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Accurate photovoltaic (PV) power forecasting is essential for the stable and reliable operation of PV power generation systems.
Recently, various deep learning- (DL-) based forecasting models have been proposed for accurate forecasting, but newly built
systems cannot benefit from them due to the absence of PV power data. Although zero-shot methods based on single site can
be used for PV power forecasting, they suffer from performance degradation problems when the characteristics of the source
data and target data are different. To address this issue, we propose a novel zero-shot PV power forecasting scheme that
leverages historical data from multiple PV generation systems at different sites. The proposed scheme constructs an individual
forecasting model using historical data from each PV generation system. Then, two correlation coefficients are calculated for
each forecasting model: one based on the correlation between the input variables of the source data and target data and the
other on the correlation between the input variables and output variables of the source data. Lastly, the final forecasting value
is calculated as a weighted sum of the predicted values of the constructed forecasting models for the input variables of the
target data. In the extensive experiments for diverse DL models for forecasting, correlation coefficient types for weights, and
data time intervals, the combination of recurrent neural network, Pearson’s correlation coefficient, and solar-noon time yielded
the best prediction performance, with an improvement of up to 34.47% in mean absolute error and up to 15.94% in root mean
square error compared to the best single-site zero-shot prediction. In addition, in experiments on PV power data from 9 cities
in Korea using this combination, the proposed scheme achieved the best predictive performance in almost all cases and the
second-best performance with a very narrow margin only in a few cases.

1. Introduction

As the global population increases from 7.8 billion in 2020 to
9.9 billion by 2050, global energy demand is expected to
increase by about 50% [1]. If such energy demand is met
by thermal power generation using fossil fuels, the problem
of environmental pollution can become even more severe
[2]. To address this issue, countries worldwide have signed
the Paris Climate Agreement, aiming to keep the rise in
the average global temperature well below 2°C above prein-
dustrial levels and preferably limit the increase to 1.5°C.
Since then, many efforts have been made to increase the
share of renewable energy in power generation world-
wide [3].

Renewable energy derived from natural sources replen-
ished at a higher rate than consumed includes solar, wind,

hydro, geothermal, and biomass energy [4]. These energy
types have low environmental influence and reduce depen-
dence on fossil fuels, leading to a more sustainable future
[5]. Among them, solar energy has gained more attention
and popularity for several reasons, such as no risk of energy
source depletion, fewer restrictions on solar panel installa-
tion, and various panel capacities [6]. Thus far, many photo-
voltaic (PV) generation systems have been built, with an
average annual growth rate of 48% [7]. Moreover, the recent
price reduction of PV panels has made PV generation more
cost-effective and accessible to more individuals and busi-
nesses [8].

However, weather dependence remains a significant
challenge for PV generation. The performance of the PV
panel and output of the PV generation system is greatly
affected by weather conditions, such as cloud cover, rain,
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snow, and dust, reducing the stability and reliability of the
PV generation system [9]. Accurate PV power forecasting
is necessary to solve this problem [10].

Recently, various forecasting models based on machine
learning (ML) and deep learning (DL) have performed bet-
ter than traditional statistical models, such as autoregressive
and moving average models [11, 12]. However, these models
require vast historical data for training [13]. If the data are
insufficient for training, the model may become too sensitive
to noise in the training data, leading to overfitting. This cold-
start problem can significantly degrade the forecasting
performance [14], especially in newly built PV generation
systems [15].

Zero-shot learning has been proposed to produce results,
even without historical data [16]. However, there are very
few cases where zero-shot learning has been applied to fore-
casting problems, especially in PV power forecasting [17].
Single-site-based zero-shot PV power forecasting (SZF)
trains a model using source data and then makes predictions
on target data without any fine-tuning. Here, source data
and target data refer to a sufficient amount of data collected
from an existing PV power generation system and data col-
lected from a newly built PV power generation system,
respectively. The most serious problem with this approach
is that if the data distribution, pattern, and trend of the
source data and the target data are different, the predictive
performance may decrease significantly. To solve this prob-
lem, we propose a zero-shot PV power forecasting scheme
that leverages historical data from multiple PV generation
systems at different sites. In this scheme, an individual fore-
casting model is constructed using historical data from each
PV generation system. Then, weights for each forecasting
model are determined based on the correlation between
the input variables of the source data and target data and
the input variables and output variables of the source data.
Lastly, the final prediction value is calculated as a weighted
sum of the predicted values of the source forecasting models
for the input variables of the target data.

In our experiments, we first tested different combina-
tions of DL models, correlation coefficients, and data time
options to find the best one and then used it across multiple
data to evaluate the effectiveness of the proposed scheme.
Experimental results showed that the combination of the
recurrent neural network (RNN) model, Pearson’s correla-
tion coefficient (PCC), and solar-noon time option per-
formed best. Figure 1 illustrates the overall process of the
proposed scheme.

The main contributions of this paper are as follows:

(1) We proposed a novel zero-shot PV power forecast-
ing scheme based on the DL model and correlation
coefficient. To the best of our knowledge, this is the
first effort to forecast the PV generation of newly
built PV systems without historical PV power data

(2) We analyzed the effects of one-dimensional (1D)
and two-dimensional (2D) forms of time data to
determine the most effective form for PV power
forecasting

(3) We conducted extensive experiments to find the
most effective combination of the DL model, correla-
tion coefficient, and time options for zero-shot PV
power prediction

(4) We showed that the proposed scheme can guarantee
good prediction performance, unlike the SZF model.
This can contribute to the effective and accurate
evaluation of the feasibility of PV generation projects
or construction

The paper is organized as follows. Section 2 introduces
several studies on the ML- and DL-based PV power forecast-
ingmodels. Section 3 details the proposed scheme, and Section
4 describes input variable configurations for constructing the
forecasting model. Next, Section 5 discusses the experimental
results of evaluating the proposed scheme’s performance.
Finally, Section 6 summarizes this study and presents the
conclusions.

2. Related Works

So far, many studies have been conducted to perform PV
power forecasting efficiently. In particular, various ML and
DL algorithms have been proposed recently to build more
accurate PV power forecasting models. For instance, Pan
et al. [18] proposed a forecasting model based on the sup-
port vector machine (SVM). In particular, they optimized
the selection policies for the SVM hyperparameters by incor-
porating max–min ant colony optimization (ACO), differen-
tial evolutionary algorithm, and adaptive learning factor into
the ACO algorithm. In addition, an ensemble filter algo-
rithm was employed to remove abnormal data, and L2-
norm regularization was applied to address standardization
issues in the data. They demonstrated that the proposed
model is significantly better than the comparative models
and exhibits significantly improved performance in night-
time and peak power prediction. Meng and Song [19] pro-
posed a daily PV power forecasting model based on
random forest (RF). They constructed the RF model using
data collected from the Zhonghe PV station in North
China’s central region. They used PM 2.5 as an additional
input variable due to the severe winter air pollution in North
China. The proposed model categorizes winter days into
three types based on climate characteristics and creates an
RF model for each type. They demonstrated that the pro-
posed model outperforms the SVM, elastic net, and
gradient-boosting decision tree for nearly all error evalua-
tion metrics. Li et al. [20] proposed a very short-term PV
power forecasting model based on the RNN. The PV power
data were divided into inter- and intraday data, and the
RNN was used to discover nonlinear features and invariant
structures. The proposed model was extensively compared
with various ML and DL models using PV power data col-
lected in Flanders, Belgium. The results indicated that the
proposed model outperforms the comparative models (e.g.,
persistence and SVM) in 15 and 30min forecasting horizons.
Hossain and Mahmood [21] proposed a day-ahead PV
power forecasting model based on long short-term memory
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(LSTM). They integrated the statistical knowledge from
historical irradiance data and the sky forecast to create a syn-
thetic weather forecast to use as input for the LSTM. The
performance of the LSTM model was analyzed using a
synthetic weather forecast and real sky forecast as input
variables. They revealed that synthetic weather forecasts
significantly improve accuracy by more than 30% compared
to original weather forecasts. Liu et al. [22] constructed an
ensemble model using SVM, multilayer perceptron (MLP),
and multivariate adaptive regression spline (MARS) as
stand-alone models to improve the weights of sub-stand-
alone models through a recursive arithmetic average process.
The proposed ensemble model generally performed better
than stand-alone models using historical data from the Aus-
tralian technology demonstration facility. Li et al. [23] pro-
posed a hybrid DL approach for PV power forecasting that
combines a convolutional neural network (CNN) with an
LSTMmodel. The CNN structure extracts nonlinear features
and invariant patterns in past PV output data, and the LSTM
structure models the temporal changes in the recent PV
power data to make predictions for the next time step. In
the comprehensive evaluation using PV power data from
Limburg, Belgium, the proposed model performed better
than other comparative models with significantly less pre-
diction error.

ML and DL models exhibit good performance in PV
power forecasting. Table 1 summarizes some of the related
studies on PV power forecasting using ML and DL models.

However, these models cannot be used for newly built PV
generation systems because they require data covering at
least one year (12 months) for training. One possible way
to solve this problem is to train a model using data collected
from an existing PV power system and use the trained model
on a newly built PV power system. However, if the two sites
have different characteristics for PV generation, the predic-
tive performance may be poor. This can be solved by effec-
tively utilizing data collected from PV power systems at
various sites.

3. Proposed Scheme

In this section, we first briefly explain the theoretical back-
ground of the DL model and correlation coefficient and then
present the details of the proposed scheme. In general, state-
of-the-art models such as transformer and temporal convo-
lutional network-based models perform well in long-term
time-series forecasting due to their strong long-term depen-
dencies. However, in PV power forecasting, short-term
dependencies play a more important role than long-term
dependencies. Moreover, these models typically take a long
training time due to complex structures or have low conver-
gence stability. Hence, in this paper, we consider five popu-
lar artificial neural network (ANN) models: shallow neural
network (SNN), deep neural network (DNN), RNN, LSTM,
and gated recurrent units (GRU).
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Figure 1: Overall structure of the proposed scheme.
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The correlation coefficient indicates the strength of the
relationship between the two variables. If the product of
the correlation coefficient between the input and output var-
iables of the source data and between the input variables of
the source data and the input variables of the target data is
large, the model trained using the source data is more likely
to be effective on the target data as well. In this study, the
weights of forecasting models trained using different source
data are determined based on the correlation coefficients so
that the prediction values of forecasting models with higher
correlations can be more reflected in the final prediction
value. Among various correlation coefficients, PCC best
expresses the relationship between two continuous variables.
However, PCC can only detect linear relationships. There-
fore, in addition to PCC, we also consider the distance cor-
relation coefficient (DCC) to detect nonlinear relationships.

3.1. Deep Learning Models. Among the aforementioned
models, the SNN usually refers to an ANN with only one
hidden layer [24]. It is called shallow because it does not
have multiple layers to learn representations from the input
data. In contrast, the DNN refers to an ANN with multiple
hidden layers, usually more than two [25]. DNNs are
designed to learn complex representations from the input
data by leveraging the depth of the network. Each layer of
a DNN is trained independently and learns to recognize dif-
ferent features from the input data. Due to its simplicity and
computational efficiency, the SNN is primarily used to solve
simple problems, while the DNN solves more complex prob-
lems that the SNN cannot solve.

Unlike general ANN structures, the RNN, LSTM, and
GRU are specifically designed to handle sequence data.

These models primarily process sequence data, such as time
series, text, and speech. RNN has a loop structure, allowing
the retainment of information from previous steps [26]. This
feature enables the RNN to process data sequences by
considering the context from previous time steps. The
RNN is used for various applications, including sentiment
analysis, language translation, and speech recognition. How-
ever, the RNN has difficulty retaining information over long
sequences due to the vanishing gradient problem. To
address this problem, the LSTM model was introduced as a
variant of the RNN [27]. The LSTM has a unique structure
called memory cells that enable the LSTM to retain informa-
tion over long sequences. The memory cells are controlled
by gates determining when information should be stored,
forgotten, or used for predictions. This structure enables
the LSTM to handle sequence data effectively. However,
the complexity of its structure and the number of parameters
can make it computationally inefficient. The GRU approach
was introduced as a simpler alternative to the LSTM. The
GRU model has a structure similar to the LSTM but has
fewer parameters and, therefore, is computationally more
efficient [28]. The GRU method uses two gates, the update
and reset gates, to control the flow of information in the net-
work. The update gate determines how much past informa-
tion should be retained, whereas the reset gate determines
how much past information should be forgotten. Figure 2
illustrates a simplified structure of the ANN models.

3.2. Correlation Coefficient. An input variable, also known as
an independent variable, is used to predict the value of an out-
put variable. Understanding the relationship between input
and output variables is essential for accurate forecasting

Table 1: Summary of related work.

Author (year) Data resolution Data duration Methodology Description

Pan et al. (2020) [18] 5min 23 months SVM

The proposed model uses an ensemble filter
algorithm, L2-norm regularization, and SVM
optimized using ACO to improve the accuracy

of PV power forecasting.

Meng and Song (2020) [19] 1 day 25 months RF
The proposed model divides data into three
categories considering climatic characteristics

and uses RF for each categorized data.

Li et al. (2019) [20] 15min 12 months RNN

The proposed model divides data into inter-
and intraday data and applies the RNN to
discover nonlinear features and invariant

structures.

Hossain and Mahmood (2020) [21] 1 h 36 months LSTM

The proposed model creates synthetic weather
forecast data using the K-means algorithm
and uses it as an input variable to the LSTM

model.

Liu et al. (2019) [22] 5min 58 months SVM, MLP, MARS

The proposed model uses an ensemble
modeling technique integrating SVM, MLP,
and MARS within a recursive arithmetic

average model.

Li et al. (2020) [23] 15min 12 months CNN, LSTM

The proposed model combines the CNN with
the LSTM model for extracting nonlinear

features and invariant patterns and modeling
the temporal changes in data.
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models, enabling accurate forecasting of the future by cor-
rectly selecting the appropriate input variables and model
structure. Correlation coefficients can be used to determine
the relationship between an input and output variable. The
most commonly used correlation coefficient is PCC [29]. It
measures the strength and direction of the linear association
between two variables, with values ranging from -1 to 1. The
PCC is defined by Equation (1), where n is the number of
observations, Xi and Yi denote the values at time i, and X
and Y represent the mean values of X and Y , respectively.

PCC X, Y =
∑n

i=1 Xi − X ∙ Yi − Y

∑n
i=1 Xi − X 2∙ ∑n

i=1 Yi − Y 2
1

The PCC is calculated as the covariance of the two vari-
ables divided by the product of their standard deviations.
Covariance measures how two variables change together,
whereas the standard deviation measures the spread of a single
variable. A positive PCC indicates that as the value of the input
variable increases, the value of the output variable also
increases. A negative PCC indicates that as the value of the
input variable increases, the value of the output variable
decreases. A PCC of 0 indicates no linear relationship between
the two variables. The PCC can detect a linear relationship
between two variables well, but many nonlinear relationships
exist in actual data.

Unlike the PCC, the distance correlation coefficient
(DCC) can capture nonlinear relationships between vari-
ables [30]. The DCC is the square root of the distance
covariance between two variables. The distance covariance
measures the combined variability of two variables, consid-

ering the linear and nonlinear dependence between the var-
iables. The DCC ranges from 0 to 1, with values close to 0
indicating independence between the two variables and
values close to 1 indicating strong dependence. The DCC
is defined by the following equations.

DCC X, Y =
dCov X, Y

dVar X × dVar Y
, 2

dCov X, Y =
1
n2

〠
n

i=1
〠
n

j=1
D Xi, Xj ∙D Yi, Y j , 3

dVar X = dCov X, X =
1
n2

〠
n

i=1
〠
n

j=1
D Xi, Xj

2 4

In the equations, dCov denotes the distance covariance,
dVar denotes the distance variance, and D Xi, Xj represents
the Euclidean distance between Xi and Xj, respectively.

The PCC and DCC have strengths and weaknesses. The
choice between them depends on the specific analysis needs
and relationship characteristics between variables. It is best
to consider both methods and choose the one that best fits
the data and research question.

3.3. Forecasting Process. This section describes the forecast-
ing process of the proposed scheme in more detail. Algo-
rithm 1 shows the process of calculating the final
forecasting value.

A brief description of the algorithm is as follows.
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Figure 2: Simplified structure of the artificial neural network.
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(i) Lines 4-7 construct a source forecasting model for
each site and calculate its predictive value for the
target data

(ii) Lines 8-10 first calculate the two correlation coeffi-
cients for each site and then compute their product

(iii) Lines 11-14 calculate the weight of each site based
on the correlation coefficient. This is done by sum-
ming the correlation coefficients of all sites and
dividing each site’s correlation coefficient by this
sum. This makes the sum of the correlation coeffi-
cients for all sites 1

(iv) Line 15 calculates the final forecasting value based
on the predicted values of all forecasting models
for the target data and their weights

4. Input Variable Configuration

For the experiments in this study, we used public PV power
data from the Korean Open Data Portal (KODP). The
KODP provides 1 h resolution PV power data collected from
PV systems in various locations. To demonstrate the robust-
ness of the proposed scheme, we considered PV generation
systems in regions with diverse characteristics, such as
inland, coastal, and island regions in Korea. Hence, we col-
lected data from nine regions from January 1, 2017, to
December 31, 2019. The statistics of the collected PV power
data are summarized in Table 2.

From the table, we can see that the capacities of the PV
power systems vary greatly. In order to utilize such data in
the proposed method, it is necessary to scale it according
to the capacity of the power system. This is because if the
scale of the source power generation system of the data used
for training and the scale of the newly constructed power
generation system are significantly different, the predicted
value of the forecasting model trained with the source data

is not suitable for the new system due to the difference in
scale. For this purpose, we performed scaling that divides
the PV power data by the capacity of the corresponding
PV power system.

The PV generation is directly affected by solar radiation
that reaches the PV panel surface. The actual amount of
solar radiation reaching the panel is influenced by various
weather data, such as cloud cover, humidity, and atmo-
spheric conditions. Therefore, we considered time and
weather data for input variables in this study. The time data
determine the maximum solar radiation on the PV panel.

In addition, we use month, day, and hour to represent
time information. These time data were recorded as 1D data,
making it difficult to reflect their periodic nature in ML and
DL algorithms [31]. To address this issue, we transformed
the 1D time data into 2D data using periodic functions
and used them together. Additionally, we apply a proper
time delay to the time data to improve the prediction perfor-
mance. This can be an effective preprocessing technique for
forecasting models because it can facilitate capturing the
relationship between the input and output variables more
accurately. Equations (5) and (6) represent periodic func-
tions to transform 1D time data into 2D time data.

TimeX = sin 360/cycle × Time − delay 5

TimeY = cos 360/cycle × Time − delay 6

Here, cycle and delay represent data period and time
delay, respectively. For example, if Time represents the
month, cycle would be 12, and if Time represents the hour,
it would be 24. We calculated the PCC between time and
PV power data to determine the optimal time delay.
Figure 3 shows a heatmap representing the PCC between
time delay and PV power data. The upper heatmap in the
figure displays the PCC between the monthly time delay
and PV power data, whereas the lower heatmap displays

Input: No. of sites n, Source input data X[1…n], Source output data Y[1…n], Target input data XTest

Output: Final forecast value Ŷ Final
1 Select a DL model type M
2 Select correlation coefficient type CC
3 Select data time interval T
4 for each site i do
5 Train Mi using (X i , Y i )
6 Ŷ i ⟵Mi XTest
7 end for
8 for each site i do
9 Corri ⟵CC T XTest , T X i ∗ CC T X i , T Y i
10 end for
11 Corr Sum⟵ ∑n

i=1 Corri
12 for each i do
13 Wi ⟵ Corri/Corr Sum
14 end for
15 Ŷ Final ⟵∑n

i=1 Ŷ i ×Wi

16 return Ŷ Final

Algorithm 1: Calculating final forecasting value.
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the PCC between the hourly time delay and PV power data.
The Y-axis of the heatmap represents the Time, TimeX , and
TimeY from top to bottom, whereas the X-axis represents
the amount of delay.

For 1D data, PCC showed the largest absolute value when
a time delay of 2 months was applied to month data and when
a time delay of 18h was applied to hour data. In the case of 2D
data, the PCC showed the largest absolute value when a
5-month delay was applied to month data and a 13-hour
delay was applied to hour data. We also investigated the time
delay at which the sum of the absolute values of the PCC of
each 2D time data was maximum and found that a 4-month
delay for month data and a 4-hour delay for hour data
achieved the largest sum. Table 3 summarizes the regression
statistics for various time data settings, where bold values indi-
cate the best performance for each regression statistic.

The table shows that using 2D time data is more effective
than using 1D time data, and using both 1D and 2D time
data is most effective. In addition, using the time delay that
achieved the highest absolute value of the PCC for 1D and
2D data achieves better performance than other settings.

As mentioned earlier, weather conditions are closely
related to PV power generation. Hence, we collected weather
data from the Korea Meteorological Administration (KMA),

which provides weather data at various resolutions. To
construct a forecasting model, we used nine types of 1 h res-
olution weather data related to PV power generation, includ-
ing temperature, precipitation, relative humidity, sunshine
hours, and solar radiation. Thus, we configured nine datasets
consisting of 18 input variables and one output variable.
Input variables consist of nine types of time data and nine
types of weather data. Figure 4 represents a correlation heat-
map of the datasets. The figure shows that for PV power
data, hour, hourY , sunshine hours, and solar radiation have
a strong positive correlation, and relative humidity has a
strong negative correlation.

5. Experimental Results

As metrics to evaluate the performance of the forecasting
model, we used the mean absolute error (MAE) and root
mean square error (RMSE), defined by Equations (7) and
(8), respectively. Here, n, Yi, and Ŷ i represent data amount,
actual data, and forecasted data, respectively.

MAE =
1
n
〠
n

i=1
Yi − Ŷ i , 7

Table 2: Statistics of the PV power data.

Statistics
Location

Busan Gangneung Gwangju Hadong Incheon Jeju Jinju Mokpo Sejong

Mean 28.413 164.325 112.693 6.093 153.439 24.312 136.762 2099.293 250.782

Standard error 0.267 1.574 1.079 0.059 1.465 0.243 1.259 19.571 2.385

Standard deviation 43.34 255.216 174.906 9.516 237.565 39.427 204.119 3172.688 386.58

Kurtosis 0.41 0.57 0.533 0.639 0.722 1.197 0.174 0.462 0.473

Skewness 1.348 1.404 1.392 1.423 1.426 1.565 1.279 1.356 1.368

Observation 26280 26280 26280 26280 26280 26280 26280 26280 26280

Min value 0 0 0 0 0 0 0 0 0

Max value 163.44 980.832 689.04 38.004 968.928 161.288 733.68 12384 1485.48

Capacity 187 1065 806.4 41 1000 196 905 13300 1628
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Figure 3: Correlation heatmap between the time and photovoltaic power data.
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Table 3: Regression statistics for time data settings.

Time data settings Regression statistics
1D 2D Multiple R R2 Adjusted R2 Standard error

Original — 0.1533 0.0235 0.0235 0.2268

Max CorrTime — 0.6510 0.4238 0.4238 0.1743

— Original 0.7496 0.5619 0.5619 0.1519

— Max CorrTimeX ,PV or Max CorrTimeY ,PV 0.7496 0.5619 0.5619 0.1519

— Max CorrTimeX ,PV + CorrTimeY ,PV 0.7496 0.5619 0.5619 0.1519

Original Original 0.7621 0.5808 0.5808 0.1486

Original Max CorrTimeX ,PV or Max CorrTimeY ,PV 0.7621 0.5808 0.5808 0.1486

Original Max CorrTimeX ,PV + CorrTimeY ,PV 0.7621 0.5808 0.5808 0.1486

Max CorrTime Max CorrTimeX ,PV or Max CorrTimeY ,PV 0.7709 0.5943 0.5942 0.1462

Max CorrTime Max CorrTimeX ,PV + CorrTimeY ,PV 0.7709 0.5943 0.5942 0.1462
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Figure 4: Correlation heatmap of the dataset.
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Table 4: Hyperparameters used in each deep learning model.

Hyperparameter SNN DNN RNN LSTM GRU

Window size — — 24 24 24

No. of hidden nodes 289 289 289 289 289

No. of hidden layers 1 5 2 2 2

Activation function ReLU ReLU ReLU ReLU ReLU

Optimizer Adam Adam Adam Adam Adam

Learning rate 0.000001 0.000001 0.000001 0.000001 0.000001

No. of epochs 1000 1000 1000 1000 1000

Table 5: Mean absolute error comparison of the proposed scheme using long short-term memory.

Location
Busan Gangneung Gwangju Hadong Incheon Jeju Jinju Mokpo Sejong

SchemeLSTM,PCC,All 0.061 0.050 0.045 0.050 0.041 0.047 0.037 0.041 0.042

SchemeLSTM,PCC,Day 0.061 0.050 0.045 0.049 0.040 0.048 0.036 0.041 0.042

SchemeLSTM,PCC,SolarNoon 0.062 0.050 0.045 0.049 0.040 0.048 0.036 0.041 0.042

SchemeLSTM,DCC,All 0.061 0.050 0.045 0.049 0.041 0.047 0.037 0.041 0.042

SchemeLSTM,DCC,Day 0.061 0.050 0.045 0.049 0.040 0.047 0.037 0.041 0.042

SchemeLSTM,DCC,SolarNoon 0.062 0.050 0.045 0.050 0.040 0.047 0.036 0.041 0.042

Note. Bold: best performance result.
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Figure 5: Bubble chart of the best forecasting cases and bar chart of the frequency according to the option.

Table 6: MAE comparisons of DL models.

Model type
Location

Busan Gangneung Gwangju Hadong Incheon Jeju Jinju Mokpo Sejong

SNN 0.062 0.042 0.042 0.044 0.035 0.045 0.028 0.032 0.037

DNN 0.061 0.046 0.042 0.046 0.036 0.050 0.029 0.034 0.036

RNN 0.058 0.041 0.040 0.045 0.029 0.038 0.027 0.030 0.034

LSTM 0.062 0.050 0.045 0.049 0.040 0.048 0.036 0.041 0.042

GRU 0.059 0.048 0.043 0.044 0.035 0.048 0.031 0.037 0.038

Note. Bold: best performance result; PCC and solar-noon time used.
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RMSE =
1
n
〠
n

i=1
Yi − Ŷ i

2 8

In the first experiment, we determined three important
types: DL model type, correlation coefficient type, and data

time type. For this purpose, we considered all possible com-
binations of these three types. Table 4 shows the hyperpara-
meters used in each DL model.

In particular, the window size for RNN-type DL models
(RNN, LSTM, and GRU) in the table specifies how much
historical data should be used for prediction. On the other

Table 7: RMSE comparisons of DL models.

Model type
Location

Busan Gangneung Gwangju Hadong Incheon Jeju Jinju Mokpo Sejong

SNN 0.103 0.081 0.082 0.080 0.064 0.090 0.061 0.057 0.067

DNN 0.099 0.083 0.082 0.081 0.064 0.092 0.063 0.057 0.066

RNN 0.097 0.080 0.079 0.079 0.057 0.079 0.058 0.056 0.063

LSTM 0.102 0.089 0.084 0.087 0.070 0.090 0.070 0.068 0.073

GRU 0.100 0.083 0.082 0.080 0.063 0.088 0.063 0.060 0.068

Note. Bold: best performance result; PCC and solar-noon time used.

Table 8: MAE comparisons of SZF models and the proposed scheme using RNN.

Model
Location

Busan Gangneung Gwangju Hadong Incheon Jeju Jinju Mokpo Sejong

RNNBusan — 0.073 0.057 0.079 0.061 0.060 0.054 0.056 0.053

RNNGangneung 0.075 — 0.057 0.046 0.045 0.060 0.043 0.047 0.051

RNNGwangju 0.061 0.063 — 0.064 0.051 0.061 0.045 0.052 0.049

RNNHadong 0.088 0.055 0.064 — 0.054 0.065 0.049 0.054 0.060

RNNIncheon 0.081 0.070 0.070 0.068 — 0.073 0.058 0.053 0.063

RNNJeju 0.071 0.063 0.056 0.066 0.051 — 0.053 0.050 0.054

RNNJinju 0.076 0.056 0.060 0.058 0.053 0.071 — 0.056 0.053

RNNMokpo 0.079 0.065 0.064 0.066 0.053 0.066 0.054 — 0.056

RNNSejong 0.063 0.057 0.051 0.058 0.045 0.060 0.043 0.045 —

Proposed Scheme 0.058 0.041 0.040 0.045 0.029 0.038 0.027 0.030 0.034

Note. Bold: best performance result; underline: second-best performance result.

Table 9: RMSE comparisons of SZF models and the proposed scheme based on RNN.

Model
Location

Busan Gangneung Gwangju Hadong Incheon Jeju Jinju Mokpo Sejong

RNNBusan — 0.114 0.089 0.121 0.088 0.091 0.081 0.082 0.078

RNNGangneung 0.116 — 0.092 0.070 0.069 0.095 0.073 0.069 0.078

RNNGwangju 0.086 0.096 — 0.095 0.077 0.089 0.069 0.075 0.074

RNNHadong 0.129 0.086 0.099 — 0.077 0.098 0.074 0.078 0.087

RNNIncheon 0.112 0.102 0.103 0.094 — 0.105 0.082 0.073 0.087

RNNJeju 0.098 0.094 0.085 0.093 0.075 — 0.079 0.071 0.078

RNNJinju 0.105 0.088 0.090 0.082 0.074 0.099 — 0.077 0.075

RNNMokpo 0.112 0.098 0.097 0.095 0.075 0.105 0.082 — 0.081

RNNSejong 0.091 0.090 0.083 0.087 0.067 0.096 0.070 0.064 —

Proposed Scheme 0.097 0.080 0.079 0.079 0.057 0.079 0.058 0.056 0.063

Note. Bold: best performance result; underline: second-best performance result.
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hand, SNN and DNN do not have this hyperparameter, so
they cannot consider historical data in their predictions.
Therefore, to ensure a fair comparison of prediction perfor-
mance, the data used for SNN and DNN training were con-
figured to include past data. After all, all models have 18
input variables but reflect all data from the past 24 points;

that is, 432 input data are used in the model to generate
one output. For instance, Table 5 presents the MAE compar-
ison of all other combinations under the LSTM model.

In the table, the first column shows the type information
of the proposed model. For instance, SchemeLSTM,PCC,All
indicates that LSTM, PCC, and all time are used as the type

Table 10: MAE improvement of each deep learning model.

Model type
Location

Busan Gangneung Gwangju Hadong Incheon Jeju Jinju Mokpo Sejong

SNN
Best SZF 0.069 0.055 0.059 0.050 0.049 0.063 0.046 0.047 0.055

Proposed scheme 0.062 0.042 0.042 0.044 0.035 0.045 0.028 0.032 0.037

Improvement (%) 9.807 22.571 29.130 11.841 30.041 28.033 38.527 32.272 33.305

DNN
Best SZF 0.061 0.051 0.053 0.045 0.043 0.058 0.041 0.041 0.049

Proposed scheme 0.061 0.046 0.042 0.046 0.036 0.050 0.029 0.034 0.036

Improvement -0.128 9.615 20.700 -3.418 16.546 14.038 29.906 17.674 25.608

RNN
Best SZF 0.061 0.055 0.051 0.046 0.045 0.060 0.043 0.045 0.049

Proposed scheme 0.058 0.041 0.040 0.045 0.029 0.038 0.027 0.030 0.034

Improvement 5.092 26.484 21.413 1.763 34.629 36.926 37.472 32.913 30.741

LSTM
Best SZF 0.060 0.054 0.053 0.050 0.047 0.053 0.044 0.046 0.049

Proposed scheme 0.062 0.050 0.045 0.049 0.040 0.048 0.036 0.041 0.042

Improvement -3.735 8.015 14.228 0.585 14.389 10.947 18.055 10.899 14.884

GRU
Best SZF 0.058 0.050 0.052 0.046 0.043 0.052 0.041 0.041 0.049

Proposed scheme 0.059 0.048 0.043 0.044 0.035 0.048 0.031 0.037 0.038

Improvement -1.579 5.036 17.918 2.629 17.469 7.918 24.452 9.386 22.561

Note. Bold: best performance result.
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Figure 6: Radar graphs of MAE of locations according to deep learning model.
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of DL model, correlation coefficient, and data time,
respectively. In addition, values in bold indicate the best per-
formance for each location. In the case of Busan, no bold
values are listed because SZF performs better than the pro-
posed scheme.

In the experiment, we analyzed all cases that showed the
best results. Figure 5 shows a bubble chart of the number of
best performing cases according to data time and correlation
coefficient. From the figure, we can see that PCC is better
than DCC in terms of correlation coefficient and noon time
data is the best in terms of data time. Hence, we used PCC
and solar-noon time to implement the proposed scheme
using various DL models. Tables 6 and 7 present the MAE
and RMSE values of five different DL models for each loca-
tion, respectively. Here, the bold values indicate the best
performance for each location.

The tables show that the proposed scheme achieves the
best prediction performance when using RNN. On the other
hand, DNN and GRU models showed the next best perfor-
mance. To prove the effectiveness of the proposed scheme,
we compared its performance with RNN-based SZFs trained
using data from other areas. Tables 8 and 9 present the MAE
and RMSE values, respectively. Values in bold indicate the
best performance, and values with an underline indicate
the second-best performance for each location.

The proposed scheme performed best in most cases. We
calculated how much the performance of the proposed
scheme improved compared to the best performing SZF.
Compared to the best SZF, the proposed scheme improved
MAE performance by an average of 25.3% and RMSE per-
formance by an average of 4.7%. In the next experiment, to
prove the robustness of the proposed scheme for predictive
models, we compared the performance of all comparative
DL models and the proposed scheme. Table 10 shows the

MAE of the best SZF for each model and the proposed
scheme, and the improvement rate achieved by the proposed
scheme. Figure 6 presents radar graphs for the MAE of the
best SZF and the proposed scheme. In the figure, the smaller
the radar size, the better the predictive performance. In sum-
mary, the proposed scheme performs better than the best
SZF in almost all cases. Figure 7 presents the MAE and
RMSE improvement compared to the best for each DL
model type. We can see that the proposed scheme outper-
forms the best SZF in almost all cases. In only a few cases
where the source and target data have very similar patterns,
SZF gave slightly better forecasting performance than the
proposed scheme. However, since we have to make predic-
tions without knowing what pattern the target data will have,
this is impractical for use in a real-world environment.
Additionally, in terms of model construction time, the pro-
posed scheme takes the time to construct a single SZF mul-
tiplied by the number of source data. However, if real-time
updates to the model are not required, prediction accuracy
is much more important than model construction time.
Hence, the proposed scheme is more desirable for newly
built PV power systems than SZF.

6. Conclusion

In this paper, we proposed a novel zero-shot PV power fore-
casting scheme based on DL model and correlation coeffi-
cient. We constructed an individual DL-based forecasting
model for multiple locations and then calculated the final
prediction value through the correlation coefficient-based
weighted sum of the predicted values of these models. By
using this approach, the proposed scheme can always guar-
antee good prediction performance even in newly built PV
generation systems.
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Figure 7: Box plot of MAE and RMSE improvement compared to the best SZF.
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To evaluate the effectiveness and efficiency of the pro-
posed scheme, we performed extensive experiments using
historical data collected from nine source sites in Korea.
We first compared the performance of the proposed
schemes using different combinations of DL model, correla-
tion coefficient, and data time option to find the best one.
We considered five DL models (SNN, DNN, RNN, LSTM,
and GRU) for forecasting model and two correlation coeffi-
cients (PCC and DCC) and three data time types (all time,
day time, and solar-noon time) for weights. The experimen-
tal results revealed that the forecasting performance is best
for the combination of RNN, PCC, and solar-noon data time
data. The proposed scheme using this combination achieved
an average MAE of 0.038 and an average RMSE of 0.072.

In addition, we compared the performance of the pro-
posed scheme with SZF models trained using different data-
sets. We confirmed that the proposed scheme achieved the
best predictive performance in almost all cases and the
second-best performance with a very narrow margin only in
a few cases. More specifically, it improved MAE performance
by an average of 25.3% and RMSE performance by an average
of 4.7% compared to the best performing SZF model.
Although SZF showed the best performance in some cases, it
is difficult to use in real-world environment because its perfor-
mance varies greatly depending on the data used for training.

In the future, based on the forecasted value derived
through the zero-shot PV power forecasting model and the
electrical load data of the building or cluster where the PV
system will be installed, we plan to research the optimal
capacity of an energy storage system to be integrated with
this grid. In addition, we intend to develop an energy
operation scheduling algorithm that can guarantee the most
economic benefits to users by analyzing how energy is most
economically operated in a PV–energy storage system-
integrated grid with optimal capacity.
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