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In the past few years, different kinds of structural nonlinearities, such as external magnetic interaction and multistable structures,
have been introduced into galloping energy harvesters to enhance energy harvesting efficiency. However, since the galloping-based
piezoelectric energy harvester (GPEH) is a self-excited system, the conventional impedance matching method that is widely used
in vibration energy harvesters is no longer valid for it. Therefore, the power characteristics of the nonlinear GPEH are still an
open question to be solved. To this end, this paper is motivated to derive the approximate analytical solution of a monostable
galloping-based piezoelectric energy harvester through the harmonic balance method and impedance matching theory. The
analytical maximum power, power limit, and critical electromechanical coupling are studied from the perspective of the
influence of structural nonlinearity on the power performance. Firstly, the approximate analytical solutions of output power,
power limit, optimal resistance, and critical electromechanical coupling coefficient are derived. The accuracy of the analytical
solution is verified by numerical simulation. It is found that the influence of structural nonlinearity on the power characteristics
of the nonlinear GPEH is quite different under different wind speeds. After that, the power characteristics of the system under
different wind speeds and different coupling conditions are investigated. The results showed that the maximum power of the
system can be increased by introducing stiffness nonlinearity under low wind speed and weakly coupled configuration. Even
more, the system can be shifted into a strongly coupled system when the nonlinearity is enhanced to a certain level. Reasonable
design of stiffness nonlinearity can effectively reduce the critical electromechanical coupling, which indicates that stiffness
nonlinearity is a feasible and effective way to improve the power performance of low-speed wind energy harvesting.

1. Introduction

In recent years, wireless sensor network (WSN) has been
widely used in the Internet of Things (IoT), smart homes,
information management systems, and other emerging
fields. The demand for wireless sensors and other microelec-
tronic devices in our daily lives increases day by day. The
power supply of these wireless sensors in IoT is a big chal-
lenge. Energy harvesting from the ambient environment
has been a promising way to provide a continuous power
supply for these small devices [1–5]. Wind energy is one of
the most stable, environmentally friendly, and sustainable
energy sources. Among a variety of wind energy harvesters
[6–8], galloping-based energy harvester stands out because

it can yield a considerable power output at small wind speed
scenarios [9, 10].

The feasibility of galloping-based energy harvesting was
first experimentally validated by Barrero-Gil et al. [11].
Then, Sirohi and Mahadik [12] derived a simplified model
for galloping energy harvester. After that, more and more
efforts have been devoted to the research of galloping energy
harvesting [13–15]. Abdelkefi et al. [16] found that the elec-
trical load resistance and Reynolds number can affect the
onset wind speed of galloping, and the maximum output
power is accompanied by the minimum transverse displace-
ment regardless of the Reynolds number.

With the quick development on galloping energy har-
vesters, the methods to improve its output power, including
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bluff body design/optimization, advanced energy harvesting
circuits, and structural nonlinearity, have become new
research topics. For example, researchers have made many
innovations in the design of bluff body shapes [17, 18]. Yang
et al. [19] found that when the wind speed is low, the bluff
body with a square cross-section can improve the output
power significantly. Abdelkefi et al. [20] established a coupled
nonlinear distributed-parameter model for a galloping energy
harvester and found that when the wind speed was relatively
high, the D-shaped section was the optimal choice over
other shapes. After that, Liu et al. [21] proposed a forked
bluff body. Both experimental and simulation results show
that the output power can be effectively improved.

Meanwhile, some researchers have been concentrating
on concurrent energy harvesting. For example, Yang et al.
[22] developed a distributed-parameter electromechanical
coupling model of a VIV-galloping interactive energy har-
vester and found that the performance of the system at low
wind speeds is significantly improved when vortex-induced
vibration interacts with galloping-induced vibration. Hu
et al. [23] investigated the optimal relative position of two
galloping-based energy harvesters that were placed adja-
cently and interacting with each other in tandem or staggered
arrangements. Kim et al. [24] proposed a novel galloping-
based piezoelectric energy harvester coupled with transverse
and interference galloping, which can harvest 20 times more
energy than the conventional configuration.

Inspired by the success of nonlinear vibration energy
harvesting, structural nonlinearity was introduced into the
galloping energy harvester as well. Bibo et al. [25] studied
the effect of nonlinearity on the performance of the mono-
stable/bistable galloping energy harvesters. Huang et al.
[26] proposed a 2-DOF tristable dynamic vibration absorber
and energy harvester, finding that a tristable electromagnetic
energy harvester has favorable energy trapping capacity and
energy conversion performance under broadband and low-
amplitude vibrations. Wang et al. [27] experimentally found
that the maximum output power of a tristable galloping-
based energy harvester reached 0.73mW and the cut-in
wind speed was 1m/s. Alhadidi and Daqaq [28] observed
that exploiting a bistable restoring force can improve the
lock-in region of a wake galloping-based energy harvester,
and the steady-state bandwidth of a bistable system is wider
than the conventional linear system.

Since the galloping energy harvester is a self-excitation
system, its equivalent circuits do not have a power supply.
Therefore, the conventional impedance matching method
widely used in vibration energy harvester is no longer suit-
able for deriving analytical solutions for galloping energy
harvester. Therefore, although lots of structural nonlinear-
ities were claimed to have the capability of improving the
maximum power of galloping energy harvesting [29–32],
the power limit problem of these nonlinear galloping energy
harvesters was rarely studied. Therefore, a new theoretical
analysis method is urgently needed to investigate the power
characteristics of galloping-based energy harvesters. To this
end, Lan et al. [33] proposed a unified impedance matching
framework for the galloping energy harvester based on the
harmonic balanced method and Kirchhoff law, obtaining

the analytical solutions of the optimal load, maximum
power, power limit, and critical electromechanical coupling
and analyzing power performance of galloping-based energy
harvesters with different interface circuits. Although a thor-
ough analysis of the power performances of galloping-based
energy harvesters was conducted, they only focused on lin-
ear systems. In this paper, we mainly focused on the power
limit characteristics of nonlinear galloping energy harvesters
by using the unified impedance matching method and tried
to ascertain the inherent role of structural nonlinearity on
power limit characteristics.

The presence of nonlinear magnetic repulsion introduces
structural nonlinearity, resulting in distinct power character-
istics at different wind speeds. Therefore, this study investi-
gates the impact of structural nonlinearity on the power
performance of the system under varying wind speeds and
electromechanical coupling conditions. Through numerical
solutions, theoretical analysis, and simulations, the system’s
response is systematically examined. Analytical approxima-
tions for the maximum power, power limit, optimal resis-
tance, and critical coupling of a monostable galloping-based
energy harvester interfaced with an AC circuit are derived.
The influence of stiffness nonlinearity on maximum power,
power limit, and critical coupling is determined. This com-
prehensive research provides new insights and a research
framework for designing nonlinear monostable galloping-
based energy harvesters. The rest of this work is organized
as follows: Section 2 introduces the model of a monostable
energy harvester. Section 3 established the equivalent circuit
and derived the approximate analytical solution of output
power by using the unified impedance match method [34,
35]. Numerical validation was also included. After that,
the power performance of a monostable GPEH was deeply
studied in Section 4 with some useful conclusion drawn in
Section 5.

2. Modeling and Equivalent Circuit

2.1. A Monostable Galloping-Based Energy Harvester.
Figure 1 shows the schematic of the monostable galloping-
based energy harvester in this paper. It consists of a piezo-
electric cantilever beam, a foam bluff body, and two mag-
nets. The piezoelectric patch is fixed at the root of the
cantilever beam to convert mechanical energy into electrical
energy. One of the magnets is fixed on the bottom wall,
while the other magnet is placed opposite to it and fixed
on the free end of the cantilever beam. Therefore, the mag-
nets with the same magnetism can produce a nonlinear mag-
netic repulsive force. The bluff body is fixed at the end of the
cantilever beam, and the nonlinear aerodynamic force
induced by flow acts on its surface. The cross-section of
the bluff body used in this paper is semicircular since it is
found that the output power of the system with a semicircu-
lar bluff body is relatively stable [16]. When the wind speed
exceeds a critical value, the bluff body undergoes transverse
oscillations, called the galloping phenomenon.

2.2. Modeling. For the nonlinear galloping-based energy har-
vester shown in Figure 1, the governing equations can be
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obtained by the assumption of linear electromechanical cou-
pling and elasticity [11]. They can be written as

Mx t + Cx t + Kx t + k1x t + k3x
3 t − θvp = Fa,

θx t + Cpvp t + q t = 0,
1

where M, C, and K are the effective mass, effective damping,
and effective stiffness, respectively. The effective damping
can be expressed as C = 2ζωnM, where ζ is the damping
ratio, ωn is the natural frequency, θ is the electromechanical
coupling coefficient, Cp is the capacitance of the piezoelectric
transducer, k1 and k3 represent the effect of magnetic repul-
sion, x is the displacement, x is the speed, x is the accelera-
tion, vp is the voltage across the piezoelectric element (that
is, the external energy harvesting interface circuit), q is the
charge, and Fa is the vertical component of the aerodynamic
force acting on the bluff body. In this paper, the experimen-
tally verified cantilever beam model developed by Liao and
Sodano [36] is used, for which the effective system parame-
ters have been obtained

M =
Vs

ρsφφdV s +
Vp

ρpφφdVp +Mt ,

K =
Vs

y2φ″csφ″dVs +
Vp

y2φ″cEpφ″dVp,

θ = −
Vp

yφ″eTψdVp,

Cp =
Vp

ψTεSψdVp,

2

where ρ is the density, c is the elastic modulus, ε is the dielec-
tric constant, e is the piezoelectric coupling coefficient, and
Mt is the mass of the tip mass. The subscripts p and s denote

piezoelectric materials and substrates, respectively. The
superscript S represents the parameter measured at con-
stant strain. The superscript T indicates the parameter
measured under constant stress. The superscript E donates
the parameter measured under a constant electric field. φ is
the vibration mode shape, and ψ represents the electric field
over the thickness of the piezoelectric transducer, which is
assumed to be constant.

The dipole-dipole model has been widely used in the
modeling of monostable and bistable systems [37], and its
accuracy has been verified by experiments and has been widely
used in previous studies. In Eq. (1), the sum of the two terms
k1x t and k3x

3 t represents the nonlinear interaction force
between the two repulsivemagnets, which is the Taylor expan-
sion of the nonlinear magnetic repulsion force at x = 0 after
modeling based on the dipole-dipole assumption. It should
be noted that the discrepancy induced by Taylor expansion
is very limited and acceptable when the system response is
not very large at low wind speed condition. When the wind
speed is large enough to achieve a large response, such an
approximation may result in a large discrepancy. After omit-
ting the higher-order term, the nonlinear magnetic force can
be approximated as [36, 38]

Fm = k1x + k3x
3,

k1 = −
mAmBvAvBμ0

4π
12
D5

0
,

k3 =
mAmBvAvBμ0

4π
45
D7

0
,

3

where μ0 is the vacuum permeability, D0 is the initial center-
to-center distance between the two magnets, mA and mB are
the magnitude of the magnetization vector, and vA and vB
are the volumes of the two magnets. It is verified that the
approximate magnetic force value in Eq. (3) is very close to
the exact result. It can be seen from the above expression that

Piezoelectric sheet

Bluf body

Magnets

Resistance

Figure 1: Illustration of a monostable galloping energy harvester.
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the smaller the distance between the two magnets, the larger
the absolute value of the nonlinear coefficients k1 and k3,
and the nonlinear effect is also enhanced.

For galloping-based energy harvesters, aerodynamic
force is generally modeled following the quasisteady assump-
tion. The quasisteady assumption holds that compared with
the wind speed acting on the bluff body, the speed of the bluff
body is very slow. Therefore, for a given angle of attack, the
aerodynamic coefficient remains constant. According to the
study of Barrero-Gil et al. [11], the aerodynamic force Fa
can be modeled as

Fa =
1
2 ρLDU

2 s1
x
U

− s3
x
U

3
, 4

where L and D are the length and width of the bluff body,
respectively. ρ and U are air density and wind speed, respec-
tively. s1 and s3 are the empirical linear coefficients and cubic
coefficients of aerodynamic force, which only depend on the
cross-section geometry of the prismatic structure. Substitut-
ing Eq. (4) into Eq. (1), then the governing equation of the
system can be written as

Mx + Cx + K + k1 x + k3x
3 − θvp =

1
2 ρLDU s1x −

s3
U2 x 3 ,

θx + Cpvp + q = 0
5

3. Approximate Solution of Maximum Power
and Power Limit

3.1. Equivalent Circuit. First, the equivalent circuit method
is used to represent the electromechanical system in the
electrical domain. In the equivalent circuit method, the
physical parameters in the system can be fully described
by the electric parameters, so the whole system can be
equivalent to a circuit. In order to derive the equivalent cir-
cuit model, the nonlinear aerodynamic force and nonlinear
magnetic repulsion force should be linearized first by using
the harmonic balance method. Based on the assumption of
the harmonic balance method, the solution of Eq. (5) could
be written as

x = a sin ωt + b cos ωt,

x = aω cos ωt − bω sin ωt,
6

where ω is the vibration frequency of the system and a and
b are the structural response constants.

By using the trigonometric function formula and ignor-
ing the higher-order harmonic terms in the results, we can
get the results as (The detailed derivation is given in the
Appendix.)

x3 = a sin ωt + b cos ωt 3 ≈
3
4 r

2x,

x3 = aω cos ωt − bω sin ωt 3 ≈
3
4ω

2r2x,
7

where r is the responding amplitude of the system, i.e.,

r2 = a2 + b2 8

Substituting Eqs. (7) and (8) into Eq. (5), the governing
equation is approximately equivalent as follows:

Mx + Cx + K + k1 x + 3
4 k3r

2x − θvp =
1
2 ρLDU s1 −

3s3ω2r2

4U2 x,

θx t + Cpvp t + q t = 0
9

The first expression of Eq. (9) can be written as

Mx + Cx −
1
2 ρLDUs1x +

3ρLDs3ω2r2

8U x + K + k1 x + 3
4 k3r

2x − θvp = 0

10

To further obtain the equivalent circuit equation of the
system, we define the equivalent current ieq = −θx here and
rewrite Eq. (10) into an expression containing the equivalent
current ieq. Then, Eq. (10) can be written as

M

θ2
d −θx
dt

+ C

θ2
−θx −

ρLDUs1
2θ2

−θx + 3ρLDs3ω2r2

8Uθ2
−θx

+ K + k1
θ2

−θx dt + 3k3r2
4θ2

−θx dt + vp = 0

11

Equation (11) can be further written as

Ls
dieq
dt

+ Rsieq + R1ieq + R3ieq + Cs ieqdt + Cn ieqdt + vp = 0

12

Equation (12) is an equivalent voltage equation, which
means the energy harvesting system has been equivalent to
a closed circuit now. According to Kirchhoff’s voltage law,
the first six terms in Eq. (12) are the equivalent voltage drop
of the energy harvester, and the last term is the voltage of the
load impedance. Here, we have equated the energy harvester
to one equivalent inductance, three equivalent resistances,
and two capacitances. By comparing Eqs. (11) and (12),
the equivalent circuit elements can be defined as
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Ls =
M

θ2
,

Rs =
C

θ2
,

R1 = −
ρLDUs1
2θ2

,

R3 =
3ρLDs3ω2r2

8Uθ2
,

Cs =
θ2

K + k1
,

Cn =
4θ2
3k3r2

,

13

where Ls, Rs, and Cs correspond to the equivalent mass,
equivalent damping, and equivalent stiffness of the energy
harvester, respectively, R1 and R3 represent the influence of
aerodynamic force, and Cn represents the influence of mag-
netic repulsion. The equivalent circuit diagram of the system
at this time is shown in Figure 2. The analytical solution of
the equivalent circuit has been verified by simulation and
experiment in Ref. [39, 40]. Cp is the capacitance of the pie-
zoelectric transducer. When a piezoelectric energy harvester
is equivalent to a circuit, it is connected in parallel with load
resistance as part of the load impedance [33].

3.2. Maximum Power. The general form of the load circuit
impedance is as

Zelec = Relec + jXelec, 14

where Relec and Xelec represent the resistance component and
reactance component, respectively. The impedance is not
only related to the load impedance but also affected by the
internal circuit of the energy harvester. When the system
parameters are determined, the equivalent impedance is only
related to the load impedance of the interface circuit. The
interface circuit selected in this paper only contains a resis-
tance R. When R changes, Zelec changes accordingly. As
shown in Figure 2, the equivalent circuit of the system is
obviously a self-excited circuit, so the voltage drop of the
whole loop must be zero. Based on the information known
above, we can rewrite Eq. (12) as the voltage relationship
in the frequency domain forms

jωLS + Rs + R1 + R3 +
1

jωCs
+ 1
jωCn

+ Zelec jω ieq jω = 0

15

When galloping occurs, the equivalent current of the sys-
tem could not be zero. Hence, the sum of the items in the
bracket should be zero. Then, substituting Eq. (11) into Eq.

(12), it can be obtained that

ωLs −
1

ωCs
−

1
ωCn

+ Xelec = 0,

Rs + R1 + R3 + Relec = 0
16

These two expressions are the imaginary part and the
real part, respectively. Substitute the expressions of electrical
components in the equivalent circuit model of the system
into Eq. (16), we can get

ω2M − K + k1 −
3
4 k3r

2 + θ2ωXelec = 0,

C

θ2
−
ρLDUs1
2θ2

+ 3ρLDUs3ω
2r2

8U2θ2
+ Relec = 0

17

The response frequency and amplitude of the system can
be obtained from Eq. (17). It is not hard to see that when gal-
loping occurs, the resonance frequency and amplitude are
not only related to the original mechanical parameters but
also influenced by the interface circuit. Hence, only when
the energy harvesting circuit and load characteristics, i.e.,
Relec and Xelec, are determined, the structural response can
be calculated by Eq. (17).

3.3. Power Limit. The harvested power of the GPEH, i.e., dis-
sipated in the external energy harvesting circuit, can be cal-
culated by

P = ieq
2Relec = −θx 2Relec = θ2ω2r2Relec 18

Interestingly, it can be obtained from the second expres-
sion of Eq. (17) that ω2r2 = 4ρLDU2s1 − 8CU − 8URelecθ

2

/3ρLDs3. Substituting it into Eq. (18) yields the harvested
power for a GPEH in general:

P = θ2Relec
3ρLDs3

4ρLDU2s1 − 8CU − 8URelecθ
2

= 8Uθ4

3ρLDs3
−R2

elec +
ρLDUs1 − 2C

2θ2
Relec

= 8Uθ4

3ρLDs3
− Relec −

ρLDUs1 − 2C
4θ2

2
+ ρLDUs1 − 2C

4θ2
2

19

It can be clearly seen from Eq. (19) that the output power
of the system is only related to the resistance component
Relec of the impedance, while the reactance component
Xelec can affect the galloping frequency of the system. More
importantly, only effective damping C of the three original
mechanical parameters appears in the expression of output
power.
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It can be seen from Eq. (19) that when the resistance
Relec satisfies the following conditions:

Relec =
ρLDUs1 − 2C

4θ2
, 20

the output power reaches its maximum, which is the power
limit of the system.

The power characteristics of the system will be analyzed
in the following section. Notably, R0 is defined as

R0 =
ρLDUs1 − 2C

4θ2
21

The analytical solution of the system power limit can be
obtained as follows:

Plim = 8Uθ4

3ρLDs3
ρLDUs1 − 2C

4θ2
2

22

3.4. Numerical Validation

3.4.1. Model Validation. In Section 3.1, an analytical solution
for the monostable galloping-based energy harvester was
derived using the harmonic balance method. However, the
derivation process neglected higher-order harmonic terms,
which is a major source of error in the harmonic balance
method. To verify the accuracy of the analytical solution,
it was compared with the numerical results obtained using
the Runge-Kutta method. The distance between the mag-
nets in the calculation is 17.5mm and 50mm, respectively.
The nonlinear coefficients corresponding to the two magnet
distances are k1 = −15N/m, k3 = 1 9 × 105N/m3, k1 = −0 08
N/m, and k3 = 119N/m3, respectively. The resistance R is
6 kΩ, and the electromechanical coupling coefficient is 1 5
× 10−4N/V. The displace diagrams calculated by the two
methods are shown in Figure 3, and it is evident that the ana-
lytical results are in good agreement with the numerical sim-
ulation results. Figure 3 illustrates that when the magnet
distance D0 is 50mm, the analytical results are basically con-
sistent with the numerical simulation results calculated by
the Runge-Kutta method. When the distance between the
two magnets is reduced to 17.5mm, the error between the
analysis results and the numerical solution is slightly
increased, but the variations of the displacement with wind
speed are still consistent. In addition, by comparing the sys-
tem response of D0 = 50mm and D0 = 17 5mm, it can be

found that when the wind speed is about 2m/s to 2.8m/s,
the enhancement structural nonlinearity leads to the increase
of the displacement, while when the wind speed is outside
this range, the nonlinear enhancement leads to the weaken-
ing of the system response. Then, based on this finding, two
sets of wind speeds, 2.3m/s and 3.5m/s, are selected to fur-
ther explore the effect of structural nonlinearity on the
response of a GPEH. Figures 4 and 5 give the time-domain
response diagram and phase diagram when the wind speed
is 2.3m/s and 3.5m/s, respectively. It can be seen that when
D0 is 17.5mm, the displacement and velocity of the system
are larger than that when D0 is 50mm. In other words, at
the wind speed of 2.3m/s, the enhancement of structural
nonlinearity causes the enhancement of the vibration
response of the system, and the output power also increases.
When the wind speed increases to 4m/s, as shown in
Figure 5, the displacement and the velocity at D0 = 17 5mm
are smaller than that when D0 is 50mm, which is different
from that when the wind speed is 2.3m/s. This indicates that
with the enhancement of structural nonlinearity, the vibra-
tion of the system is weakened, and the output power is also
decreased. The result is consistent with that shown in
Figure 3. When the wind speed is low, the structural nonlin-
earity can enhance the system response and increase the out-
put power. Instead, when the wind speed increases to a
certain level, the vibration response of the system will be sup-
pressed and the output power can be reduced. It can be
inferred that at small wind speed, introducing structural non-
linearity is an effective way to improve the power character-
istics of the system.

3.4.2. Numerical Validation. The analytical solution of the
maximum output power of the system has been obtained
by using the nonlinear impedance match method. In this
section, the effectiveness and accuracy of the theoretical ana-
lytical solution in this paper are verified by numerical simu-
lation. In the numerical simulation, the Runge-Kutta
method is used to solve the numerical response of the non-
linear galloping energy harvester. Then, the results are com-
pared with the analytical solution to ascertain the accuracy
of the analytical solution. Since the electromechanical cou-
pling of the system has a great influence on the maximum
power, the analytical solutions are considered under differ-
ent coupling conditions in the comparison.

The galloping energy harvester can be connected with
various types of interface circuits in previous studies. For
simplification, this paper considers the most typical AC

R1

R3

Ls

Cp R

CnCsRs

R1

R3

Ls

Zelec

CnCsRs

Figure 2: Equivalent circuit diagram of a GPEH interfaced with an AC circuit.
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circuit. The system parameters used in this paper are the
same as Ref. [25, 33], as shown in Table 1. There is only
one load resistance R in the interface circuit. The relation-
ship between Relec and load resistance R in AC circuit [33]
is shown in the following equation:

RAC
elec =

R

1 + ωCpR
2 23

As shown in Figure 6, Relec has a maximum value as the
load resistance R increases. It can be seen from Eq. (19) that

the output power of the system can reach the power limit
only when Eq. (21) is satisfied. When the parameters (ρ, L,
D, U , s1, C, and θ) are determined, R0 is a constant value.
Although Relec varies with the resistance R of the load cir-
cuit, it is still unclear whether its range of values can sat-
isfy Eq. (21) or not. Hence, the value of maximum Relec is
of great significance. By comparing it with R0, it can be
clearly seen whether the system can achieve maximum
output power or not.

Figure 7(a) gives the effect of load resistance R on output
power, resistance Relec, and the difference between R0 and
Relec. Meanwhile, the analytical power limit, maximum

1 1.5 2 2.5 3 3.5 4

U (m/s)
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D
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t x
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Analytical (HBM) solution D0 = 17.5 mm
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Figure 3: Comparison of the harvested power of the monostable GPEH obtained by HBM and numerical simulation.
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Figure 4: (a) Time domain response diagram of the system at U = 2 3m/s. (b) Phase diagram at U = 2 3m/s.
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output power, and R0 are also provided. The wind speed in
this case is 4m/s. In the case of weak coupling (θ = 2 3 ×
10−4N/V), Relec is always smaller than R0 and the output
power is always below the power limit regardless of the
change in load resistance R. Clearly, an increase in the output
power P is accompanied by an increase of resistance Relec and
a decrease of R0 − Relec. When R is 230 kΩ, the difference
between R0 and Relec reaches its minimum value and the cor-
responding output power reaches its maximum of
0.7767mW. This feature can be explained by Eq. (19). From
Eq. (19) and Figure 3, it can be obtained that the value of Relec
will get close to but not reach R0 with the increase of R. Until
the difference between R0 and Relec is the minimum, the out-
put power reaches the maximum. Obviously, the maximum
power is also lower than the power limit. The analytical max-
imum output power calculated by Eq. (19) is the same as the
solution of numerical simulation.

Figure 7(b) shows the power characteristics of the GPEH
under critical coupling configuration. It shows that when R
reaches 230 kΩ, the maximum value of Relec is 118 kΩ, which
is exactly equal to R0. The numerical maximum power also
reaches the maximum value of 0.8062mW when Relec equals
R0. The result of the numerical maximum power is equal to
the analytical power limit. The analytical power limit and
maximum power here are obtained by Eq. (19). It is
observed from Eq. (19) and Figure 6 that when the maxi-
mum value of Relec is exactly equal to R0, the maximum out-
put power of the system is just enough to reach the power
limit. Therefore, the maximum power of the numerical solu-
tion is in agreement with the maximum power and power
limit of the analytical solution when the system is critically
coupled.

However, when the system is strongly coupled, the
power performance is completely different. It can be seen
from Figure 7(c) that Relec increases first and then decreases
as load resistance R increasing and its maximum is larger
than R0. Hence, with the increase of load resistance R, Relec
equals R0 twice and the output power reaches its maximum
value twice correspondingly. Meanwhile, the analytical
power limit and maximum power obtained by Eq. (19) are
also shown in Figure 7(c). It can be calculated from Eq.
(19) that the maximum output power of the system equals
the power limit when the piezoelectric coupling coefficient
is large enough. The analytical solutions of maximum power
and power limit are the same. As can be observed from
Figure 7(c), the values of the numerical maximum power,
the analytical maximum, and the analytical power limit are
equal. It should be mentioned that Relec equals R0 twice as
R increases. The first power peak is at R = 115 kΩ and the
second power peak is at R = 495 kΩ. This phenomenon can
be expected from Eq. (19). Because once the maximum
Relec is greater than R0, the value of it can be equal to R0
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Figure 5: (a) Time domain response diagram of the system at U = 3 5m/s. (b) Phase diagram at U = 3 5m/s.

Table 1: System parameter.

Effective mass, M (kg) 0.1134

Effective stiffness, K (N/m) 58.02

Damping ratio, ζ 0.003

Capacitance, Cp (nF) 187

Bluff body height, L (m) 0.1

Cross-flow dimension, D (m) 0.05

Air density, ρ (kg/m3) 1.24

Linear aerodynamic coefficient, s1 2.5

Cubic aerodynamic coefficient, s3 130

Magnitudes of magnetization
vectors, mA and mB (A/m)

0 955 × 106

Volume of magnets, vA and vB (mm3) 48π

Vacuum permeability, μ0 (H/m) 4π × 10−7
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twice as R increasing; hence, the output power can reach its
maximum (power limit) 0.8062mW twice correspondingly.
Therefore, under the strong coupling condition, the theoret-
ical method in this paper has also proved to be effective. To
sum up, the numerical result is in agreement with the theo-
retical result for all three different coupling configurations
above.

Figures 7(a)–7(c), respectively, discuss and analyze the
power characteristics of the system under weak coupling
configuration, critical coupling configuration, and strong
coupling configuration. It is obvious that the change in
the electromechanical coupling coefficient of the system
has a significant effect on the performance. Figure 7(d) fur-
ther illustrates the effect of the electromechanical coupling
coefficient on the optimal resistance of the system. Obvi-
ously, when the electromechanical coupling coefficient is
smaller than the critical coupling coefficient, there is only
one optimal resistance and the system is weakly coupled.
When the electromechanical coupling coefficient of the sys-
tem increases to the critical coupling coefficient, it means that
the maximum power reaches the power limit. As the electro-
mechanical coupling coefficient continues to increase, the
system has two optimal resistances. The reason can be found
in Figure 7(c) that for a strongly coupled configuration, the
maximum power reaches the maximum power twice with
two different optimal resistances.

4. Power Performance Analysis

4.1. Critical Electromechanical Coupling. In the previous sec-
tion, the approximate analytical solution has been obtained
based on the impedance matching method and its accuracy
has been well validated by numerical simulation. Therefore,
the obtained analytical solution can be used to evaluate the
power performance of this nonlinear galloping-based energy
harvester. This section focuses on the potential benefits of
stiffness nonlinearity on power performance, including crit-
ical coupling, maximum power, power limit, and optimal

resistance. The maximum power, power limit, and optimal
resistance have been derived in the previous section. The
approximate analytical solution of the electromechanical
coupling coefficient can be found as follows:

Rewrite Eq. (23) as follows:

RAC
elec =

1
1/R + ωCp

2R
24

According to the basic inequalities, the denominator of
Eq. (23) can be written as

1
R
+ ωCp

2R ≥ 2ωCp 25

When R = 1/ωCp, we have1/R + ωCp
2R = 2ωCp. There-

fore,

RAC
elec ≤

1
2ωCp

26

The maximum of RAC
elec

RAC
elec max =

1
2ωCp

27

It can be seen from expression (27) that Relec has a max-
imum value, which is consistent with the result in Figure 6.
When R = 1/ ωCp , Relec can reach its maximum 1/ 2ωCp .
From Eq. (21), it is learned that when the resistance R is
equal to R0, the output of the system can reach the power
limit.
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Figure 6: Relec versus load resistance R in AC circuit.
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Substituting Eq. (21) into Eq. (26), it can be obtained
that

ρLDUs1 − 2C
4θ2

≤
1

2ωCp
28

Equation (28) can be rewritten as

θ2 ≥
ωCp ρLDUs1 − 2C

2 29

Equation (29) demonstrates that the electromechanical
coupling coefficient θ has a critical value, only when its value
is greater than the critical one, Relec can reach R0 and the

power limit can be obtained. The approximate analytical
solution of the electromechanical coupling coefficient can
be found as follows:

θc =
ωCp ρLDUs1 − 2C

2 30

The critical electromechanical coupling coefficient of the
system can be calculated through Eq. (30). When the electro-
mechanical coupling coefficient of the system is smaller than
the critical coupling coefficient, the system is weakly
coupled, and when the critical coupling coefficient is larger
than the critical coupling coefficient, the system is strongly
coupled. When the two values are equal, the system is a
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Figure 7: (a) Variations of resistance Relec and output power P with the load resistance R for weak coupling configuration (θ = 2 3 × 10−4 N/
V). (b) Variations of resistance Relec and output power P with the load resistance R for critical coupling configuration (θ = 2 55 × 10−4 N/V).
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critical coupled one. Here, the ratio of the electromechanical
coupling coefficient θ to the critical coupling coefficient θc is
defined as the relative electromechanical coupling degree.
Equation (30) reveals that the critical electromechanical cou-
pling coefficient θc depends on the system frequency ω and
the wind speed U when the system parameters (ρ, L, D, U ,
s1, C, and Cp) are determined. The introduction of structural
nonlinearity f n = k1x + k3x

3 will definitely change the fre-
quency ω. Here, the first equation of Eq. (17) can be rewrit-
ten as

ω2M − K + k1 +
3
4 k3r

2 + θ2ωXelec = 0 31

To approximately evaluate the effect of structural non-
linearity on the response frequency of a galloping system,
the electrical part is ignored here. Here, Eq. (31) can then
be written as

ω2M − K + k1 +
3
4 k3r

2 = 0 32

To distinguish from ω in Eq. (31), the approximate system
response frequency calculated from Eq. (32) is denoted as ω
here. It is worth noting that not considering the electrical part
certainly causes some deviation in the calculation results. In
order to figure out the error caused by such approximate cal-
culation on response frequency ω, Eqs. (31) and (32) are
numerically solved under different wind speeds and different
electromechanical coupling situations. In the calculation, two
sets of wind speeds were selected: 3m/s and 5m/s, and electro-
mechanical coupling coefficients are as shown in Table 2, and
the resistance Rwas set to 1200kΩ. The remaining parameters
not specified are detailed in Table 1. The calculation results are
shown in Table 2.

Table 2 demonstrates the response frequency values cal-
culated by Eqs. (31) and (32) at different wind speeds and
different electromechanical coupling conditions and the
errors of the numerical results between the two equations.
At both wind speeds, the error between the approximate cal-
culation and the exact result is relatively smaller when the
electromechanical coupling is weak than when the electro-
mechanical coupling is strong. With the increase in wind
speed, the error also increases slightly. Overall speaking,
the error caused by the approximate calculation is very lim-
ited. It can be inferred that the system response obtained
from the approximate calculation without considering the
electrical part is reliable. Hence, the power performance of
the galloping-based energy system can be further studied
and analyzed on this basis. Then, we can approximate the
response frequency of the system as

ω ≈
K + k1 + 3/4 k3r

2

M
33

It can be learned from Eq. (33) that the nonlinear coeffi-
cients k1 and k3 affect the response frequency of the system.
From the previous researches [38, 41], it is known that k1 is

negative and k3 is positive. Thus, k1 reduces the stiffness of
the system and k3 increases it. Hence, it can be roughly
judged that when the system response amplitude r is small,
k1 plays a dominant role, then the system stiffness decreases
and the response frequency decreases accordingly. When the
system amplitude r increases to a certain extent, k3 plays a
more significant role, thus leading to the system stiffness
and response frequency increase. It can be seen that the
response frequency of the system is not only related to non-
linear factors but also affected by the amplitude of the sys-
tem response. The amplitude of the system response
depends on the wind speed U . The higher the wind speed,
the greater the response amplitude. In other words, when
the wind speed is relatively small, the introduction of non-
linearity will decrease the system response frequency. When
the wind speed is high, the system response frequency will be
increased due to the structural nonlinearity. Therefore, to
fully ascertain the influence of structural nonlinearity on
the power performance of GPEH, it is reasonable to study
the power performance of the nonlinear system at low and
high wind speeds, respectively.

4.2. Power Performance at Low Wind Speed. In this section,
the influence of nonlinearity on power characteristics under
different electromechanical coupling strengths at low wind
speed is explored. The distance D0 between the magnets is
set to be 16mm and 17.5mm, respectively, and the corre-
sponding nonlinear coefficients k1 and k3 are -15N/m,
1.9×105, -24N/m, and 3.5×105N/m3, respectively. The
remaining system parameters not specified are shown in
Table 1.

Figure 8 shows the variation of the optimal resistance
value and maximum output power of the GPEH with the
electromechanical coupling coefficient at U = 2 3m/s. The
optimal resistance and output power of the linear system
are also given. First, for the linear configuration, the critical
coupling coefficient θc equals 1 02 × 10−4N/V. When θ < θc,
there is only one optimal resistance, and the maximum
power is lower than the power limit. When θ > θc, two opti-
mal resistances are observed, and the maximum power
reaches the power limit. Similar characteristics can also be
found in the nonlinear configuration. For example, the crit-
ical coupling coefficient of the nonlinear configuration with
D0 = 17 5mm is 9 6 × 10−5N/V. When θ < 9 6 × 10−5N/V,
the system is weakly coupled and has one optimal resistance.
Its maximum power is lower than the power limit under
weakly coupled condition. As the electromechanical cou-
pling coefficient is large enough (θ > 9 6 × 10−5N/V), the
system turns out to be a strongly coupled one with two opti-
mal resistances. The main difference between the linear and
nonlinear configurations is the critical coupling coefficient.
For the nonlinear GPEH with D0 = 17 5mm, its critical cou-
pling coefficient is 9 6 × 10−5N/V, which is lower than that
of its linear counterpart. When the structural nonlinearity
is enhanced (D0 = 16mm), the critical coupling coefficient
further decreased to 9 32 × 10−5N/V. From the perspective
of maximum power, it can be clearly seen in Figure 1(b) that
structural nonlinearity can increase the generated power of a
weakly coupled GPEH and achieve the power limit with a
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small electromechanical coupling coefficient. For example,
when θ = 8 72 × 10−5N/V, the maximum power of the linear
configuration is about 10.43μW, while the nonlinear config-
uration with D0 = 17 5mm is 10.84μW.When the structural
nonlinearity is enhanced (D0 = 16mm), the maximum
power reaches the power limit, about 10.95μW. In sum-
mary, the structural nonlinearity can effectively reduce the
critical electromechanical coupling coefficient of the system
and improve maximum power under weak coupling condi-
tion at low wind speed.

It can be observed from the aforementioned findings
that the introduction of nonlinear stiffness at low wind
speeds can significantly enhance the power characteristics
of a weakly coupled system, whereas it hardly improves the
power characteristics of a strongly coupled one. Therefore,
in order to undertake a thorough investigation into the
effects of introducing nonlinear stiffness on the power char-
acteristics of a GPEH under low wind conditions, two spe-
cific sets of parameters corresponding to weak and strong
coupling configurations were selected. θ equals 9 3 × 10−5

N/V at weak coupling configuration and it is 1 0 × 10−4N/
V at strong coupling configuration. And D0 is set to be
17.5mm and 16mm, and the first set k1 = −15N/m and
k3 = 1 9 × 105N/m3 the second set k1 = −24N/m and k3 =
3 5 × 105N/m3. For other parameters not specified, refer
to Table 1.

4.2.1. Weakly Coupled Configuration. Figure 9 compares the
output power of a nonlinear GPEH with that of its linear
counterpart under a weak coupling configuration. When
D0 is 16mm and the nonlinear coefficients are k1 = −15N/
m and k3 = 1 9 × 105N/m3, respectively, the maximum
power is 0.01126mW as resistance R increases to 230 kΩ.
When the output power P reaches its maximum, for com-
parison, the maximum power of its linear counterpart
reaches 0.01096mW with the optimal R being 230 kΩ.
When the nonlinearity is strengthened (D0 = 16mm, k1 =
−24N/m, and k3 = 3 5 × 105N/m3), the power characteris-
tics change to be like that of a strongly coupled one as
shown in Figure 7(b). The maximum power reaches the

Table 2: Comparison of the response frequency obtained from Eqs. (30) and (31).

Case U θ ω (Hz) ω (Hz) Discrepancy

1 3m/s 1 5 × 10−4 N/V 23.4438 23.4673 -0.1%

2 3m/s 2 1 × 10−4 N/V 20.4981 20.5466 0.24%

3 5m/s 2 5 × 10−4 N/V 34.1179 34.1624 -0.13%

4 5m/s 2 9 × 10−4 N/V 33.9137 33.9996 -0.25%
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power limit of 0.01128mW when R equals 220 kΩ and
440 kΩ, respectively. This phenomenon means the nonlin-
ear magnetic repulsion force makes the system turn from
a weakly coupled one to a strongly coupled one. At this
time, the maximum power reached the analytical power
limit. It is revealed that the introduction of the nonlinear
magnetic repulsion force not only increases the output
power but also changes the coupling configuration when
the nonlinearity is strong enough. These interesting phe-
nomena can be explained from two different perspectives.
On one hand, it can be deduced from Eq. (23) that the
decline of system frequency can lead to the increase of
Relec. With the introduction of nonlinearity, the maximum
power increases before the maximum value of Relec equals
R0. The system is still in a weakly coupled state. However,
when the nonlinearity is strong enough, the maximum
value of Relec can exceed R0, at which point the system
is changed to be a strongly coupled one and the maximum
power can reach the power limit. On the other hand, the
response frequency decreases after the introduction of
nonlinear magnetic repulsion force at low wind speed, as
shown in Figure 10. Hence, according to Eq. (29), the crit-
ical electromechanical coupling coefficient also decreases
correspondingly. Therefore, the relative coupling degree
of the system is increased, and the output power is
increased accordingly.

4.2.2. Strongly Coupled Configuration. Figure 11 shows how
the structural nonlinearity influences the power perfor-
mance when it is strongly coupled at low wind speed. When
D0 is 17.5mm and the nonlinear coefficients k1 and k3 are

-15N/m and 1 9 × 105N/m3, the maximum power reaches
the power limit 0.01128mW twice when R equals 140 kΩ
and 490 kΩ, respectively. After the power reaches its maxi-
mum for the first time at R = 140 kΩ, the output power first
decreases and then reaches its maximum again at R = 490
kΩ. Meanwhile, the maximum power of its linear counter-
part reaches the power limit of 0.01128mW twice when
the optimal R equals 180 kΩ and 280 kΩ. When D0 gets
smaller to 16mm and the nonlinear coefficients k1 and k3
equal -24N/m and 3 5 × 105N/m3, respectively, the maxi-
mum output power is still 0.01128mW when R equals
140 kΩ and 560 kΩ, respectively. Firstly, it can be seen that
the nonlinear coefficients k1 and k3 do not affect the power
limit, which is the same as the analytical result. This indi-
cates that the nonlinear coefficients do not have an influence
on the power limit although they can affect the maximum
power of the system at weakly coupled configuration. Sec-
ondly, with the increase of k1 and k3, the first peak of the
output power shifts to the left and the second to the right.
In the region between these two peaks, the output power
decreases significantly. Outside this region, the output power
is increased. It can be obtained from the curves of Relec and
R0 in Figure 7(c) and the expression of Relec in Eq. (23) that
the maximum Relec increases with the structural nonlinearity
and the interval where Relec is greater than R0 is widened
accordingly. In this interval, the greater the structural non-
linearity, the greater the difference between Relec and R0.
Hence, the increase in nonlinearity in this interval reduces
the power. While outside this interval, enhanced nonlinear-
ity will result in a decrease in the difference between Relec
and R0, thus improving the output power.
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Figure 9: Variations of output power P with the load resistance R with different k1 and k3 under weak coupling configuration (θ = 9 3 × 10−5
N/V).

14 International Journal of Energy Research



4.3. Power Performance at High Wind Speed. In this section,
the influence of nonlinearity on the system power character-
istics under high wind speed will be explored. First, the effect
of electromechanical coupling coefficients on maximum
power and optimum resistance is studied.

Figure 12 depicts the effect of electromechanical cou-
pling coefficients on maximum power and optimum resis-

tance at high wind speed. It is found that the relation
between the electromechanical coupling and the optimal
resistance at high wind speed is similar to that at low wind
speed. When θ > θc, the system becomes strongly coupled
and has two optimal resistances. Otherwise, the system only
has one optimal resistance. However, it is found that the
effect of structural nonlinearity on the critical coupling
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coefficient and the maximum power at high wind speed is
quite different from that at low wind speed. For instance,
θc of linear configuration at U = 5m/s is 3 14 × 10−4N/V,

while that of the nonlinear configuration with D0 = 17 5
mm is 3 47 × 10−4N/V. When the structural nonlinearity
is further enhanced (D0 = 16mm), θc increases to 3 62 ×
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Figure 12: (a) Optimal R versus electromechanical coupling coefficient θ with different k1 and k3. (b) Maximum power versus
electromechanical coupling coefficient θ with different k1 and k3 (U = 5m/s).
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10−4N/V. As a result, the maximum power under a small
electromechanical coupling coefficient decreases significantly
with the introduction of structural nonlinearity. For instance,
when θ = 3 04 × 10−4N/V, the maximum power of a linear
GPEH is 2.245mW, while that of the nonlinear configuration
with D0 = 17 5mm is 2.132mW. When D0 is decreased to
16mm, the maximum power further decreased to 1.974mW.
In summary, at high wind speed condition, the introduction
of structural nonlinearity will significantly increase the critical
electromechanical coupling coefficient, leading to a large
decrease in the maximum power of a weakly coupled GPEH.

The introduction of structural nonlinearity has a
completely different impact on the power characteristics of
a monostable GPEH at high wind speed compared to that
at low wind speed. Structural nonlinearity can lead to poorer
performance of a weakly coupled GPEH at high wind
speeds, while the impact on a strongly coupled one is rela-
tively small. In order to explore the reasons for this phenom-
enon, two different electromechanical coupling coefficients
corresponding to different coupling conditions are selected
for further study. θ equals 2 6 × 10−4N/V and 3 6 × 10−4N/
V for weakly coupled configuration and strongly coupled
configuration, respectively. The system parameters unmen-
tioned are the same as those of low wind speed.

4.3.1. Weakly Coupled Configuration. It is demonstrated in
Figure 13 that the consequence of introducing structural
nonlinearity into the system is a decrease in output power.
When D0 is 17.5mm (the nonlinear coefficients k1 = −15
N/m and k3 = 1 9 × 105N/m3, respectively), the maximum
power is 1.679mW and the optimal R is 200 kΩ. In compar-
ison, the maximum power point of its linear counterpart is
1.97mW when the optimal R equals 250 kΩ. With the
strengthening of nonlinearity (D0 = 16mm, k1 = −24N/m,

and k3 = 3 5 × 105N/m3), the maximum power is reduced
to 1.549mW when the optimal R is 180 kΩ. The output
power and the optimal load resistance R get smaller as the
nonlinear effect becomes larger. This is diametrically oppo-
site to the system at low wind speed. It can be calculated
by Eq. (28) that the increased frequency reduces the maxi-
mum Relec. It leads to the difference between Relec and R0
increasing; hence, the output power is decreased. From
Figure 14, it can be seen that introducing nonlinearity into
a GPEH results in an increase in the frequency, which is
always greater than the frequency of its linear counterpart.
This indicates that when the effect of the nonlinear force is
strengthened, the critical electromechanical coefficient θc
will be increased, and the relative coupled degree will
become weak. As a result, the maximum power gets reduced.

4.3.2. Strongly Coupled Configuration. When the system is
strongly coupled at high wind speed (U = 5m/s), the effect
of the nonlinear factor is shown in Figure 15. When D0 =
17 5mm (the nonlinear coefficients k1 = −15N/m and k3 =
1 9 × 105N/m3, respectively), the maximum power is
2.257mW with the optimal R equals 140 kΩ or 330 kΩ.
Meanwhile, the maximum power point of its linear counter-
part reaches the power limit of 2.257mW twice with the
optimal R equals 120 kΩ and 475 kΩ, respectively. With
the strengthening of nonlinearity (D0 = 16mm, k1 = −24N/
m and k3 = 3 5 × 105N/m3) the maximum power is down
to 2.202mW with the optimal R is 160 kΩ. It is obvious that
with the introduction of nonlinearity, the maximum power
gets declined and the system can change from a strongly
coupling configuration to a critically coupling configuration
or even weakly coupling configuration. This is because the
enhancement of nonlinearity will lead to an increase in
response frequency and critical coupling coefficient. The
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Figure 14: The frequency of nonlinear GPEH under high wind speed (θ = 2 6 × 10−4 N/V).
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increase in frequency can lead to a decrease in Relec. When
the structural nonlinearity is large enough, the maximum
value of Relec will be smaller than R0, leading the system to
be a weakly coupled one.

5. Conclusions

In this paper, the power characteristics of a monostable gal-
loping energy harvester are studied. Firstly, based on the
existing model, the equivalent circuit of the system is
obtained by the harmonic balance method and Kirchhoff’s
law. The analytical solutions of the output power and the
power limit are further derived. Then, the validity and accu-
racy of the analytical solution are verified by numerical anal-
ysis, and the critical electromechanical coupling coefficient is
derived according to the analytical solution. Through analy-
sis, it is inferred that the consequence of introducing nonlin-
earity can be quite different at different wind speeds. Finally,
the influence of nonlinearity on the system power character-
istics at low and high wind speeds is studied. Some useful
conclusions are obtained as follows:

(1) For a monostable galloping-based piezoelectric energy
harvester interfaced with an AC circuit, its power limit
is independent of structural nonlinearity

(2) Structural nonlinearity can largely affect the critical
coupling coefficients through manipulating the
response frequency. For the studied structural nonlin-
earity f n = k1x + k3x

3 (k1 is negative and k3 is posi-
tive), the working principle of structural nonlinearity
at different wind speeds can be significantly different.

At low wind speed, the system response is very weak,
which makes k1 become the dominant factor that
tuning the response frequency. Since k1 is negative,
the structural nonlinearity will reduce the resonance
frequency and the critical electrical coupling. As a
result, at low wind speed, structural nonlinearity can
make a weakly coupled system to be a strongly
coupled system and is an efficient way to improve
the energy harvesting performance at low wind speed
condition

(3) The effect of structural nonlinearity at high wind
speed is totally different from that at low wind speed.
At high wind speed, k3 becomes the dominant factor
that tuning the response frequency. Since k3 is posi-
tive, the structural nonlinearity will increase the res-
onance frequency and the critical electrical coupling
at high wind speed. Therefore, at high wind speed, a
strongly coupled system can be turned into a weakly
coupled system by structural nonlinearity. As a
result, at high wind speed, structural nonlinearity is
not preferred in terms of output power

Overall speaking, introducing structural nonlinearity can
largely affect the power performance of a galloping-based
energy harvester. Different structural nonlinearity may bring
in new benefits for galloping energy harvester. In this paper,
it is revealed that the power performance at low wind speed
is largely enhanced by the given structural nonlinearity.
Notably, the theoretical study in this paper can also be used
to increase the power performance at high wind speed by
properly designing the structural nonlinearity.
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Appendix

Derivation of the Higher-Order
Harmonic Terms

Based on the assumption of the harmonic balance method,
the displacement x and the speed x could be written as

x = a sin ωt + b cos ωt,

x = aω cos ωt − bω sin ωt,
A 1

where ω is the excitation frequency and a and b are
unknown coefficients. The cubic power of x and x can be
written in the following form:

x3 = a sin ωt + b cos ωt 3,

x3 = aω cos ωt − bω sin ωt 3
A 2

Expanding the parentheses yields

x3 = a3 sin3ωt + 3a2b sin2ωt cos ωt + 3ab2 sin ωt cos2ωt + b3 cos3ωt,

x3 = ω3 a3 cos3ωt + 3ab2 cos ωt sin2ωt − 3a2b cos2ωt sin ωt − b3 sin3ωt

A 3

Then, by using the trigonometric function formula, it
can be derived that

x3 = a3
3
4 sin ωt −

1
4 sin 3ωt + 3a2b 1

4 cos ωt − 1
4 cos 3ωt

+ 3ab2 1
4 sin ωt + 1

4 sin 3ωt + b3
3
4 cos ωt + 1

4 cos 3ωt ,

x3 = ω3 a3
3
4 cos ωt + 1

4 cos 3ωt + 3ab2 1
4 cos ωt − 1

4 cos 3ωt

− 3a2b 1
4 sin ωt + 1

4 sin 3ωt − b3
3
4 sin ωt −

1
4 sin 3ωt

A 4

Ignoring the higher-order harmonic terms in the results,
we can get the results as

x3 ≈
3
4 a3 sin ωt + a2b cos ωt + ab2 sin ωt + b3 cos ωt ,

x3 ≈
3
4ω

3 a3 cos ωt + ab2 cos ωt − a2b sin ωt − b3 sin ωt

A 5

Given r is the responding amplitude of the system and
r2 = a2 + b2, therefore

xr = a sin ωt + b cos ωt a2 + b2

= a3 sin ωt + a2b cos ωt + ab2 sin ωt + b3 cos ωt ,

xr2 = aω cos ωt − bω sin ωt a2 + b2

= ω a3 cos ωt + ab2 cos ωt − a2b sin ωt − b3 sin ωt

A 6

Comparing (A.5) and (A.6), it can be seen that the terms
in parentheses are the same, so (A.5) can be simplified as

x3 ≈
3
4 r

2x,

x3 ≈
3
4ω

2r2x

A 7
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