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In recent times, the significance of renewable energy generation has increased and photovoltaic-thermoelectric (PV-TE)
technologies have emerged as a promising solution. However, the incorporation of these technologies still faces difficulties in
energy storage and optimization. This review paper addresses these challenges by providing a comprehensive overview of the
latest advancements in PV-TE technologies. The paper emphasizes the integration of phase change materials (PCMs) for
thermal energy storage, also buttressing the use of encapsulated PCM for thermal storage and efficiency, and the use of hybrid
PCM to enhance overall performance. Furthermore, reviews on the use of machine learning techniques for efficient
optimization and the integration of thermoelectric modules into tandem perovskite silicon solar cells have been
comprehensively analyzed. The advancements in photovoltaic-thermoelectric systems, as reviewed in this article, signify
significant progress in attaining sustainable and effective energy production and storage. This review comprehensively
addresses the 4Es, underlining their importance. It not only consolidates recent developments but also charts a path for future
research in the field of PV-TE technologies, offering precise insights to guide upcoming studies and innovations.
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1. Introduction

Many countries throughout the world are looking for alterna-
tive energy sources including wind, solar, biomass, and hydro-
power to either supplement energy security or replace the
current conventional methods of generating electricity due to
the depletion of fossil fuel reserves and price changes. The abil-
ity to do more and significantly reduce costs is a key promise of
solar photovoltaic coupled with its advantage of no pollution
and silent equipment performance [1–3]. Solar photovoltaics
refers to the process of transforming solar radiation into electri-
cal energy through the utilization of semiconductor devices
called solar cells [4]. Photovoltaic cells are technologies that
use the photovoltaic effect to directly turn sunlight into electric-
ity. They are employed in a wide range of products, from tiny
electronic devices to massive power plants, and have emerged
as a significant source of renewable energy, decreasing depen-
dence on nonrenewable energy sources and promoting a more
sustainable future [1, 3, 5]. Photovoltaic cells are constructed
from semiconducting substances, typically silicon, which take
in photons from sunlight and release electrons to produce an
electrical current [6]. Renewable energy is often produced using
PV cells, which are used in solar panels. Over time, their effi-
ciency has gradually increased, with the most recent technology
achieving conversion efficiencies of over 20%; however, because
of their sensitivity to temperature, shading, dirt, dust accumula-
tion, and aging of the materials, approximately 80% of the inci-
dent solar energy is dissipated as heat in silicon solar cells [3, 7,
8]. Therefore, finding effective methods to decrease the exces-
sive heat accumulation in silicon solar cells has become a subject
of significant interest. An effective solution to address the issue
of photovoltaic overheating is to integrate them in tandem with
thermoelectric generators (TEGs) [7, 9].

Thermoelectric materials (TEMs) have the ability to be
incorporated into current setups as micropower generators
or microcoolers for cooling applications as they can convert
heat into electrical energy or vice versa using the Seebeck
and Peltier effects [4, 7]. This review explores how thermo-
electric modules are being integrated in tandem perovskite
silicon solar cells to improve the overall efficiency of the
photovoltaic system. Perovskite solar cells have the potential
to attain elevated levels of conversion efficiency [10], but
they also have a higher tendency to overheat compared to
traditional silicon solar cells. By integrating thermoelectric
modules, waste heat generated by the perovskite cells can
be converted into additional electrical power, effectively
increasing the overall energy output of the system. Addition-
ally, by using machine learning (ML) techniques for
optimization and integration, the performance of the ther-
moelectric modules can be further enhanced, making it a
promising solution for improving the efficiency and sustain-
ability of photovoltaic technologies as studied by Alghamdi
et al. [7]. Additional in-depth optimization research is
required to enhance the competitive market position of
PV-TE systems; since their efficiency levels have not yet
reached parity with nonrenewable energy sources, such as
coal-fired power plants utilizing steam, there is still room
for improvement in terms of enhancing the conversion effi-
ciencies of renewable energy technologies.

Hence, this review also investigates how machine learning
techniques can be utilized as an effective optimization method
to enhance the competitive advantage of PV-TE technologies.
Figure 1 illustrates the ML architecture employed to derive an
optimization function for this purpose. In research by
Alghamdi et al. [7], they discovered that the utilization of opti-
mization techniques like the finite element method (FEM) and
experimental approaches is often laborious, costly, and fre-
quently inadequate in accurately forecasting the performance
of photovoltaic-thermoelectric (PV-TE) systems. They also
concluded that ANSYS and COMSOL multiphysics necessitate
extremely high computational speeds to carry out complete
three-dimensional simulations, highlighting the need to develop
additional optimization techniques to address these limitations.

One of the primary challenges in PV-TE systems is the
effective management of heat generated by the PV cells.
The deployment of phase change materials (PCMs) for ther-
mal energy storage (TES) purposes media has shown prom-
ise [11], but there are still issues that require attention,
including but not limited to thermal stability, thermal con-
ductivity, and cost, which necessitate further consideration
and resolution. Coupled with the fact that there is a need
for advanced optimization techniques with the aim of
enhancing the efficiency of photovoltaic-thermoelectric
(PV-TE) systems as visualized in Figure 2, there is also the
need for integration of thermoelectric (TE) modules into tan-
dem perovskite silicon solar cells [12]. These challenges pose a
threat to recent advancements in PV-TE technologies which
leads to the necessity to review articles in this sphere. Note-
worthy progress has been made in the field of PV-TE technol-
ogies, which have enabled enhanced and economically viable
utilization with improved efficiency of solar energy. While
PV cells have long been recognized as a promising source of
renewable energy, the technology faces several challenges that
limit its competitiveness compared to nonrenewable energy
sources [13]. These include issues such as overheating, low
conversion efficiency, and cost-effectiveness.

TE modules can convert thermal energy into electrical
energy and vice versa by leveraging the Seebeck and Peltier
effects. However, integrating TE modules into PV cells is a
challenging task that requires careful design and engineering.
One area of innovation in this regard is the use of machine
learning techniques to optimize the design and parameters
of TE modules for efficient integration into PV cells [7].
Another area of innovation in PV-TE technologies is the
application of phase change materials (PCMs) for the purpose
of storing thermal energy (TES) [11]. PCMs are substances
characterized by their ability to undergo a phase transition,
wherein they can absorb or release significant quantities of
thermal energy. This unique property allows PCMs to store
and release substantial amounts of heat during the phase
change process which can help to reduce the overheating of
PV cells. However, there are still several challenges that need
to be addressed to make PCMs a viable solution for TES in
PV-TE systems [14]. These include issues such as thermal sta-
bility, thermal conductivity, and cost-effectiveness. The recent
progress within the realm of hybrid photovoltaic/thermal
(PV/T) systems, particularly the incorporation of nanofluids
to boost performance, has garnered significant attention. A
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recent review study by Hossain et al. [15] explores these devel-
opments, highlighting improved energy efficiency, heat trans-
fer, and other enhancements achieved through nanofluid
integration in PV/T collectors.

It is clear that prior research has not extensively
addressed several key aspects related to photovoltaic-
thermoelectric systems. To contribute significantly to bridg-
ing these research gaps and further advance the field, this
comprehensive review paper is aimed at providing valuable
insights and addressing the following critical aspects:

(1) Optimization with Phase Change Materials. Prior
research often overlooks the optimization of PV-TE
systems by integrating phase change materials for ther-

mal energy storage and employing advanced numerical
methods. This review critically examines the role of
PCMs, including their thermal properties, heat transfer
characteristics, and phase change behaviors, in enhanc-
ing the performance of PV-TE systems compared to
standalone PV systems. Furthermore, it explores the
utilization of numerical simulations, computational
fluid dynamics (CFD), and other modeling techniques
to analyze and optimize the thermal behavior of PV-
TE systems, considering factors such as heat transfer,
fluid dynamics, and temperature distribution

(2) Economic and Environmental Assessment. The eco-
nomic and environmental impacts of PV-TE systems
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Figure 1: ML architecture employed to derive an optimum ANN model [7].
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have been underemphasized in existing studies. This
review seeks to fill this research gap by evaluating the
economic viability and environmental sustainability
of PV-TE systems. It includes an analysis of the
cost-effectiveness of PV-TE systems. Additionally,
it explores the potential for reducing greenhouse
gas emissions and the environmental footprint asso-
ciated with PV-TE technology deployment

(3) Machine Learning Techniques and Thermoelectric
Integration. The integration of machine learning
techniques for optimizing PV-TE systems remains
an underexplored area. This paper delves into the
various machine learning algorithms and data-
driven approaches applied to PV-TE systems,
including supervised learning, unsupervised learn-
ing, and deep learning. It assesses their effectiveness
in predicting and improving system performance
and energy management. Furthermore, it explores
the integration of thermoelectric modules into tan-
dem perovskite silicon solar cells, examining the
materials, design considerations, and performance
enhancements achieved through this integration

(4) Advancements in PV-TE Technologies. The continu-
ous evolution of PV-TE technologies holds promise
for sustainable energy production. This review pro-
vides an in-depth analysis of recent advancements
in PV-TE technologies, including innovations in col-
lector designs, materials, and manufacturing pro-
cesses. It assesses their capabilities in addressing the
4Es (exergy, energy, economics, and environment),
considering factors such as energy conversion effi-
ciency, exergy analysis, economic feasibility, and
environmental impact

By meticulously focusing on these key areas and provid-
ing detailed insights, this review paper is aimed at offering a
comprehensive overview of the state of PV-TE systems. It
identifies research gaps, challenges, and opportunities, laying
the foundation for future research directions. Through our
thorough analysis, we aim to significantly contribute to the
knowledge base and promote the development of more effi-

cient, sustainable, and economically viable PV-TE systems,
addressing the pressing energy and environmental chal-
lenges of our time.

In Section 1, we discussed solar photovoltaic technology
and the underlying problem of energy efficiency as a standa-
lone device which has been detailed alongside integrating
thermoelectric materials to achieve an optimized PV-TE sys-
tem. Section 2 explains photovoltaic thermoelectric genera-
tors. Section 3 details PCM for thermal energy storage and
the latest advancements in using PCM to store and release
thermal energy in PV-TE systems. Next, Section 4 presents
ML techniques for efficient optimization and its challenges
furthermore analyzing works by scholars in this niche. Sec-
tion 5 discusses the integration of thermoelectric modules
in tandem perovskite silicon solar cells. Section 6 explains
the 4E analysis. Section 7 puts forth an exclusive summary
while Section 8 ends the review with a conclusion highlight-
ing avenues for further research and challenges encountered
in PV-TEG research.

2. Photovoltaic Thermoelectric Generators (PV-
TEG)

Several works have noted that the integration of TEGs and
PV systems solar cells in a hybrid format such as in
Figure 3 has resulted in improved efficiency in such systems
[3, 4, 6–8, 12, 16–19]. Therefore, PV-TE systems are a great
option to enhance the efficiency of solar energy-based sys-
tems in general. This is because they operate in opposite
wavelength ranges and are able to complement each other
in terms of utilizing spectral energy. Photovoltaic cells excel
in capturing short-wavelength light, such as ultraviolet and
visible, efficiently converting it into electricity. In contrast,
thermoelectric generators are effective at harnessing longer
wavelengths, mainly in the infrared spectrum, where PV cell
efficiency diminishes. When combined within a PV-TE sys-
tem, these technologies create a symbiotic relationship, max-
imizing spectral energy utilization. This integration
enhances overall energy conversion efficiency, making PV-
TE systems a compelling choice for improving solar
energy-based systems and advancing renewable energy
utilization.
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Figure 3: Schematic of (a) a combined system that integrates both PV and TEG technologies and (b) PV-TEG layers [15].
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Combining a PV module and thermoelectric generators
allows for a broad spectrum of photons to reach the TEG
module, resulting in the production of electricity through the
thermoelectric effect. Therefore, this results in an improved
conversion efficiency and a decrease in the quantity of thermal
energy released by the PV module [20]. Theoretically, there
are three methods to achieve PV-TEG hybridization [6]. The
first method involves splitting the spectrum into two systems
(Figure 4(b)), where one directs a certain wavelength of radia-
tion into the PV cells and the other sends the remaining radi-
ation into the TEG system. In this approach, the solar
spectrum is physically split into two distinct systems. One sys-
tem is designed to selectively direct a certain wavelength range
of solar radiation into the PV cells, optimized for photovoltaic
conversion. Simultaneously, the other system is configured to
direct the remaining portion of the solar spectrum into the
TEG system, which excels at harnessing thermal energy in
the form of longer-wavelength radiation. This spectrum-
splitting method ensures that each component of the hybrid
system receives the type of radiation it is most efficient at con-
verting into electricity or thermal energy. The second method
integrates both the PV and TEG systems into a single hybrid
system [21–33] which involves utilizing thermal paste to
establish a link between the segments. By doing so, it allows
for the simultaneous operation of both PV and TEG compo-
nents within a single unit. This integration method is aimed
at maximizing the overall energy conversion efficiency of the
combined system. The study suggests a third system to con-
nect PV and TEG, which involves making the reverse side of
the PV frommetal to enable fast heat transfer to the TEG. This
allows for a series or parallel electrical connection between the
two systems. By adding this metal layer, the PV module can
efficiently dissipate excess heat generated during its operation.
This enhanced heat transfer capability is crucial for ensuring
that the TEG components receive sufficient thermal energy
for effective thermoelectric conversion.

The integrated form of the PV-TEG system (Figure 4(a))
configuration offers the advantages of better integration (in
terms of space usage) and reduced cost, especially for build-
ing applications, despite the fact that both procedures are
sound technologies [4]. Some researchers have thus vali-
dated the fact that the integration mechanism gives better
efficiency [34, 35]. However, Bjørk and Nielsen [21] went
further to investigate the theoretical maximum output of
dispersed solar photovoltaic and thermoelectric generator
systems (PV-TEG). The maximum efficiency limit for pho-
tovoltaic systems according to the Shockley-Queisser model
and the figure of merit parameter zT for thermoelectric gen-
erators served as the foundation for an analytical model that
was presented. The researchers discovered that the use of
nonconcentrated sunlight, assuming maximum efficiency
for the thermoelectric generator (TEG) based on the Car-
not efficiency and no temperature impact on the photo-
voltaic (PV) system, can only increase the efficiency by
a maximum increase of 4.5 percentage points in the
combined configuration and 1.8 percentage points in the
tandem configuration (Figure 5) when compared to a
standalone PV system [21].

To assess the performance and viability of photovoltaic-
thermoelectric technologies comprehensively, it is crucial to
evaluate a range of performance metrics. These metrics pro-
vide valuable insights into the efficiency, sustainability, and
overall capabilities of PV-TE systems. In Table 1, we present
a summary of key performance indicators and metrics asso-
ciated with integrated PV-TE technologies. These metrics
encompass various aspects, including PV-TE efficiency, TE
type, and PV type. By examining these metrics collectively,
we gain a holistic understanding of the advancements and
challenges within the PV-TE integration landscape. Table 1
serves as a valuable resource to navigate the complexities
of PV-TE technologies and make informed decisions regard-
ing the performance of integrated PV-TE systems.
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Figure 4: PV-TEG hybrid systems for (a) integrated PV-TEG systems into a single hybrid system and (b) spectrum split system [4].
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3. PCM for Thermal Energy Storage

In photovoltaic-thermoelectric generator systems, PCMs are
used to regulate the temperature of the system by storing
energy, which can improve its overall efficiency [11, 19,
39–41]. PCMs are often used in conjunction with thermo-
electric materials to convert waste heat from the PV cells
into electricity. In research by Maduabuchi and Mgbemene
[42], they performed a numerical study of a solar thermo-
electric generator (STEG) integrated with a phase change
material (PCM) that exhibits the ability to store and release
thermal energy through phase transition. Their objective was
to investigate the performance of the STEG-PCM system
under different operating conditions and configurations.
The researchers formulated a mathematical model for the
purpose of the STEG-PCM system, which takes into account
the heat transfer mechanisms, thermoelectric conversion,
and electrical circuit. They used this model to simulate the
system’s performance under different parameters such as
solar irradiance, PCM melting temperature, and thermoelec-
tric material properties. The results of the simulations show
that the STEG-PCM system can significantly improve the
efficiency of solar energy conversion by storing and releasing
thermal energy. They discovered that the melting tempera-
ture of the PCM is a critical parameter that affects the sys-
tem’s performance, with higher melting temperatures
resulting in higher energy storage capacity and better perfor-

mance. They also found out that the material properties of
thermoelectric materials play a pivotal role in the system’s
performance, with higher Seebeck coefficient and lower elec-
trical resistivity leading to higher output power. Overall, the
study provided valuable insights regarding the design and
optimization of STEG-PCM systems for efficient solar
energy conversion, and the numerical model developed in
this study can be used as a tool for further research and
development in this field. Also, Xiong et al. performed a
numerical analysis on the performance of a system with
counter-flow type heat exchangers [43]. A two-step thermo-
electric energy collection system powered by the residual
heat from water in blast furnace slag was designed by them.
The performance features of a thermoelectric generator,
which used phase change materials as a heat sink to main-
tain a constant cool side temperature, were assessed through
experimentation by Jaworski et al. [44]. They employed an
infrared lamp to generate heat and a receptacle containing
PCM to absorb heat from a cooler region, thereby maintain-
ing its temperature in their approach. The outcomes of their
study validated the feasibility of utilizing phase change mate-
rials as a medium for cooling or heating in thermoelectric
generators. Wang et al. [45] conducted a theoretical exami-
nation on the potential utilization of phase change materials
for enhancing the heat transfer characteristic of the hot side
of the TEG. The researchers employed vehicle exhaust gas as
a heat source, and their findings indicate that the

Photovoltaic cell (PV)
Photovoltaic cell (PV) Thermoelectric

generator (TEG)

Thermoelectric generator (TEG)

Combined system

Tandem system

Dichroc prism/
beam splitter

Qsolar

Qsolar

�>�SQ�>�SQ

Figure 5: Two systems that were analyzed. In the tandem configuration, the incident solar radiation, Qsolar, is divided between the PV and
TEG at a specific wavelength of λSQ [21].

Table 1: Performance metrics of different integrated PV-TE systems [17].

Ref. TE system type PV system type PV-TE efficiency (%)

Rezania et al. [36] Bi2Te3 Silicon (Si) solar cell ~16.6
Zhang and Xuan [37] Bi2Te3 (TEC1-03103) GaAs 19.10

Soltani et al. [38] TEC-1206 c-Si ~15.5
Soltani et al. [32] TEC1-12706 c-Si ~8.25
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implementation of suitable phase-change materials can
notably enhance the TEG’s output power and efficiency.
Using phase change materials is an appropriate approach
for thermal energy storage (TES). The storage capacity of
the latest heat storage system (LHSS) can be determined
(equation (1)) when a PCM is utilized as the storage medium
as calculated by Sharma et al. [46].

Q =m
Tm

Ti

Cps dT + Bl +
T f

Tm

Cpi dT , 1

where Ti is the PCM initial temperature, Tm is the melting
temperature, Cps is the specific heat capacity in solid state,
Cpi is the specific heat capacity in liquid state, B is the melt
fraction, l is the specific latent heat, and T f is the final
temperature.

3.1. Latent Heat. PCMs exhibit high latent heat, enabling
them to retain significant quantities of thermal energy when
transitioning from a solid to a liquid state [42]. Out of the
various thermal heat storage methods mentioned, latent heat
thermal energy storage stands out as a compelling option
because of its capacity to offer a high-energy storage density
and its unique ability to store heat at a constant temperature
that corresponds to the phase-transition temperature of the
phase change material. Additionally, they can transition in
the following form: solid-solid, solid-gas, liquid-gas, and vice
versa. Furthermore, to create a thermal energy storage sys-
tem that uses latent heat, it is crucial to comprehend three
key areas: phase change materials, materials for containers,
and heat exchangers [47]. As noted by Pillai and Brinkworth
[48], the use of solid-solid phase change materials provides
the benefits of requiring fewer rigid containers and offering
increased flexibility in design. Figure 6 shows a detailed clas-
sification of PCM categorizing the solid-solid phase, solid-
liquid, solid-gas, and liquid-gas phase.

To advance the understanding and application of phase
change materials (PCMs) in conjunction with thermoelectric
generators (TEGs), it is necessary to carefully consider the
advantages and drawbacks of the different categories of
PCMs as outlined in Table 2.

Studies by Jurinak and Abdel-Khalik [50] and Morrison
and Abdel-Khalik [51] assessed the effectiveness of air-
powered solar heating systems that utilize units for storing
energy through a phase change. Their aim was to study how
the thermal performance of an air-based solar heating system
is impacted by themelting temperature and latent heat charac-
teristics of the phase change energy storage unit and also cre-
ate an empirical model for a significant unit of phase change
energy storage (PCES). The key finding was that the selection
of PCM should be based on its melting point rather than latent
heat. Additionally, it was discovered that an air-based system
that utilizes sodium sulfate decahydrate as a storage medium
necessitates only a quarter of the storage volume of a pebble
bed and half the storage volume of a water tank. PCMs possess
the capability to absorb and emit thermal energy while main-
taining a relatively constant temperature. They possess a heat
storage capacity that is 5 to 14 times greater per unit volume

than materials such as water, masonry, or rock that store heat
based on their temperature [46]. Several researches have
shown that a hybrid storage-harvesting energy system that
combines phase change materials and thermoelectric genera-
tors is an encouraging option.

3.2. Recent Advancement in Using PCM to Store and Release
Thermal Energy in PV-TE Systems. Phase change materials
have shown promising results in storing and releasing ther-
mal energy in PV-TE systems. Recent advancements in this
area include the development of new PCMs with higher
thermal conductivity, melting temperature, and thermal sta-
bility [52–56]. One of the key challenges in using PCM is
their low thermal conductivity, which limits the rate of heat
transfer [57, 58]. To address this, researchers have explored
incorporating high thermal conductivity materials, such as
graphene or carbon nanotubes, into the PCM to enhance
their heat transfer properties [59–66]. Another area of devel-
opment is the use of hybrid PCM, which combines two or
more PCMs to improve their overall performance [67, 68].
For example, a recent study demonstrated that a hybrid
PCM consisting of dextran sulfate sodium (DSS) salt as a
polyelectrolyte additive and a salt hydrate component had
a higher energy storage capacity which substantially miti-
gated the phase separation of the salt hydrate [69]. Studies
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showing the different types of inorganic salt hydrates applied
in PCM for thermal regulation [70] have been outlined in
Table 3. Although some review articles such as Sikiru et al.
[71] reviewed certain recent progressions and the influence
of phase change materials on solar energy, there is a need
to buttress on future prospect for PV optimization using
PCM as covered in this present review.

Researchers are also exploring the use of encapsulated
PCM, where the PCM is encapsulated within a shell or cap-
sule to prevent leakage and improve stability. Encapsulation
can also allow for the use of higher melting temperature
PCMs, which have the potential to store more energy. The
normal PCM is a liquid-state PCM with tiny particles. As a
result, it results in leakage issues and external environment
reactivity [86, 87]. When packaging is disregarded, leakage
happens after prolonged usage, and if a casing flaw exists,
leakage can happen extremely quickly. Several studies were
proposed in order to address these issues with the traditional
PCM. A possible approach for addressing the drawbacks of
the microencapsulation technique is employed in this ther-
mal storage system. The organic or inorganic materials can
enclose PCM droplets smaller than 1000μm due to the
design of the microencapsulation phase change material

(mPCM). Hence, by increasing the PCM’s surface-to-volume
ratio and covering the liquid PCM surface, it is possible to
overcome the drawbacks of the standard PCM, including its
diminished thermal conductivity and challenges related to
leakage [87–91]. A study by Royo et al. [85] constructed their
proposed BIPV-TEG-PCM system (Figure 7), which employs
phase change material encapsulated at the microscale
(mPCM) to capture lost solar and thermal energy from the
building envelope, the best design for manufacturing was
determined using numerical analysis. To determine an opti-
mal thermal structure, they investigated various heat fin spac-
ings (Figure 8), the PCM melting temperature, and the TEG
layout using computational fluid dynamics (CFD) heat trans-
fer analyses. Table 4 outlines various microencapsulation
methods of PCM and their pros and cons [91].

4. Machine Learning Techniques for Efficient
Optimization of PV-TE Technologies

4.1. Machine Learning Optimization. Machine learning is a
powerful technique used to train computer systems to learn
and improve from experience without being explicitly pro-
grammed. It finds diverse applications, encompassing

Table 2: Merits and drawbacks of different PCMs.

Merits Drawbacks

Organic PCMs

High energy density: organic PCMs have high energy density,
allowing for more energy to be stored in a smaller space
compared to traditional thermal storage materials like water.

Limited temperature range: organic PCMs typically have a
limited temperature range, making them unsuitable for
applications that require higher or lower temperatures.

Wide availability: organic PCMs are widely available and
can be sourced from renewable resources.

Flammability: organic PCMs can be flammable,
making them a potential safety hazard.

Good thermal stability: organic phase change materials
(PCMs) exhibit favorable thermal stability, enabling them to
endure multiple cycles of melting and solidification without
undergoing degradation.

Cost: some organic PCMs can be expensive compared to
traditional thermal storage materials like water.

Inorganic PCMs

High melting temperature: inorganic PCMs have a
high melting temperature, making them suitable for
high-temperature applications.

Limited energy density: inorganic PCMs have a lower
energy density compared to organic PCMs, meaning
more space is required to store the same amount of

thermal energy.

Good thermal conductivity: inorganic PCMs have
good thermal conductivity, allowing for faster heat transfer.

Limited availability: inorganic PCMs can be less
widely available and more difficult to source

compared to organic PCMs.

High heat capacity: inorganic PCMs have a high
heat capacity, meaning they can store a large amount of
thermal energy.

Phase separation: some inorganic PCMs can
separate into different phases, which can lead to reduced

performance and durability issues over time.

Eutectic PCMs

Wide temperature range: eutectic PCMs have a wide
temperature range, rendering them suitable for a
myriad of applications.

Limited availability: eutectic PCMs can be less widely
available and more difficult to source compared to

organic PCMs.

High energy density: eutectic PCMs have a high
energy density, allowing for more energy to be stored in a
smaller space compared to traditional thermal storage
materials like water.

Limited thermal stability: eutectic PCMs can have
limited thermal stability, meaning they may degrade over
time with repeated cycles of melting and solidification.

Good thermal conductivity: eutectic PCMs have good
thermal conductivity, allowing for faster heat transfer.

Cost: eutectic PCMs can be expensive compared to
traditional thermal storage materials like water.
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optimization purposes, which involves finding the best solu-
tion to a problem from a set of possible options. Machine
learning for optimization involves using algorithms to auto-
matically find the best solution to a problem, based on data
and feedback. This allows the computer system to learn from
previous solutions and improve its performance over time.
Some popular machine learning algorithms used for optimiza-
tion include gradient descent, genetic algorithms, and rein-
forcement learning. By leveraging the power of machine
learning for optimization, several novel researches have been
conducted and findings published to aid the scientific commu-
nity [7, 100–105]. There are three primary stages involved in
an ML system (Figure 9). The initial step involves gathering
in-domain data, which is referred to as the training data.
The second stage involves the utilization of specialized meth-
odologies to extract the features, followed by the selection of
a learning algorithm in the third step based on mathematical
models, which is the model [106, 107]. An analysis is being
conducted on the machine learning techniques that are most
commonly used.

4.1.1. Supervised Learning. Supervised learning can be used
in solar energy studies to predict energy output and optimize
system performance [108]. In the context of PV-TEG sys-
tems, supervised learning can be applied to train models that
can accurately forecast the power generation of the hybrid
system, which combines the benefits of both photovoltaic
and thermoelectric technologies. This can help optimize
the design and operation of the PV-TEG system to achieve
maximum energy efficiency. Supervised learning (SL) deals
with tasks where both the input and output are known dur-
ing the initial stage. Some studies have utilized supervised
learning for their energy study and optimization
[109–122]. In supervised learning, classification and regres-
sion tasks correspond to predicting discrete and continuous
outputs, respectively. Polynomial regression, linear
regression, exponential regression, and Gaussian process
regression (GPR) are examples of regression techniques
[123, 124]. Support vector machines (SVM) are a popular
algorithm that is also used in supervised learning for classi-
fication and regression tasks. SVM operate by identifying

Table 3: Inorganic salt hydrates in PCM for thermal regulation [70].

Reference Application System Salt hydrate

Weinläder et al. [72]

Phase change material for
thermal regulation

PCM-façade-panel S27

Hadjieva et al. [73] Composite PCM
concrete system

Na2S2O3·5H2O

Fu et al. [74] and Ye et al. [75] CaCl2·6H2O

Hasan et al. [76], Hasan et al. [77],
Hasan et al. [78, 79], and
Nagano et al. [80]

Photovoltaic-phase
change material

(PV-PCM) system

CaCl2·6H2O

Irsyad et al. [81], Karthick et al. [82], and
Oró et al. [83]

Na2SO4·10H2O

Pichandi et al. [84] Na2CO3·10H2O

Pichandi et al. [84] MgSO4·7H2O

Royo et al. [85] Na2HPO4·12H2O

BIPV panel

Metal casing Thermoelectric generator (TEG)

Microcapsulated PCM (mPCM)

Figure 7: BIPV-TEG-PCM design [87].
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the optimal hyperplane that effectively segregates data points
into distinct classes, thereby maximizing the margin between
the classes. They handle both linear and nonlinear data using

kernel tricks, making it a versatile algorithm for a variety of
supervised learning tasks in energy research [125–128]. The
SVM sorts datasets by using two parallel margins [129].
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WT + b = 0, 2

Y x =
1
N
〠
N

n=i
wTk xi, xj + b, 3

WT x + b = 0, 4

K xi, xj = xi
T xj 5

In this context, the weight and deviation vector are
denoted as w and b, respectively. Additionally, the sample
number and regularization factors are represented by n and
λ, respectively. The mapping function is indicated by the sym-
bol φ. Figure 10 shows the structure of SVM.

4.1.2. Deep Learning. Deep learning (DL) belongs to the
domain of machine learning (ML) and relies on the applica-
tion of artificial neural networks (ANNs) [131–134]. ANNs

consist of individual units called neurons, each of which
takes in multiple inputs, denoted as x1, x2, …, xm. These
inputs are multiplied by corresponding weights, represented
as w1, w2, …, wm, and added to a bias term, b, to produce a
weighted sum of the inputs. To generate the output y
(Figure 11), nonlinear activation functions are utilized.

4.1.3. Unsupervised Learning. Unsupervised learning (USL)
is a method of machine learning in which data is analyzed
without preexisting labels. The USL approach is commonly
used in clustering problems, which can be addressed by var-
ious techniques, such as the K-means algorithm, Gaussian
mixture model, and mean-shift algorithm. Specifically, the
K-means algorithm partitions a given dataset into K clusters,
ensuring that data points within each cluster are homoge-
nous. In recent times, numerous researchers have utilized
the K-means algorithm to achieve optimal performance in
their studies [135, 136].

Data Representation Model

Machine learning systems

T

w
+

b

w
+

b

...,10

...,1

Ø

�·

Figure 9: Stages of machine learning systems [107].
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Figure 10: Support vector machine structure [130].
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4.2. Optimization of PV-TE Techniques Using Machine
Learning. The optimization of PV-TE techniques using
machine learning involves the use of ML algorithms to
enhance the efficiency and performance of PV-TE devices.
Machine learning techniques such as artificial neural net-
works, genetic algorithms, and support vector machines
are used to model the behavior of PV-TE devices and predict
their performance under different conditions. This approach
can lead to the development of more efficient and cost-
effective PV-TE devices, which can be used to generate clean
energy from solar radiation and waste heat. Alghamdi et al.
[137] used machine learning to predict the performance of
a solar photovoltaic-thermoelectric system comprising vari-
ous categories of crystalline silicon cells. Their study pro-
posed the use of a deep neural network to accurately
predict the performance of a photovoltaic-thermoelectric
system, which is designed with three distinct crystalline solar
cells, instead of the ineffective numerical methods typically
used for analyzing such hybrid systems. The data produced
by the numerical solver was then utilized to train an opti-
mized deep neural network with three layers and 20 neurons
per layer, resulting in a more efficient method of predicting
the hybrid system’s performance. The research utilized the
Bayesian regularization method and resulted in the deep
neural network (DNN) efficiently acquiring knowledge that
would typically take a conventional numerical solver 1,600
minutes to generate, completing the task in just 12 minutes
and 27 seconds. As a result, the proposed network was found
to be 128.51 times faster than the traditional numerical
method. Furthermore, on deep neural networks for the opti-
mization of PV systems, Maduabuchi et al. [104] utilized
DNN for the purpose of enhancing the thermomechanical
performance of segmented TEGs through device geometry
optimization. The conventional approach of using numerical
methods to enhance the efficacy of segmented thermoelec-
tric generators has proven to require a significant amount
of computing time and energy. To ensure the accuracy of
the results, they adopted a methodology in which they con-
structed a numerical model using ANSYS software and
incorporated the impact of temperature dependence in the
four thermoelectric materials utilized in their study. In their

study, the Levenberg-Marquardt algorithm implemented in
the deep neural network had a profound impact. The most
notable advantage of the proposed method was that it could
rapidly and precisely predict device performance within a
mere 10 seconds. This was an improvement of 2880 times
compared to the conventional numerical optimization
method. Furthermore, the optimized device achieved a max-
imum efficiency of 18%, a significant increase of 78% in con-
trast to the unoptimized device. The aim of the research was
to develop a prediction model for the performance of PV-TE
systems using different semiconductor materials through the
utilization of optimal surrogate machine learning techniques
and to determine the most effective machine learning
approach for forecasting the performance [7]. To accom-
plish this, the study employed multiple surrogate machine
learning models and trained them using high-priced finite
element generated data. The findings demonstrated that an
optimal ML model for this analysis is an ANN structure
consisting of two hidden layers, with five neurons in each
layer. The study highlights the potential of recurrent neural
networks and time delay neural networks for modeling time
series data of PV-TE systems in future research. However,
the research lacks a comprehensive discussion on the limita-
tions and potential sources of error in using machine learn-
ing models to predict PV-TE performance. A study by
Maduabuchi [105] describes how a next-generation thermo-
electric generator combined with a solar optical concentrat-
ing system was optimized through the use of finite elements
and Bayesian regularized neural networks. The results indi-
cated that the optimized device produced considerably more
power and had higher efficiency compared to the traditional
device. Moreover, the Bayesian-regularized neural network
(Figure 12) was capable of predicting the device’s perfor-
mance 1,050 times faster than the numerical method with
only ten neurons in the hidden layer. However, the article
did not address the cost-effectiveness and commercial viabil-
ity of the proposed device.

In a multiobjective optimization research by Alghamdi
et al. [138], they explored the advantages of employing a
hybrid concentrated photovoltaic-thermoelectric (CPV-TE)
system rather than a standalone CPV. However, finding
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Figure 11: Functionality of a neuron in deep learning.
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the optimal thermoelectric (TE) material can be difficult due
to conflicting material properties. To overcome this challenge,
the article proposed using a multiobjective optimization
genetic algorithm (MOGA) to identify the best TE material
for maximum CPV-TE performance. The technique for order
performance by similarity to ideal solution (TOPSIS) decision
algorithm is then utilized to choose the best performing condi-
tions. The optimization workflow is executed using machine
learning algorithms. The outcomes demonstrate that the pro-
posed optimization technique attained an output power of
44.6W, exergy efficiency of 18.3%, and CO2 reduction of
0.17g/day. Among the machine learning algorithms exam-
ined, Gaussian process regression exhibited the highest accu-
racy in learning the performance dataset of CPV-TE
(concentrated photovoltaic-thermoelectric) systems.

4.3. Challenges of Conventional Optimization Tools. There
are various difficulties in optimizing PV-TE techniques
through conventional numerical methods other than using
machine learning. These difficulties stem from the nonlinear
behavior of PV-TE devices, which is influenced by various
nonlinear factors such as illumination intensity and temper-
ature. As conventional numerical tools are meant for linear
systems, it can be challenging to model and optimize PV-
TE devices due to these nonlinearities [139].

The first challenge is the issue of limited accuracy. Con-
ventional numerical tools, such as finite element analysis
and computational fluid dynamics, rely on mathematical
models that may not accurately capture all aspects of PV-
TE devices. This can lead to inaccurate predictions and sub-
optimal designs [140]. The second challenge is the lack of
scalability. As the complexity of PV-TE devices increases, it
becomes increasingly difficult to model and optimize them
using conventional numerical tools. This limits the size
and scope of optimization studies that can be performed,
which may result in suboptimal designs. Furthermore, the

third challenge is multiobjective optimization. In many
cases, optimizing the performance of PV-TE devices
requires balancing multiple objectives, such as maximizing
power output while minimizing material and manufacturing
costs. Conventional numerical tools are often not well-suited
for multiobjective optimization problems, which can lead to
suboptimal solutions [138]. And lastly, another challenge is
high-dimensional parameter space. The performance of
PV-TE devices is influenced by a multitude of parameters,
such as material properties [90], device geometry [104,
141], and operating conditions. Optimizing these parame-
ters using conventional numerical tools can be computation-
ally expensive and time-consuming, especially when dealing
with a high-dimensional parameter space. Machine learning
has helped tremendously in solving issues such as intricate
modeling, lengthy computational processes, high energy
demands, and even ease of implementation [138, 142–144].

A study by Khan et al. [145] explores the use of a hybrid
system that utilizes a revolutionary neural network-based con-
trol technique for maximum power point tracking (MPPT)
PV-TEG system. The system efficiently utilizes solar energy
and improves PV efficiency by mitigating the surface temper-
ature of PV modules. The proposed snake optimizer-based
MPPT controller, combined with amultilayer perceptron neu-
ral network (MLPNN) and a PID controller, yields consistent,
precise, and rapid MPPT even in fluctuating environmental
conditions. The research verifies the efficacy of the suggested
controller by comparing it to alternative techniques and con-
cludes that the MPPT controller based on the snake optimizer
based neural network (SOANN-based) demonstrates superior
performance (Figure 13) and provides superior performance
regarding efficiency, tracking duration, stability, and fault
detection capacity. However, future work can be addressed
on the economic feasibility of implementing the proposed sys-
tem or any potential practical limitations thatmay arise during
real-world implementation.
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Figure 12: Network architecture of the Bayesian-regularized ANN deployed [105].
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5. Integration of Thermoelectric Modules into
Tandem Perovskite Silicon Solar Cells

Combining thermoelectric modules with tandem perovskite
silicon solar cells presents a promising approach to enhance
the efficiency of solar energy conversion systems, known as
PV-TE (photovoltaic-thermoelectric) applications [12, 146,
147]. Such systems harness both the photovoltaic effect and
thermoelectric effect to generate electricity from solar
radiation. The photovoltaic effect directly converts light into
electricity, whereas the thermoelectric effect converts temper-
ature differences into electrical energy. In a PV-TE system, the
thermoelectric module is integrated with the tandem perov-
skite silicon solar cell to collect the waste heat generated dur-
ing solar energy conversion. The thermoelectric module then
converts this waste heat into additional electrical power, which
increases the overall efficiency of the system. One potential
challenge in the integration of thermoelectric modules into
tandem perovskite silicon solar cells for PV-TE is the need
to optimize the thermal management of the system. The ther-
moelectric module should be designed to efficiently collect the
waste heat from the solar cell without overheating the system
[148–150]. Selecting appropriate materials for the thermoelec-
tric module that can function effectively under the tempera-
tures and temperature gradients present in the system is
another obstacle. Although, bismuth telluride and lead tellu-
ride have traditionally been used for thermoelectric modules,
new materials and approaches are being explored [151].
Despite the existing difficulties, integrating thermoelectric
modules into tandem perovskite silicon solar cells for PV-TE
has the potential to significantly enhance the efficiency of solar
energy conversion systems, making them more sustainable
and cost-effective [12]. Research in this field is ongoing, with
a focus on developing optimized designs and materials for
PV-TE systems to achieve maximum efficiency.

The investigation of diverse heat transfer media, com-
prising air, water, and heat pipes, has been undertaken for
PV-TE systems. The selection of an optimal heat transfer
medium for a specific system design and operational
requirements is influenced by multiple factors [152]. For
instance, although air is a commonly used medium in PV-
TE systems due to its low cost and ease of handling, it pos-
sesses a low heat transfer coefficient, potentially causing
greater thermal resistance that may compromise the sys-
tem’s efficiency [153, 154]. Conversely, water is another
good choice, as it has a higher heat transfer coefficient, but
necessitates the use of supplementary components such as
pumps and heat exchangers. Table 5 has been included in
this review to present a compilation of existing research on
PV-TEG systems, specifically focusing on the employed heat
transfer medium. This information may serve as a valuable
resource for researchers as they navigate potential avenues
for future investigation on heat transfer medium.

Heat pipes have exhibited promise, with passive abilities
to transfer heat with minimal thermal resistance over
extended distances, while accommodating various orienta-
tions and high heat fluxes. Ultimately, a comprehensive eval-
uation is indispensable for identifying the most suitable heat
transfer medium for a given PV-TE system.

The figure of merit for a material to generate thermo-
electric power is expressed as zT , which is a dimensionless
quantity [150].

zT =
σα2T
k

6

Other than the Seebeck coefficient α, the thermal con-
ductivity k, electrical conductivity σ, and temperature T ,
are all factors that impact it.
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Figure 13: MPPT controller based on snake optimizer based neural network for hybrid photovoltaic-thermoelectric (PV-TEG) system [145].
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However, the definition of thermoelectric module or sys-
tem efficiency for generating electricity can be expressed as
follows:

η =
P

Qh

7

The efficiency η of a thermoelectric device relies on the
quantity of electrical energy delivered to a load P and the
heat intake on the hot side Q. There is a maximum limit to
this efficiency, which is denoted as ηmax and expressed by

ηmax =
Th − Tc

Th

1 + ZŦ − 1
1 + ZŦ + Tc/Th

8

Th represents the temperature on the hotter side, while
Tc represents the temperature on the colder side. It is worth
mentioning that the initial segment of equation (8) repre-
sents the Carnot efficiency. This is because thermoelectric
devices function as heat engines, extracting heat from a
high-temperature source and transferring it to a low-
temperature source while generating work. The second com-
ponent of the equation establishes the distance between ηmax
and the Carnot limit.

A study by Zhou et al. [12] proposed a four-terminal
configuration hybrid system that combines a perovskite
solar cell (PSC) and thermoelectric module to achieve effi-
cient solar energy conversion. The study used simulations
and experiments to optimize the bandgap of the PSC and
achieved an unprecedented efficiency surpassing 23%; the
system demonstrated a notable performance of 18.3% attrib-
uted to the perovskite solar cell (PSC), while the remaining
efficiency was achieved through heat conversion utilizing
the TE module. The research finding (Figure 14) was that
the utilization of TE modules presents a promising approach
to enhance the utilization of solar radiation through the
effective utilization of the low-grade heat generated by
perovskite solar cells (PSCs).

The demand for high-efficiency solar cells has been satis-
fied to a considerable extent by perovskite solar cells (PSCs).
The efficiency of PSCs based on lead halide has been rapidly

enhanced and the simulated variations in the heat along the
vertical axis of the hybrid PSC-TE system [164]. In addition,
recent studies have indicated that the introduction of a blend
of bromide and iodide into the halide makeup of lead
methylammonium perovskites enables the bandgap to be
continuously adjusted, making it a desirable characteristic
for solar cells with multiple junctions [165]. The two main
configurations of tandem devices for solar cells include
perovskite-perovskite and perovskite-silicon tandem solar
cells [166]. In a study by Kim et al. [167], they developed a
bifacial 4-terminal tandem solar cell by combining perov-
skite and silicon heterojunctions, which achieved an effi-
ciency of 30%. The efficiency of this hybrid bifacial solar
cell surpassed the Shockley-Queisser limit of 29.43% for
crystalline silicon solar cells. Also, He et al. [165] in their
research, attained a tandem heterojunction perovskite/Si
solar cell achieved an efficiency of 29.5%, wherein the top
and bottom cells of the device generated an open circuit
voltage of 1.74 eV. Integrating thermoelectric modules into
tandem perovskite silicon solar cells has brought about effi-
ciency in the hybrid system [168]. The standalone PSC,
TEG, and the hybrid PSC-TEG system achieved efficiencies
of 20.4%, 5.16%, and 20.8%, respectively. Through the opti-
mization of operating parameters, the hybrid device reached
a maximum efficiency of 22.9% with an optimal layer thick-
ness of 449.7 nm. The researchers concluded that incorpo-
rating the TEG into the PSC helped decrease waste heat
emissions and enhance the power and conversion efficiency
of the PSC. Additionally, the work by Eke et al. [169] focuses
on modeling and analyzing TE devices with a spectrum-
splitting tandem perovskite/silicon solar cell to attain
improved performance. The research employs a dichroic
beam splitter as a solar concentrator to effectively harness
the complete solar spectrum. Additionally, a thermoelectric
cooler (TEC) is positioned behind the backplate of the tan-
dem solar cell to mitigate overheating and enhance power
generation. The impact of altering the halide composition
of the perovskite on the performance of the system is also
studied, and novel equations are developed for the analysis.
The research finds that increasing the bromine composition
only improves the system’s performance for a specific halide
composition and perovskite thickness range. At a split

(a)

PSC

TE

Heat sink

37°C

28°C

20°C

0°C

(b)

Figure 14: (a) Schematic diagram showing the PSC-TE hybrid system created in their study. (b) The simulated variations in heat along the
vertical axis of the hybrid PSC-TE system [12].
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wavelength of 800nm, the system reached an impressive effi-
ciency of 42%, surpassing the 23.6% efficiency achieved by
standalone perovskite/Si solar cells. This study offers valu-
able insights into the functioning of spectrum-splitting tan-
dem perovskite/silicon solar cells when combined with TE
devices.

6. 4E Analysis (Exergy, Energy, Economics,
and Environment)

Due to the rising demand for sustainable energy sources and
increasing energy needs, photovoltaic-thermoelectric (PV-
TE) technologies have gained substantial attention for their
potential to simultaneously generate electrical and thermal
energy, resulting in improved energy conversion efficiency
and reduced environmental impact. As such, PV-TE systems
have become a promising area of research and development
for meeting the 4Es: energy, environment, exergy, and econom-
ics as only a few reviews exist on this. The 4Es significantly con-
tribute to the overall success of a technology. Energy refers to
the amount of energy generated and its efficiency, while envi-
ronment pertains to the environmental impact and sustainabil-
ity of the technology. Exergy analysis identifies areas for
optimization by focusing on the potential for energy efficiency
improvement. Meanwhile, economics is concerned with the
cost-effectiveness and commercial viability of the technology.
In recent years, significant advancements have been made in
PV-TE technologies to enhance the 4Es and address the chal-
lenges associated with their implementation.

6.1. Exergy Analysis of PV-TE System. Incorporating TEGs
into a PV system with the use of PCM/Co3O4 as a working
nanofluid resulted in an improvement of 12.28% and 11.6%
in electrical and exergy efficiencies, respectively, according to
Rajaee et al. [170]. In the context of PV-TE systems, exergy
analysis is a crucial approach to evaluate thermodynamic
performance and determine potential energy efficiency
improvement. Exergy, also known as available energy, quan-
tifies the maximum useful work a system can produce when
it reaches thermodynamic equilibrium with the environment
[171]. Exergy analysis can help identify exergy losses and
efficiency, indicating areas for optimization. In PV-TE sys-
tems, exergy analysis can evaluate the efficiency of energy
conversion from both PV and thermoelectric generator
modules, optimizing the system design for maximum energy
conversion efficiency. Exergy analysis can also identify
exergy losses in system components, including PV panels,
TEG modules, heat transfer media, and heat dissipation sys-
tems. Quantifying exergy losses can help identify areas of
energy loss and develop strategies to minimize them, thereby
improving overall system efficiency and performance. Addi-
tionally, exergy analysis can evaluate the effectiveness of
advanced materials and technologies used in PV-TE sys-
tems, such as high-zT thermoelectric materials and nano-
fluids as heat transfer media, improving thermoelectric
conversion efficiency and reducing exergy losses. Exergy
analysis is, therefore, an invaluable tool for promoting the
development of more sustainable and efficient PV-TE tech-
nologies. A relevant example of the application of exergy

analysis in PV-TE systems is seen in the study by Chen
et al. [172]. The study illustrates the importance of analyzing
temperature distribution and system efficiency to identify
opportunities for improvement and optimization, which is
a significant application of exergy analysis. Additionally,
the study presents empirical data on the impact of various
factors, including inlet flow, concentration ratios, and cool-
ing water temperature, on the efficiency and exergy output
of the system. The results of their research revealed that
the system had an efficient operation with an inlet flow of
0.02-0.06 kg/s, providing significant heat output and cell
protection. The exergy output increased with an increasing
concentration ratio, but the efficiencies decreased. Increasing
the cooling water temperature improved the thermal and
overall exergetic efficiencies, and even at an inlet tempera-
ture of 60°C, the electrical efficiency was over 20%. These
findings provide valuable insights for evaluating and opti-
mizing the performance of PV-TE systems through the lens
of exergy analysis.

The potential of nanofluids as a cooling medium for PV/
T systems and how they can contribute to improving the
exergy efficiency of the system has been studied by Aberou-
mand et al. [173]. The study investigates the effect of using
Ag/water nanofluid on the performance of a PV/T system.
The findings indicate that the utilization of nanofluids for
cooling purposes has a substantial positive effect on both
energy and exergy efficiencies. This effect becomes more
prominent as the concentration of nanofluid and flow rate
increase. By employing a 4wt% nanofluid with turbulent
flow, the power output of the panel witnessed an approximate
35% and 10% increase compared to scenarios without cooling
and with water cooling, respectively. Furthermore, the exergy
efficiency exhibited a 50% and 30% improvement in compar-
ison to scenarios without cooling and with water cooling,
respectively. It can be noted that the research provides a useful
case study to support the importance of exergy analysis in
assessing the operational effectiveness of PV/T systems and
identifying specific areas for optimization. Table 6 provides a
summary of recent research on exergy analysis of solar heating
devices. These investigations illustrate various types of solar
thermal collectors, highlighting exergy efficiency as a crucial
performance metric. The findings demonstrate that exergy
analysis can facilitate the optimization of the design and oper-
ation which entails fine-tuning various parameters and vari-
ables to achieve the highest level of performance and
efficiency of solar heating devices, resulting in enhanced
energy efficiency and decreased environmental consequences.

6.2. Energy Analysis. In traditional PV systems, only solar
radiation a portion of the input energy is transformed into
electrical energy, while the remaining energy is discharged
as heat waste. Conversely, thermoelectric (TE) systems gen-
erate electrical energy by exploiting the temperature gradient
in a material. By integrating PV and TE materials, PV-TE
systems can harvest both electrical and thermal energy
[180]. As a result, PV-TE systems can extract more energy
from the same amount of solar radiation, leading to higher
energy conversion efficiencies compared to either PV or
TE systems alone. For instance, a PV-TE system can attain
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an overall energy conversion efficiency of up to 30%, which
is notably superior to traditional PV systems [181]. More-
over, PV-TE systems can enhance the overall energy yield
and efficiency of hybrid renewable energy systems by work-
ing together with wind turbines or energy storage systems to
optimize energy utilization and minimize waste. Further-
more, PV-TE systems can facilitate energy generation decen-
tralization and increase energy access in underserved
communities. This is particularly pertinent in rural areas
or developing nations where access to dependable electricity
is scarce. In summary, the energy aspect of PV-TE technol-
ogies presents considerable potential for increasing energy
conversion efficiency, maximizing energy utilization, and
extending energy access. Table 7 presents a comparison of
the energy conversion efficiency of photovoltaic, thermo-
electric, and PV-TE systems. PV-TE systems are capable of
harnessing both electrical and thermal energy, resulting in
higher energy conversion efficiencies than traditional PV
or TE systems. The table highlights the potential advantages
of PV-TE technology for energy generation and utilization.

6.3. Economic Analysis. PV-TE technologies must be consid-
ered from an economic perspective for their successful
deployment and adoption. Despite the initial costs of PV-
TE systems being higher than those of traditional solar or
thermal systems, their potential long-term economic bene-
fits make them an attractive option for households and busi-
nesses. The primary economic benefit of PV-TE systems is
their ability to generate both electrical and thermal energy
simultaneously, resulting in higher energy conversion effi-
ciency and reduced energy costs [182]. Furthermore, by gen-
erating energy on-site, PV-TE systems can provide a reliable
and consistent source of energy, reducing the risks associ-
ated with fluctuations in energy markets and increasing
energy security. In addition to technological advancements
and increased demand leading to cost reductions, govern-
ment incentives and subsidies in many countries have made
PV-TE systems more affordable for homeowners and busi-
nesses. However, the feasibility of PV-TE systems depends
on various factors such as location, system size, and available
incentives. The economic benefits of PV-TE systems, such as
cost savings and increased energy security, make them a
promising option for individuals and businesses looking to
reduce their energy costs in the long run. Achirgbenda

et al. [1] conducted a study on the economic viability of a
hybrid PV/diesel/biomass gasifier system to power a remote
system in Nigeria using HOMER Pro software and found
that the system had a payback period of 1 year and yearly
excess electricity of 411,771 kWh/yr, making it economically
and technically feasible for similar remote applications with
similar load and weather conditions. The study by Narducci
and Lorenzi [183] discusses the economic analysis of hybrid
thermoelectric-photovoltaic (HTEPV) solar harvesters and
their competitiveness with existing PV technologies. An eco-
nomic feasibility indicator is utilized to evaluate the eco-
nomic viability of hybridization, revealing that while
HTEPV frequently achieves improved solar power conver-
sion, the expenses associated with power generation may
not always warrant their implementation at the current tech-
nological stage. Montero et al. [184] in their research show
that hybrid PV-TEG systems are not yet economically com-
petitive with PV systems in the Atacama Desert; however,
the computed levelized cost of energy (LCOE) for the
HPV-TEG system is relatively comparable to the current
LCOEs observed for PV systems in the Chilean energy mar-
ket, indicating that HPV-TEG systems may become compet-
itive in the future. Li et al. proposed a new design for a PV-
TE system that utilized a microchannel heat pipe to reduce
the number of required TEG modules, resulting in signifi-
cant cost savings. Their analysis showed that the additional
investment in TE could be recovered in six years. The newly
developed PV-TE system demonstrates enhanced cost-
effectiveness compared to the conventional PV system start-
ing from the sixth year [185]. Thus, from the various litera-
tures analyzed, it suggests that while PV-TE systems have
the potential to increase solar harvester efficiency, their eco-
nomic feasibility is highly dependent on factors such as
material costs, system efficiency, and local energy prices.
Further research is needed to optimize the design of PV-
TE systems and reduce costs to make them more economi-
cally competitive with traditional PV systems. However,
some studies have shown promising results and suggest that
PV-TE systems could be a viable option in certain locations
and circumstances.

6.4. Environmental Analysis. The environment is a crucial
aspect to consider in the development and implementation
of energy technologies, including PV-TE systems. PV-TE

Table 6: Studies on the exergy analysis of solar heating devices [174].

Ref Heating device Exergy efficiency Key findings

Akpinar and Koçyiğit [175] Flat plate solar heaters 44%
Exergetic efficiency rises as the air mass

flow rate and time are increased.

Alta et al. [176] Flat plate solar air heaters 39%
The inclusion of fins in solar air

heaters was observed to be beneficial and
more efficient than those without fins.

Dikici and Akbulut [177] Solar-assisted heat pump 30.80% Solar collector’s exergy losses were 1.92 kW.

Kara et al. [178] Solar-assisted heat pump 23.81%
Max exergy losses were predominantly

observed in the compressor,
followed by the condenser and solar collector.

Gunerhan and Hepbasli [179]
Solar water

heating system
16.17%

The solar collector was responsible for the
greatest exergy destruction
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systems offer numerous environmental advantages com-
pared to conventional energy systems. One of the most nota-
ble benefits of PV-TE systems is their ability to mitigate
greenhouse gas emissions. By generating both electricity
and thermal energy simultaneously, PV-TE systems can sub-
stantially decrease reliance on conventional fossil fuel-based
energy sources. This can lead to decreased emissions of
harmful pollutants such as carbon dioxide, sulfur dioxide,
and nitrogen oxides, which contribute to climate change
and air pollution. Furthermore, PV-TE systems have the
potential to conserve natural resources and reduce environ-
mental impacts associated with nonrenewable energy source
extraction and use. PV-TE systems generate energy from
renewable sources, such as the sun, without requiring any
fuel or water, thereby lessening the environmental impact
of resource extraction and consumption. Furthermore, PV-
TE systems can aid in sustainable building and urban design.
For instance, PV-TE systems can be integrated into the
facades and roofs of buildings, reducing the need for tradi-
tional building materials and lowering energy consumption.
Additionally, PV-TE systems can provide decentralized and
off-grid energy access to remote and underserved communi-
ties, reducing the environmental impact of energy transpor-
tation and distribution. The environmental benefits of PV-
TE systems are significant and provide a strong impetus
for further research and development. Investigating the lat-
est advancements in PV-TE technologies with respect to
the environment can identify opportunities to maximize
the environmental benefits of these systems while minimiz-
ing any potential negative impacts. A review by Kostić and
Aleksić [186] summarizes the progress and potential of
PV/T water systems over the last decade, emphasizing their
ability to convert solar radiation into thermal and electrical
energy simultaneously, making them a suitable alternative
for a range of applications, and stressing the need for
improving their efficiency, reducing costs, and promoting
clean and environmentally friendly energy. Also, Jia et al.
[187] reviewed various research works on photovoltaic-
thermal (PV/T) systems, including their development and
applications under different environmental conditions, high-
lighting the need for accurate modeling, exploration of new
materials, enhancement of system stability, and the design
of energy storage systems to develop novel PV/T systems for
improved energy efficiency. Notwithstanding its comprehen-
sive coverage of PV/T systems, this review article fell short in

providing a thorough analysis of the economic viability and
feasibility of these systems as well as the potential obstacles
that could impede their widespread adoption, thereby leaving
room for further research and inquiry in these areas.

7. Summary and Outlook

The review work presented here sheds light on the remarkable
promise of photovoltaic-thermoelectric systems in the realm
of renewable energy generation. However, as with any innova-
tive technology, PV-TE systems are not devoid of challenges,
and addressing these hurdles is crucial for their successful inte-
gration into the renewable energy landscape.

One of the paramount challenges pertains to the availabil-
ity of data for machine learning models. The integration of
machine learning techniques to optimize PV-TE systems relies
heavily on robust, high-quality data. These models require
extensive datasets for training and validation to make accurate
predictions and decisions. However, acquiring such datasets
for PV-TE systems can be an intricate task. Unlike mature
technologies with established datasets, PV-TE systems are rel-
atively nascent, and comprehensive data might be limited.
This scarcity poses a hurdle for researchers aiming to employ
data-driven optimization techniques effectively. To overcome
this challenge, future research endeavors in the PV-TE field
must prioritize the development of effective data collection
strategies. This includes establishing standardized protocols
for data acquisition and sharing, potentially through collabo-
rative efforts among research institutions and industry stake-
holders. Additionally, efforts should be directed towards
creating simulation datasets [188] that can supplement the
lack of real-world data, enabling researchers to explore and
refine machine learning models.

Another significant challenge is the complexity of exper-
imentation and modeling. Achieving an optimal balance
between extensive experimentation and detailed modeling
is an ongoing struggle. Experimental validation is resource-
intensive and time-consuming, particularly when dealing
with complex PV-TE systems. Conversely, relying solely on
modeling can lead to overly simplified representations that
do not capture the intricacies of real-world operation. In
response to this challenge, researchers must embrace a holistic
approach. Future investigations should aim to strike a harmo-
nious equilibrium between experimentation and modeling.
This involves designing experiments that are purposefully

Table 7: Assessment of energy conversion efficiency of PV, TE, and PV-TE systems.

PV-TE system type
Energy conversion

efficiency
Advantages Limitations

Standalone PV-TE system Up to 30%
Harnesses both electrical and
thermal energy and has higher

efficiency than traditional PV systems

Higher cost compared to
traditional PV systems

Hybrid renewable energy
system with PV-TE

Increased overall energy
yield and efficiency

Maximizes energy utilization and
can contribute to the decentralization of

energy generation

More complex system design and
may require additional

components and maintenance

PV-TE for rural or
underserved communities

Increased energy access
Can be especially relevant in developing
countries or rural areas where access to

reliable electricity is limited

May require significant upfront
investment and ongoing

maintenance costs
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aligned with the objectives of the modeling efforts. By doing
so, researchers can maximize the utility of their experiments
while harnessing the predictive power of modeling to explore
system behavior under various conditions.

Furthermore, the sustainability of PV-TE systems hinges
not only on their technical prowess but also on economic via-
bility. An important concern lies in the cost and energy effi-
ciency of thermoelectric systems, especially when combined
with already expensive PV systems. The added expense and
potential compromises in energy efficiency could raise ques-
tions about the long-term sustainability of PV-TE technology
in real-world applications. In this context, the reviewwork val-
idates the need for rigorous economic and environmental
assessments of PV-TE systems. While the review discusses
the potential advantages of PV-TE, it also calls attention to
the importance of evaluating their economic and environmen-
tal impacts comprehensively [189]. This includes considering
factors such as the initial investment, maintenance costs, and
energy efficiency gains while also assessing the potential for
reducing greenhouse gas emissions.

However, this review mentions other techniques like PV/
T systems and PV cooling, which have been extensively
researched and shown satisfactory outcomes in enhancing
overall PV system efficiency. These alternative approaches
may offer economically viable and energy-efficient solutions,
potentially competing with PV-TE systems in certain appli-
cations. In the pursuit of sustainable energy solutions, it is
imperative to not only focus on technological advancements
but also to critically evaluate the cost-effectiveness and
energy efficiency of these innovations. The review work pro-
vides a foundation for this assessment, highlighting the need
for a balanced consideration of economic, environmental,
and technical factors to determine the suitability and sus-
tainability of PV-TE systems in the broader context of
renewable energy utilization.

8. Conclusion and Future Work

The integration of PV-TE technologies has the capability to
transform renewable energy generation by addressing the
challenges of energy storage and efficiency. This review
paper has provided a detailed overview of the latest advance-
ments in PV-TE technologies, including the use of PCM for
thermal energy storage, the use of encapsulated PCM for
thermal storage and efficiency, and the use of hybrid PCM
to enhance overall performance, machine learning tech-
niques for efficient optimization, and the integration of ther-
moelectric modules into tandem perovskite silicon solar
cells. The implementation of PCM has shown potential to
enhance the efficiency of PV-TE systems by storing surplus
energy produced during peak hours and releasing it during
low-demand hours. Encapsulation of PCM has also demon-
strated the ability to enhance thermal conductivity and
decrease PCM leakage, thus improving overall system effi-
ciency. The use of hybrid PCM has the potential to enhance
system performance by balancing energy storage capacity
and thermal conductivity. Furthermore, machine learning
techniques have been successfully employed to optimize
PV-TE system performance with encouraging outcomes

ranging from the use of various algorithms such as ANN,
DNN, and Snake Optimizer. The integration of thermoelec-
tric modules into tandem perovskite silicon solar cells also
presents an opportunity for improving system efficiency.

The review paper suggests various potential directions
for future research to advance the field of photovoltaic-
thermoelectric (PV-TE) technologies. One possible gap is
the development of new phase change materials (PCMs)
with improved thermal properties that are better suited for
use in PV-TE systems. Another area for exploration is the
further optimization of machine learning techniques to effi-
ciently optimize PV-TE systems using more diverse algo-
rithms as only a few have been explored. Additionally, the
integration of thermoelectric modules into other types of
solar cells may enhance their efficiency and is worth investi-
gating. Finally, conducting more experimental studies to val-
idate simulation results obtained from software tools such as
COMSOL and ANSYS could improve our understanding of
these complex systems. Pursuing these future directions has
the potential to advance the field of PV-TE technologies and
make them more applicable to real-world applications.

In summary, the advancements in PV-TE technologies
have taken a crucial step towards achieving sustainable and
efficient energy generation. Ongoing research and develop-
ment in this area are highly recommended to further suggest
more numerical and experimental optimization processes
for PV-TE systems.

Nomenclature

Ti: PCM initial temperature
Tm: Melting temperature
Cps: Specific heat capacity in solid state
Cpl: Specific heat capacity in liquid state
B: Melt fraction
l: Specific latent heat
T f : Final temperature
n: Sample number
λ: Regularization factor
φ: Mapping function
α: Seebeck coefficient
σ: Electrical conductivity
k: Thermal conductivity
zT : Thermoelectric figure of merit
η: Efficiency
P: Load
Q: Heat absorbed at the hot side
T : Temperature
Th: Temperature on the hotter side
Tc: The temperature on the cooler side
w: Weight
b: Bias.

Abbreviations

PV: Photovoltaics
TEM: Thermoelectric module
TEGs: Thermoelectric generators
FEM: Finite element method
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ANSYS: Analysis of systems software
COMSOL: Computational sciences and multiphysics

modeling software
CFD: Computational fluid dynamics
ML: Machine learning
PV-TE: Photovoltaic thermoelectric
TES: Thermal energy storage
PCM: Phase change material
STEG: Solar thermoelectric generator
LHSS: Latent heat storage system
Q: Heat flow (W)
PCES: Phase change energy storage
SL: Supervised learning
SVM: Support vector machines
USL: Unsupervised learning
BIPV: Building integrated photovoltaic
mPCM: Microencapsulated phase change material
DNN: Deep neural network
CPV: Concentrated photovoltaic
MOGA: Multiobjective optimization genetic algorithm
MPPT: Maximum power point tracking
MLPNN: Multilayer perceptron neural network
SOANN: Snake optimizer based neural network
PSC: Perovskite solar cell
LCOE: Levelized cost of energy.
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