study [34], which
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investigates the dynamic loads of the battery. Similarly, the
comparison results between experiment and simulation are
indicated in Figure 11(d), and the maximum RMSE is
recorded as 0.594°C either. From the results, the IHTA
method is proven to be valid not only in the case where
the SOC varies linearly but also in the case of very irregular
variations, as shown in this section 4.4. However, it should
be noted that the current study assumes there are no
dynamic effects in the battery heat generation in the battery
model development. From the literature review, it is noted
that the extra heat, known as heat of mixing, can be gener-
ated in the case of dynamic operation in which the charging
and discharging processes are mixed. This is due to the slow
mass transport of lithium-ion between active materials and
usually appeared to the electrochemical systems with bas
or low transport properties, where the concentration gradi-
ents are limited [29]. In spite of this, the dynamic effect in
the battery heat generation can be negligible for the high
power battery applications, which are the same as the battery
used in the current study. In addition, considering the ECs
in the current study are obtained in constant C-rates with
minor dynamic effect and presenting high precision in ther-
mal prediction in two above dynamic cycles, the assumption
of no or minor dynamic effect is fairly acceptable.

4.3.4. Ambient Temperatures. Ever since that LiBs are very
sensitive to their operating temperature, the electrochemical
reactions within the cell are influenced according to the
ambient temperatures. Therefore, as a final verification, it
is tested whether the newly obtained ECs are valid in
predicting the battery temperatures at different ambient
temperatures. In this regard, the additional verification
performed is under different ambient temperatures of 10°C
and 30°C for the case of 1C discharge, and the verification
results are shown in Figure 12. From the comparison with
the experimental values, the maximum RMSEs of simulation
under different ambient temperatures are confirmed as
0.848°C. Although it is generally known that the battery is
affected by the ambient temperatures because the different

temperature increases are confirmed at different ambient
temperature, ECs obtained from the IHTA method are like-
wise valid to precisely predict the battery temperature. As a
result of validation from subsection 4.3.1 to 4.3.4, it is noted
that the ECs obtained from the IHTA method can well pre-
dict the battery thermal behaviors over temperatures ranging
from 10°C to 60°C.

5. Conclusions

In this paper, the high precision and time-efficient determi-
nation method to estimate the entropic coefficients of LiBs
is proposed based on the inverse heat transfer analysis
(IHTA) method. Through the step-by-step processes of
IHTA method, the ECs are derived, and they are regressed
based on least squares estimation to obtain the representative
entropic coefficient as a function of state of charge. Through
the comparison with the existing potentiometric method, the
feasibility of the IHTA method is confirmed by showing
same trends of the entropic coefficients according to the
battery’s SOC, and time efficient attributes are proven by
reducing the experimental time over 93.7%. Last of all, the
accuracy of the IHTA method is well validated by comparing
the measured and predicted values on the battery thermal
responses under various operating conditions. From the
validation, the obtained entropic coefficients are realized to
be satisfactory enough to predict the battery temperatures
under different C-rates, charging process, dynamic load con-
ditions, and different ambient temperatures. The accuracy of
the proposed method is verified with the maximum RMSE of
0.848°C, and it is realized to be applicable to 10°C to 60°C
temperature ranges.

To sum up, the proposed method could relieve the
excessive experimental dependency of the existing method
with the aid of the numerical approach, noticeably reducing
the measurement time by simplifying the multistage experi-
mental processes. Likewise, due to the extraction of continu-
ous profiles of entropic coefficients, the accurate thermal
prediction of the battery under diverse conditions is ensured.
In this viewpoint, it is expected to be actively utilized in
future battery thermal analysis.

Nomenclature

Symbols

A: area (m2)
Bi: Biot number (-)
c: specific heat (J·kg-1·K-1)
C: capacity (Ah)
F: Faraday constant
h: heat transfer coefficient (W·m-2·K-1)
I: current (A)
k: thermal conductivity (W·m-1·K-1)
L: length (m)
m: mass (g)
n: number of electrons (-)
Q: heat (W)
t: time (s)
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Figure 12: Validation for 1C discharge case under different 10°C to
30°C ambient temperatures.
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T: temperature (°C)
U: open-circuit voltage (V)
V: voltage (V)
ΔS: entropy change (J·mol-1·K-1)
yi: experimental value
ŷi: calculated value
η: operational efficiency (-)
∂R: overall uncertainty
δxi: uncertainty of individual parameter.

Abbreviations

BTMS: battery thermal management system
CC: constant current
CC-CV: constant current-constant voltage
C-rate: current-rate [C]
CV: constant voltage
EC: entropic coefficient
EV: electric vehicle
exp.: experiment
GRG: generalized reduced gradient
GITT: galvanostatic intermittent titration technique
IHTA: inverse heat transfer analysis
LiBs: lithium-ion batteries
NCA: nickel cobalt aluminum
MSE: mean square error
OCV: open-circuit voltage
PM: potentiometric method
R2: r-square
RMSE: root mean square error
sim.: simulation
SOC: state of charge
SSE: sum square error.

Subscripts

amb: ambient
c: characteristic
cell: battery cell
dis: dissipation
exp: experimental
gen: (heat) generation
irr: irreversible
oc: open-circuit
ohm: ohmic
non-ohm: non-ohmic
r: radial
rated: rated (nominal)
rev: reversible
z: axial.
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