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In the present work, a machine learning (ML) model was built to design solid electrolytes with improved ionic conductivity for Li-
ion batteries (LIBs), and the model was based on the phonon density of states (PhDOS). Compounds with PhDOS calculations
were collected from the Materials Project (MP) and processed to obtain frequencies and PhDOS to calculate the total phonon
band center, a proxy for ionic conductivity. Total phonon band centers were involved in a learning process using four ML
algorithms (extra random trees (XT), gradient boosting (GB), extreme gradient boosting (XGB), and decision trees (DT)). The
cross-validation results from the algorithms showed that the performance of the XT-model was superior and confirmed
through density functional theory- (DFT-) based phonon calculations conducted on LiYO3, Li4CO4, LiNiO3, LiGeO3, and
LiSiO3. The XT-model was then used to predict the total phonon band centers of new compounds where these had no phonon
calculations beforehand. Experimental validation of the XT-model involved electrochemical impedance spectroscopy (EIS)
measurements on two compounds: Li2CO3 from the high range and Li6PS5Cl from the low range. Additionally, LiBiO2 that is
predicted to have low total phonon band center, according to the XT-model, was considered further to estimate its potential as
solid electrolyte in LIBs.

1. Introduction

Lithium-ion batteries (LIBs) have been around for the last
four decades with their popularity still increasing as they
are being manufactured more than ever [1]. LIBs are impor-
tant because they offer better performance both in their
charging and discharging states as they have higher effi-
ciency and lower environmental impact than their lead-
acid predecessors. For now, the cost of lithium batteries is

higher than lead-acid ones; however it has been rapidly
decreasing since their invention forty years ago.

The most important components in these batteries are
the electrodes (cathode and anode) and the electrolyte,
which is the substance that allows ion movement from one
electrode to another. Current LIBs employ a liquid electro-
lyte; however, this can be hazardous due to its flammability
when exposed to oxygen [2], or in the case of leakage, their
contents can cause chemical burns and other severe
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complications [2]. Corrosion is another significant disadvan-
tage with liquid electrolytes since they can corrode the sur-
rounding materials inside the battery and cause a decrease
in performance and overall safety [3].

To address liquid electrolyte drawbacks in conventional
LIBs, solid-state batteries (SSBs) use safer solid electrolytes,
reducing leakage and ignition risks while offering higher
energy density [4]. Additionally, these electrolytes exhibit
lower discharge rates, promoting longer operation, and envi-
ronmental friendliness by employing ceramics or polymers
[4], which are more sustainable and less toxic than their liq-
uid counterparts. Polymer electrolytes, being nonflammable
and mechanically stable, offer advantages over liquid coun-
terparts but face limitations due to their lower ionic conduc-
tivity and issues like degradation and moisture adsorption in
the polymer matrix, requiring optimization for performance
in polymer electrolyte LIBs [5].

Ceramic electrolytes, including oxide-, halide-, and
sulfide-based materials, outperform polymer electrolytes
with higher ionic conductivity, thermal stability, and
mechanical strength [6]. They hold promise for LIB industry
adoption after extensive research. Focus lies on enhancing
toughness due to ionic bonding-induced brittleness, improv-
ing electrochemical stability with electrodes, and boosting
ionic conductivity compared to liquid electrolytes [7–9].
Some ceramic electrolytes match LiPF6 (the most commonly
used liquid electrolyte) [10] in ionic conductivity, such as
NASICON (sodium super ionic conductors) [11–13], LISI-
CON (lithium super ionic conductors) [14, 15], Garnet-
type solid electrolytes [16], perovskites [17], argyrodites
[18], and others [19, 20]. Notably, ionic conductivity can
be adjusted through structural modifications; e.g., LGPX
(Li10GeP2X12), which belongs to the LISICON group,
exhibits enhanced conductivity when moving from X=O to
Se, linked to reduced activation energy and increased crystal
volume for Li-ion diffusion [21].

Up to here, considering their superior properties over
other types of solid and liquid electrolytes, it is worthwhile
to think of enhancing the ionic conductivity of ceramic-
based electrolytes, to increase their applicability in solid-
state LIBs. Searching for new materials that might show
higher performance as compared to on-hand materials can
be mainly done through experimental procedures. However,
atomistic modeling, such as the density functional theory
(DFT) [22] and molecular dynamics (MD) [23], can also
be employed relatively successfully to simulate the behavior
of the new materials at atomistic levels. Both the experimen-
tal procedures and simulations are time-consuming and
costly, and they are mostly not suitable for large-scale dis-
covery processes. As a complementary step forward, artifi-
cial intelligence (AI) techniques, like machine learning
(ML) and deep learning (DL), can be utilized, where these
techniques have been increasingly imbedded as an indis-
pensable tool in the field of automated materials discovery
in recent years [24]. Such techniques can quickly sift
through vast amounts of data and identify patterns that
would be difficult for humans to detect, which significantly
reduces the complicated and time-consuming simulations
and experimental procedures. The high potential of AI in

the field of materials discovery is largely due to the vast
amount of knowledge accumulated in this field over many
years of traditional research. In addition, the development
in computing hardware and AI algorithms opens the door
widely in employing AI techniques in various fields, includ-
ing materials science and engineering. Indeed, intensive
research was reported on the employment of AI to predict
the materials’ performance for various applications, such as
thermal transport properties such as lattice thermal conduc-
tivity and thermal figure of merit [25–27]. In our previous
work, ML algorithms were employed to build models that
can predict the ionic conductivity of electrolytes in a wide
range of temperatures [28]. The models were built using
manually collected data from other works reported on the
preparation and characterization of solid electrolytes for Li
batteries. Even though the obtained results were interesting
in terms of accuracy, there were two limitations in that work.
First is that the parameters used to describe the material
were based on chemical compositions alone, meaning that
the crystal information was not taken into account, and
accordingly, the built models had no capability in distin-
guishing between polymorphous materials, such as diamond
and graphite for instance. More importantly, the data
included in that work were collected from the literature,
where enough information on the processing conditions
and related microstructure characteristics was hard to come
by, even though they play a major role in determining the
overall performance. The present work is designed to
address such limitations, where the AI models are built
based on both the composition and crystal features only,
leading finally to a model that can distinguish between poly-
morphous materials. In addition, the dataset used in the
present work is extracted from open-source material data-
bases, which can provide a wealth of data that can be used
to train the models; furthermore, basing our dataset on an
open database eliminates the need to concern ourselves with
processing parameters and their uniformity at all; namely,
through this process, we are trying to construct a model that
deals exclusively with a pure single crystal materials with no
regard to its processing history or experimental procedures
and variables that highly influence their performance.
Indeed, this method has its shortcomings when applied to
real-world applications and experimental procedure; how-
ever it allows us to, as mentioned earlier, sift through thou-
sands of promising, truly novel, materials yielding a more
robust modeling architecture and a rapid verification envi-
ronment overall. Up to here, it is imperative to investigate
two works reported by Kong et al. [29] and Chen et al.
[30] in relation to the differences and similarities between
those and this work. In particular, those specific works deal
with establishing predictive models that are more catered
towards the total continuous prediction of density of state
(phonon and electron) values at different frequencies, while
the current work streamlines the phonon density of states
to a singular value called the “total phonon band center”
which will be expanded upon later. Additionally, the current
and aforementioned works employ crystal structure features
alongside the composition of the material as well; however,
the technique for generating and employing those features
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differs greatly in their generation, usage, and interpretation
as will be illustrated in later sections. All in all, this work uti-
lizes the combination of open-source material databases and
AI techniques that enables faster and more accurate material
discovery and optimization in comparison to traditional
methodology in material modeling. In the present work,
accordingly, the AI techniques will be used to guide the
design of new ceramic-based electrolytes with improved
ionic conductivity for Li-ion batteries.

2. Learning Procedure

2.1. The Proxy of Phonon Band Center and the Relation to
Ionic Conductivity. To build an accurate and reliable ML
model that can predict the ionic conductivity characteristics
of ceramic-based electrolytes, uniform data should be used
in the learning process; if the ionic conductivity was set as
a direct output in the model, then the data uniformity will
be an issue. Uniformity here refers to the type of informa-
tion that can be attained for a specific electrolyte material
from traditional sources; for instance, some parameters
refer to the synthesis of the material, processing conditions,
and polycrystalline characterization such as grain bound-
aries and defects. Usually, such parameters are experimen-
tally measured, and thus, it will be impossible to find
uniform processing conditions for enough amount of data.
In this regard, to find promising solid electrolyte materials
and structures for Li-ion batteries using ML, rather than a
direct property (ionic conductivity), a representative proxy
can be utilized to relate the targeted property and structure
(composition and crystal). Based on the previous example
given for the LGPX [21], the crystal volumes of the
Li10GeP2O12 and Li10GeP2S12 crystals were used to find
the difference in their performance and then to describe
their ionic conductivities. Even though the crystal volume
performs well in reflecting the ionic conductivity in these
two electrolytes, it would be ineffective in describing and
comparing solid-state electrolytes from different crystal
families. Accordingly, a more general proxy will be needed,
to generalize and standardize a reliable method that can be
applicable for various families and structures. Here, lattice
dynamics and their properties were found to relate to Li-
ion mobility within crystals, as reported by Muy et al.
[31], who investigated the relationship between the phonon
density of states (PhDOS) and energy barriers for Li-ion
migration of certain electrolytes. The results showed that
the total phonon band center is a singular value that can
be determined from the PhDOS according to the following
equation [31]:

ωav =
ω × DOS ω dω
DOS ω dω

, 1

where ωav is the total phonon band center, ω is the fre-
quency, and DOS ω is the total phonon DOS, which can
be used to qualitatively represent the ionic conductivity of
solid electrolytes in Li-ion batteries. The main assumption
for this finding was based on the Einstein model [32],
which relates the amplitude of the thermal displacement

of a chemical species from its equilibrium position (u) in
the crystal and phonon frequency (ω) as follows:

u 2 = 3kBT
mω2 , 2

where kB, T , and m are the Boltzmann constant, tempera-
ture, and mass of the chemical species, respectively. Accord-
ing to this model, at a specific temperature, the smaller
phonon frequency is associated with a higher mobility,
where for such a low frequency, the chemical species can
oscillate away from its equilibrium position. On the other
hand, the high activation energy of migration (less mobil-
ity) is associated with the oscillation close to the equilib-
rium position (high frequency). This hypothesis was
supported by the conclusion reached by Wakamura [33]
which mentions that the energy barriers of migration in
Ag+, Na+, and Cu2+ conductors decrease with decreasing
phonon frequency in the optical mode [33], confirming
the relationship between the phonon frequency and the
probability of a chemical species to leave its position into
a neighboring one. Additionally, this was investigated on
number of Li-ion conductors including Li4SnS4, Li4GeS4,
Li3PS4 (Pnma), Li3PS4 (Pmn21), Li4GeS4 (Cmcm), Li3VO4,
Li3PO4 (Pnma), and Li3PO4 (Pmn21), as reported by Muy
et al. [31], where the obtained results supported this
hypothesis. It was experimentally found that replacing O
in Li3PO4 (Pmn21) by S will lead to a softening in this so-
called total phonon band center and a decrease in the acti-
vation energy from 1.4 eV in Li3PO4 to 0.5 eV in Li3SO4.
Other results reported by the same group [29] on the rela-
tionship between the total phonon band center and the
measured activation energy are shown in Figure 1(a).

2.2. Learning Data. The initial dataset used in the learning
process of this work were collected from theMaterials Project
(MP) database [34], where the compounds (~1272) alongside
their PhDOS calculations (frequency and DOS) were col-
lected, and among them, 114 were Li-containing compounds,
such as LiSbF6. The data including PhDOS and frequency for
each compound were obtained fromMP (an example is given
in Figure 1(b)), and the total phonon band center of these
compounds was estimated using Eq. (1) (more information
about the methodology is given in the supplementary mate-
rials and Figure S1). The distribution of the estimated
values of the total phonon band centers for these
compounds is presented in Figure 1(b). It can be noted that
the values are distributed between 5 to ~120meV and
between 15 to 78meV for the Li-containing compounds. In
addition, most of these compounds were oxide-based, and a
majority of the overall data had a cubic crystal structure, as
shown by Figures 1(c) and 1(d), respectively. Accordingly,
O is the most contributing element in these compounds
followed by K, F, P, and S, as shown by the heatmap of the
element contributions in Figure 1(e). Such distribution in
the initial dataset, which is going to be used for the learning
process in this work, can result in a ML model with a wide
window of predictability, wherein a confident decision can
be taken on whether a material is expected to show a
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Figure 1: The characteristics of the data used in the present learning process. (a) The relationship between the total phonon band center and
the activation energy related to the diffusion of Li ions in some compounds including Li3PO4 (Pmn21), Li3PS4 (Pmn21), Li3PO4 (Pnma),
Li3SO4 (Pnma), Li4GeO4 (Cmcm), Li3VO4, Li4GS4 (Cmcm), and Li4SnS4 [31]. The activation energy is the summation of energy needed
to generate vacancies and the migration energy of Li ions. (b) The histogram of the total phonon band centers, which are determined
from the PhDOS diagrams (one example is embedded in this figure) of the compounds included in the initial dataset. The highlighted
histogram in (b) is related to the Li-containing compounds (114 compounds) in this dataset. (c, d) The distribution of the compounds
used in the initial dataset based on their type and crystal system, respectively, where most of the compounds are oxide-based and most
materials possess a cubic crystal structure. (e) A heatmap of the periodic table to visualize the contribution of the elements in the
compounds used in the initial dataset, showing that among all elements, O had the most contribution in the included compounds.
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relatively high performance as a solid electrolyte in Li-ion
batteries in general.

2.3. Feature Engineering. Once the initial dataset is collected,
the following step is to generate a set of material descriptors,
called features that quantitatively describe the materials that
we have collected as well as the materials to be generated fur-
ther for validation processes. The feature generation process
is indeed a very interesting topic on its own, and there are
numerous ways to represent a material according to the scale
of the intended representation. In this work, we have opted
to use a feature generation method that depends both on
the chemical composition and the crystal structure of the
representative unit cell of the compound. Ward et al. [35,
36] have developed a proprietary framework, the Materials
agnostic platform for informatics and exploration (Magpie),
that can help accelerate and standardize the feature genera-
tion process for materials in both their composition and
crystal structures alike. This process has been used in previ-
ous works for brittle and ductile characterization of Mg-
based materials [37], superhard materials [38], and perov-
skite stability prediction [39]. Multiple other feature genera-
tion methodologies such as the Smooth Overlap of Atomic
Positions (SOAP), which provides descriptors of the local
geometries using a Gaussian smeared atomic density [40],
and the Ewald Sum Matrix (ESM), which generates features
that relate to the positional environment of the electrostatic
interactions between the atoms in a material [41], are indeed
used to generate unique and useful features for the composi-
tional content and crystal structure configuration of mate-
rials, yet they are, as have been shown by in a previous
work [39], computationally extensive, by generating a huge
number of features for each material (>1 k features), and
redundant by using a huge number of padded features
according to the largest unit cell in the dataset overall, which
is required for all materials to possess the same number of
features for the training and testing. Circling back to the
works by Chen et al. [29] and Kong et al. [30], those, simi-
larly, allow a more extensive description of the crystal struc-
ture by embedding the crystal structures to an encoder
algorithm that maps scalar features to different positions in
the unit cell that is being under investigation, which are
modified variations of the Euclidean Neural Networks
(E3NN) [42] and the Graph Convolutional Networks with
global attention (GATGNN) [43] frameworks of crystal fea-
tures encoding. Yet, and as discussed in a previous work
[39], the use of those features is highly sensitive to the initial
unit cell size and initial parameters used to set the cutoffs
relating to the effects of atoms and their neighboring envi-
ronments. This problem is in fact mitigated by Ward et al.
[35, 36] in their Magpie platform, by segmenting the struc-
ture of a specific compound according to the Voronoi Tes-
sellation algorithm [44], resulting in a Voronoi Tessellation
Structure (VTS), which is then reduced to the Wigner-Seitz
(WS) cell [45], or the primitive cell for all intents and pur-
poses; this primitive cell is the mechanism of standardization
that Magpie excels at in creating the crystal and composition
features. Thus, no matter the initial crystal configuration
that is available for a specific structure, especially the ones

obtained in bulk from material databases’ APIs, they can
be reduced to their WS cell that is indeed smaller as well
as more consistent, leading to a more accurate modeling
process. More interestingly, this methodology can even be
extended further to the unrelaxed crystal structures to gener-
ate the so-called “unrelaxed features” which can be used for
prediction of virtual structures, namely, prototypes which
will be covered later in this work, with the same results in
comparison to relaxed features for many compounds. As
the compound’s unrelaxed crystal structure becomes closer
to its relaxed peer, the prediction results become more accu-
rate [38].

This aforementioned feature generation process resulted
in 271 features that are created using the default properties
in Magpie, 145 of those features relate to the composition
of the material (based on properties presented in Table S1)
and the rest correspond to the crystal configuration, which
were then further processed to remove constant and
quasiconstant features depending on their variance values.
Additionally, Pearson and Spearman correlations were used
in order to remove linearly and monotonically correlated
features as well with thresholds of 0.8 for both, respectively,
resulting in a refined 63 features that can offer a better
generalized performance of the model, low computational
cost, and a reduced model complexity to avoid overfitting
problems that may arise. The final features are listed in
Table S2.

2.4. Training and Building the Predictive ML Model. To build
the predictive model for the total phonon band center, we
have employed a general preliminary prediction process of
the most commonly utilized algorithms in the field of mate-
rial informatics and property predictive modeling (random
forest [46, 47], decision trees [48, 49], AdaBoost [50], etc.).
From this process, the most promising candidate algorithms
to use for our dataset have been selected, and these are the
extra regression trees (XT), gradient boosting (GB), extreme
gradient boosting (XGB), and decision trees (DT). Expect-
edly, most of the promising algorithms belong to the
ensemble family of learners, which are popularly used for
regression modeling in this field [24]. Those algorithms have
been used separately to create models on the initial dataset
and have been involved in a 10-fold cross-validation process
(10-fold CV) [51] to differentiate and subsequently select the
working model for the next prediction phases. The perfor-
mance of the various models built was examined using con-
ventional regression error metrics, such as the R2 metric,
the mean absolute error (MAE), and the root mean squared
error (RMSE) [52].

3. Results and Discussions

The 10-fold CV scores of the models built based on the 4
algorithms, as presented in Figure 2(a), show that the perfor-
mance of XT-model is better than that of other models,
where the R [2], RMSE, and MAE of this model were
0.964, 14.8meV, and 7.9meV, respectively, which are higher
than the scores of the other models. The performance of the
built models was also shown through a representative split
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(Figure 2(b)), and here, the R2 scores (XT: 0.964, GB: 0.957,
XGB: 0.954, and DT: 0.871) obtained for the models based
on this split were consistent with the cross-validation results
in Figure 2(a). According to the cross-validation results and
scores from the representative split presented in Figures 2(a)
and 2(c), respectively, one can clearly suggest that the XT-
model can be used as the primary model for further inves-
tigation in this work to explore solid electrolytes with high
performance for Li-ion batteries. A particular note has to
be underlined here, as the process of hyperparameter opti-
mization has been ruled out from this work, and this is
due to the fact that this optimization process is resource
intensive which requires a fine grid of hyperparameters
to cover a wide range and a suitable hyperparameter opti-
mization (searching) algorithm that enables a fast yet reli-
able exploration and, consequently, fast computing power
to sift through the model initialization process for each
hyperparameter. This process has not been considered in
this work, due to the promising performance of the XT-

model with its original preset hyperparameters, as pre-
sented in Figures 2(a) and 2(c). Thus, a short discussion
about the choice of hyperparameters is given in the sup-
plementary materials and Table S3, and an insight into
the feature’s importance is given in Figure S2.

The results reached here regarding the performance of
the XT-model can be supported additionally through an
in-house validation process using DFT calculations con-
ducted on new compounds, which were not included in
the present learning process. For this purpose, 5 different
compounds (LiYO3, Li2CO4, LiNiO3, LiGeO3, and LiSiO3)
were selected for the validation process by DFT. Prior to this
process, however, and to ensure that the quality and proce-
dure of DFT PhDOS calculations are valid, the parameters
to be used for the DFT calculations were adjusted though
comparing the PhDOS results obtained in the present work
with those of the same compounds from other sources. Spe-
cifically, the PhDOS calculations for the two compounds
Li3PO4 and LiAgF6 which were conducted by Muy et al.
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Figure 2: (a) Cross-validation results of the models (extra random trees (XT), gradient boosting (GB), extreme gradient boosting (XGB),
and decision trees (DT)) built in the present work using 3 metrics including R [2], mean absolute error (MAE), and root mean squared
error (RMSE). The XT-model was found to perform better than the other models. (b) A representative split (training set and testing set)
that was used to visualize the testing results from the 4 models. (c) The testing results of the 4 built models conducted on the
representative split, confirming that the XT-model is the most reliable among other models.
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[31] and Togo and Tanaka [53], respectively, were used to
provide a baseline of comparison for the in-house DFT cal-
culations. The idea here is to ensure that our calculations are
valid within the acceptable range of accuracy in comparison
to other established reported works [31, 53] prior to the pro-
cess of calculating PhDOS for new or unseen compounds
from the promising ML-predicted pool.

The results obtained in the present work and those
reported in other works are presented in Figures 3(a)–3(e).
It is clearly seen from Figures 3(a)–3(c) that the PhDOS of

Li3PO4 determined by the present DFT calculations were
fairly in agreement with those calculated in the other works
[31, 53], and this was also reached for LiAgF6 (Figures 3(d)
and 3(e)). More importantly, the consistency between the
present results and the previous reported results was addi-
tionally confirmed through the total phonon band centers
of the two compounds, which is the main focus here, as
determined from the PhDOS calculations in Figures 3(a)–
3(e) by Eq. (1), where the values of the total phonon band
centers determined for each compound were very similar
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Figure 3: (a–c) PhDOS of the Li3PO4 (Pnma), as obtained from the Phonon Database at Kyoto University [53], calculated in the present
work based on DFT, and experimentally measured using the wide-angular range chopper spectrometer (ARCS), as reported by Muy
et al. [31]. (d, e) PhDOS of LiAgF6 (Ia3), as obtained from Phonon Database at Kyoto University [53] and as calculated in the present
work based on DFT. (f) A comparison of the total phonon band centers determined for Li3PO4 and LiAgF6 from their corresponding
PhDOS presented in (a)–(e).
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with those determined in other works (Figure 3(f)). These
results offer two important observations; first is that the
DFT methodology employed here is fairly reliable and can
be used for other compounds in order to validate the accu-
racy and viability of the XT-model built in this work.
Secondly, the extremely small error between the DFT-
calculated total phonon band center and the ones calculated
from other sources for Li3PO4 (error: 1.15%) and LiAgF6
(error: 0.49%) suggests that as long as there is a general over-
lap between the trend of the PhDOS obtained from the DFT
calculations and experimental results obtained from any
source pertaining to a specific material, i.e., the maximum
and minimum frequencies, the location of the peaks and
troughs, etc., the total phonon band center value is stable
to noise and artifacts that result from the variation of DFT
parameters (Figure S3 and S4), making the total phonon
band center a powerful descriptive and predictive proxy in
this case specifically. Additionally, some observations
regarding PhDOS that is obtained from the previous sources
has to be highlighted here; namely, the fact that the PhDOS
data obtained from the Kyoto Univ. database [53] are mere
preliminary calculations that give rudimentary information
about the phonon dynamics and are not conclusive in their
outcomes, which also suggests that a complete overlap of
the PhDOS plots is quite difficult to achieve as is the case
in LiAgF6 that has been observed and negative frequencies
could also suggest that the methodology of the calculation
is flawed which is a considerable topic in off itself. That
being the case, it is important to note that our approach to
calculating the PhDOS relies heavily on establishing a
fairly accurate methodology that can also be applicable at a
rapid pace for new materials that have no calculations
beforehand, which could provide some limitations to an
in-depth analysis of the individual materials at hand. Yet,
it is also considerable, here, to signify the importance of
the total phonon band center proxy as it provides an
overall weighted average singular value that can be
interpreted within the context of ionic conductivity, given
that the degree of accuracy is acceptable for the PhDOS
calculations as have been pointed out earlier. Accordingly,
DFT will be used to calculate the PhDOS of the 5
compounds, as indicated before (LiYO3, Li2CO4, LiNiO3,
LiGeO3, and LiSiO3). The calculation results of the 5
compounds are presented in Figure 4(a) by the side of
their crystal structure and space groups (Figure 4(b)). Total
phonon band centers of these and those of some other Li-
containing compounds (84 compounds) obtained from MP
[34] that were not included in the initial dataset were
determined using the PhDOS Eq. (1), and they were
compared with the counterpart values predicted by the
XT-model (Figure 4(c)). The results in Figure 4(c) prove
the reliability of the built XT-model for predicting the total
phonon band center, where R2 of this validation process
was 0.97, which is even higher than the value obtained in
the cross-validation process (Figure 2(a)). Interestingly, the
total phonon band center predicted by the XT-model for
LiSiO3, LiGeO3, and LiNiO3 exhibits a reasonable linearity
with the unit cell volume of the counterpart compounds,
as shown in Figure 4(d). As has been discussed before on

LGPX [21], the ionic conductivity is directly affected by
the volume of the unit cell within one family of
electrolytes. Here, the 3 compounds (LiXO3: X=Si, Ge, Ni)
possess identical crystal characteristics, where they have a
cubic structure, in which LiO12 cuboctahedra share corners
with other 12 equivalent LiO12 cuboctahedra, faces with 6
equivalent LiO12 cuboctahedra, and faces with 8 equivalent
XO6 octahedra. In addition, one XO6 octahedra shares the
corners with 6 equivalent XO6 octahedra and faces with 8
equivalent LiO12 cuboctahedra. Thus, considering the unit
cell volume as a descriptor for ionic conductivity, one can
simply arrange the ionic conductivity of the 3 compounds
from low to high as follows, LiSiO3, LiGeO3, and LiNiO3,
and this sequence complements the predicted values
obtained by the XT-model for total phonon band center.
On one side, this finding additionally confirms the
reliability of the built model, and from another, it further
supports the suggestion that total phonon band center can
be employed as an effective and practical ionic conductivity
descriptor in the discovery process of high-performance
solid electrolytes for Li-ion batteries.

Up to here, this model can be used to discover solid elec-
trolytes with high ionic conductivity based on the total pho-
non band center. For this purpose, the features of ~17K Li
compounds presented in the MP database, which have no
PhDOS calculations (methodology for obtaining those mate-
rials is presented in the supplementary materials), were gen-
erated and then used as inputs in the built XT-model to
predict the total phonon band centers of each in the list.
The ML-predicted values are shown in Figure 4(e) alongside
the corresponding stability value of each compound.
Nonstable compounds with stability values higher than
50meV/atom were excluded, and those with values less than
50meV/atom were highlighted, as shown in Figure 4(f). In
general, the thermodynamic stability is evaluated using the
concept of energy above convex hull (Eh) or convex hull dis-
tance, and here, the threshold of 50meV/atom was selected
due to the fact that this energy is calculated at 0K based
on DFT calculations, and accordingly, an additional value
related to real conditions used in experiments is to be con-
sidered to alter this from its 0meV/atom value [39]. The
data presented in Figure 4(f) are arranged based on the
expected feasibility of the compounds as ionic conductors,
and that is following the total phonon band center value of
these compounds, as predicted by the model in the present
work. Per the tendency in Figure 4(f), the compounds
related to the red-labeled region were separated (listed in
supplementary materials) and a sample of those are listed
in Table 1 (50 compounds) where those are predicted to
exhibit a promising performance as Li-ion conductors. For
experimental validation of the XT-model built in this work,
two different compounds were selected from the low and
high ranges of the total phonon band centers based on the
threshold of 40meV [31], and direct measurements of their
ionic conductivities were conducted using electrochemical
impedance spectroscopy (EIS). The first compound,
Li6PS5Cl (F43m) with a total phonon band center of
33meV, as predicted by the XT-model, is a well-known elec-
trolyte with high ionic conductivity at RT [54]. On the other
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hand, the second compound selected from the high range
(>40meV) is Li2CO3 (C2/c), which, in turn, has never been
explored before for this kind of application. Before these
experiments, the results of the ML prediction conducted
on the two compounds were confirmed through the related
DFT calculations. Figures 5(a)–5(c) show the PhDOS, struc-
ture, and estimated total phonon band center of the two
compounds, respectively. The results showed that the values
of the total phonon band center obtained through the ML
predictions and estimated based on the DFT calculations
are in agreement with relative errors of 6.04% for Li6PS5Cl
and 0.45% for Li2CO3. The error for Li6PS5Cl in particular
is quite considerable given the overall value of the total pho-
non band center, this error can be contributed to various
reasons, and some of those can be discussed here; firstly, this
material is in fact a complex compound in its composition
and crystal configuration, which could add unwanted chal-
lenges in its DFT calculations such as optimal crystal size
initiation and DFT parameter limitations which could
impact the calculation process yet increase the computa-
tional time drastically. The other reason could be due to
the fact that the XT-model simply requires more diversified
training data to encapsulate the general behavior of Li6PS5X
materials overall, which could be resolved if more data is
added manually, which hinders the pace and requires extra
attention to specific trends of materials in this field of study.
Nevertheless, although the current error margins can defi-
nitely be improved by extensive analysis of the material at
hand (Li6PS5Cl), the general trend of the behavior of the
total phonon ban center can definitely be noted.
Figure 5(d) shows the Nyquist plot of Li6PS5Cl conducted

at various temperatures. Based on these measurements, the
ionic conductivity (σ) of Li6PS5Cl at the various tempera-
tures was determined using the following equation [55]:

σ = l
A∙R

, 3

where l is the thickness of the Li6PS5Cl pellet used in the EIS
measurements, A is the area in contact with the stainless-
steel electrode of the spectroscope, and R is the ionic resis-
tance of Li6PS5Cl, as determined by the spectroscopy profiles
in Figure 5(d). This measurement shows that Li6PS5Cl
exhibits high RT ionic conductivity (0.00291 S/cm) and low
activation energy (~0.195 eV), as presented by Arrhenius
plot inserted in Figure 5(d), and this is consistent with the
findings obtained by the XT-model built in the present work,
where Li6PS5Cl was predicted to have a low total phonon
band center (32.3meV). Regarding the high conductivity
achieved by this compound, it is unsurprising given previous
reports of its high ionic conductivity [54, 56, 57], which was
attributed to the low activation energy associated with Li-ion
conductivity. However, the noteworthy discovery here is the
capability of the current XT-model to identify this com-
pound without the requirement for elaborate experimental
procedures. The EIS profiles of the second compound
(Li2CO3) selected from the high range of the total phonon
band center (Figure 4(f)) are presented in Figure 5(e). These
profiles were recorded at various temperatures between RT
and 180°C. It is clearly seen from Figure 5(e) that the profile
terminated before intercepting the real axis, even at high
temperatures (140 and 180°C), indicating a very high
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Figure 4: (a, b) PhDOS of LiYO3 (Pm3m), Li4CO4 (P43m), LiNiO3 (Pm3m), LiGeO3 (Pm3m), and LiSiO3 (Pm3m), as calculated in the
present work using DFT, and their structures, respectively. (c) A comparison of the total phonon band centers calculated from (a) with
those predicted by the XT-model built in the present work. This comparison was expanded to cover 84 Li-containing compounds that
have PhDOS calculations, and those were obtained from Materials Project database but not included in the initial dataset. Good
matching between the ML-predicted total phonon band centers (ML-center) and the DFT-calculated ones (DFT-center) with R2 = 0 970.
(d) The total phonon band centers predicted by the XT-model for the LiNiO3 (Pm3m), LiGeO3 (Pm3m), and LiSiO3 (Pm3m) as a
function of the volume of the unit cell, supporting the hypothesis that the total phonon band center is a suitable proxy to represent ionic
conductivity in the learning processes used in this work. (e) The total phonon band centers of ~17K Li-containing compounds taken
from MP, as predicted by the XT-model built in the present work. These compounds had no experimental or computational calculations
related to the PhDOS beforehand. (f) The ML-predicted total phonon band centers of the compounds that are thermodynamically stable
(<50meV/atom). The red data points are expected to show high ionic conductivity according to their total phonon band centers, and
this was additionally illustrated by the gradient color bar included in the figure.
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Table 1: A sample list consisting of 50 promising Li compounds with low total phonon band center (<40meV) out of ~17K Li compounds
that have been used for prediction. Additional information regarding the stability, chemical system, crystal system, and space group is shown
as well.

System mp-id Composition Predicted center (meV) Stability (eV/atom) Crystal system Space group

Li-S

mp-756086 Li5BiS4 22.65097241 0.0957989225 Orthorhombic Pmmn

mp-766467 LiCuS 23.1757682 0.04040561625 Orthorhombic Pbcn

mp-1153 Li2S 27.2939112 0 Cubic Fm3m
mp-8430 KLiS 34.74791424 0 Tetragonal P4/nmm

mp-30248 LiMoS2 35.81351741 0.02264577313 Triclinic P1
mp-1001786 LiScS2 36.59939717 0 Trigonal R3m
mp-1195718 Li4SnS4 36.88014076 0 Orthorhombic Pnma

mp-867699 Li4TiS4 38.02538759 0.009325313333 Tetragonal I42m
mp-30249 Li4GeS4 32.54642619 0 Orthorhombic Pnma

mp-1188392 LiInS2 33.75133085 0 Orthorhombic Pna21
mp-767516 Li9Sb3S 29.83087585 0.08155559199 Monoclinic P21/c
mp-755470 Li2BiS2 26.08057 0.097352 Orthorhombic Imm2
mp-755470 Li2BiS2 26.08057 0.097352 Orthorhombic Imm2
mp-696123 Li10Sn(PS6)2 27.61404768 0.0333131094 Tetragonal P42mc

Li-Se

mp-2286 Li2Se 24.83585183 0 Cubic Fm3m
mp-30100 Li2B2Se5 27.25385145 0 Monoclinic C2/c
mp-10231 LiMnSe2 34.99314872 0.09420128891 Trigonal P3m1
mp-28603 NaLiSe 35.78187931 0 Orthorhombic Pnma

mp-1095291 Li2SnSe3 36.62822339 0 Monoclinic Cc

mp-1211446 Li7PSe6 36.94008782 0 Orthorhombic Pna21
mp-9250 RbLiSe 38.02751925 0 Tetragonal P4/nmm

mp-10618 LiInSe2 32.6480686 0.0813290375 Trigonal R3m
mp-15794 LiYSe2 37.11410118 0 Trigonal R3m
mp-973793 Li8SeN2 36.42267101 0 Tetragonal I41md

Li-O

mp-28592 Li7Br3O2 23.60890704 0.02552174042 Tetragonal I4/mmm

mp-778878 BaLi4O3 25.08419013 0.08632171469 Orthorhombic Cmc21
mp-8412 LiCeO2 26.46322331 0.03886750766 Monoclinic P21/c
mp-29077 LiBiO3 27.79402223 0 Orthorhombic Pccn

mp-1306939 Li2CrO3 29.84134526 0.044340775 Monoclinic C2
mp-1173952 Li3Mn2O5 33.31552984 0.0227905305 Monoclinic C2/m
mp-1211142 Li5IO6 33.78752157 0 Trigonal P3112
mp-691115 Li4Mn5O12 34.41020385 0 Monoclinic C2/c
mp-14495 Li6ZnO4 37.09048767 0 Tetragonal P42/nmc

mp-756664 LiFeBO3 39.64993618 0.005343331111 Hexagonal P6

Li-Se-O

mp-1198324 Li2B8SeO15 39.32083332 0 Monoclinic P21/c
mp-770832 Li2BSeO4 39.95422648 0.05752937621 Monoclinic P21/c
mp-1198324 Li2B8SeO15 39.32083332 0 Monoclinic P21/c

Li-S-O

mp-1020018 Li5B(SO4)4 39.18512326 0.00091758125 Monoclinic P21/c
mp-1020060 LiB(S2O7)2 39.18689863 0 Orthorhombic P212121
mp-1020106 LiB(SO4)2 39.19494269 0 Monoclinic Pc

mp-1105750 LiAu(S2O7)2 38.23145519 0 Triclinic P1

11International Journal of Energy Research



resistance and poor ionic conductivity of Li2CO3. The low
ionic conductivity is mainly attributed to the high enthalpy
of Li-ion migration within this compound, as has been
found through DFT calculations conducted in the present
work. The calculations of migration enthalpies for Li2CO3
presented in Figure 5(f) showed that the energy barrier
needed for a Li ion to migrate from one lattice position to
the next is equal to 0 998 ± 0 05 eV, which is higher than
that determined for Li3PO4 (0.723 eV, Figure 5(g)).

After narrowing down our focus to the compounds pre-
dicted to show a total phonon band center that is below
40meV, serving as a threshold for promising electrolytes,
we observed that Li-S, Li-O, and Li-Se chemical systems
exhibit the lowest total phonon band center of the bunch.
Some of them are presented Figure 6(a) and are classified
according to their anions into oxides, sulfides, and selenides.
Interestingly, the values of the total phonon band center of
the three families, as predicted by the XT-model in
Figure 6(a), are consistent with the general trend of the con-
ductivity in oxide and sulfide families as well as the relative
feature importance (Gini Importance) that have been
obtained from the XT-model (Figure S2), and those
important features, mainly “min_CovalentRadius” and
“min_GSvolume_pa” which represent the minimum
covalent radius as well as the ground state volume of the
unit cell of the materials, corroborate the well-established
correlation between the ionic conductivity and the crystal
size, evidenced by the ionic conductivity of sulfide-based
electrolytes which is higher than that of the counterpart
oxide-based electrolytes, such as Li3PS4 and Li3PO4, that
is contributed to the crystal size effect [31]. This factor
can be applicable when we compare the selenide-based
electrolytes with the sulfide-based electrolytes, suggesting
that selenide-based ones have a greater potential to be
used as solid electrolytes in LIBs, where they show lower
values of total phonon band center as compared to those
in the two other families (oxides and sulfides). In this
context, despite not having any prior background or
knowledge in physical and chemical notions, the model
acquired the ability to learn and use such knowledge,
enabling it to predict trends that align closely with actual

observations. This list shown in Figure 6(a) (given in
supplementary materials) is an initial step, which offers
researchers a guided foundation to advance their efforts
in the fabrication and characterization of high-
performance electrolytes for LIBs. From this list and as a
promising electrolyte, LiBiO2 (Ibam) was selected for
further investigations. DFT-based PhDOS and migration
enthalpy calculations were conducted for this compound.
The PhDOS results of LiBiO2 alongside its structure are
presented in Figures 6(b)–6(d). The total phonon band
centers estimated from Figure 6(b) using Eq. (1) for this
compound exhibit excellent agreement with the value
predicted by the XT-model, showing a relative error
percentage of 3.46%. The migration enthalpy calculations
presented in Figure 6(e) further confirm the findings
reached by the learning process, where the energy barrier
for Li-ion migration in LiBO2 was found to be less than
that of Li2CO3 (0.998 vs. 0 271 ± 0 05 eV, Figures 6(e)
and 5(f), respectively). Surprisingly, the value obtained
was even lower than that recorded for Li3PS4 (0.296 eV)
[31] (Figures 6(f) and 6(g)), which is a recognized high-
performance electrolyte employed in solid-state LIBs with
barriers close to those of liquid electrolytes used in
traditional LIBs. This result is quite interesting since oxide-
based electrolytes are easier to prepare as compared to
sulfide-based, where contamination with oxygen is a critical
issue during the preparation of these electrolytes (sulfide-
based) [58, 59]. Accordingly, through the present learning
process, an oxide-based electrolyte was predicted to exhibit
an improved performance, which can be comparable to
conventional liquid and solid electrolytes.

Up to here, we have reached a point where the present
work must give some other useful directions for further
investigations and experimental works on the fabrication
and characterization of superconductors for LIBs. This can
be carried out through considering the main potential of
the employed features (Magpie), which is useful for describ-
ing compounds constructed from scratch, with no informa-
tion about their relaxed structures. This can be done starting
from well-known electrolytes, such as NASICON- or
LISICON-structured solid electrolytes, and by a chemical

Table 1: Continued.

System mp-id Composition Predicted center (meV) Stability (eV/atom) Crystal system Space group

mp-768754 LiBi2(SO4)3 41.126971 0.09646661291 Monoclinic P21/c
mp-765354 Li2Co2(SO4)3 45.13286191 0.03155810283 Orthorhombic Pbca

mp-1176804 LiCo(SO4)2 45.05950178 0.07157163193 Triclinic P1
mp-774921 KLiNiO2 38.36338 0.057834 Monoclinic C2/m
mp-753282 Li2MnOF3 34.96503 0.033177 Monoclinic C2/m

Other

mp-15551 Sr2LiSi3 26.47019383 0 Orthorhombic Fddd

mp-982974 LiBeAu2 31.21852323 0.002375858125 Cubic Fm3m
mp-29025 Li5Br2N 35.82069002 0.003017267559 Orthorhombic Immm

mp-1663705 Li7Ni(O2F)2 38.07896974 0.09718476679 Triclinic P1
mp-573471 Li17Sn4 29.18006 0 Cubic F43m
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substitution process, structures of numerous nonrelaxed
compounds can be generated. One example of this process
is given in Figure 7(a) for NASICON-structured electrolyte.
Starting from LiGe2(PO4)3 with (R3c) space group, a well-
known solid electrolyte in LIBs, and by chemical substitution
of Ge, P, and O with elements highlighted in the periodical

table (Figure 7(a)), the structure of LiC2(C′X4)3 nonrelaxed
compounds was generated where C, C′, and X are the
generic elements that can be substituted according to our
scheme (the distinction between C and C′ and other details
about this process are given in the supplementary materials,
Figure S4 and Table S4). This procedure was also conducted
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Figure 5: (a, b) PhDOS of Li6PS5Cl (F43m) and Li2CO3 (C2/c), as calculated in the present work using DFT, and their structures,
respectively. (c) A comparison of the total phonon band centers calculated from (a) with those predicted by the XT-model built in the
present work for Li6PS5Cl and Li2CO3. The relative error between the DFT-calculated and ML-predicted values for Li6PS5Cl and Li2CO3
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on five notable solid electrolytes; those are Garnet type
(LLZO), perovskite, argyrodites, LGPS, and LiPS where the
chemical substitution for those prototypes followed the
structure of the electrolyte. In total, the structure of
230,136 virtual compounds was constructed. The features
of these compounds, as generated by the Magpie platform,
were used as inputs in the XT-model built in the present
work to predict the total phonon band center of the
constructed compounds. Figure 7(b) shows the histogram
of the total phonon band center predictions of the
nonrelaxed structures obtained from the first prototype
(LiGe2(PO4)3). The histograms of other prototypes are
presented in the supplementary materials (Figure S6), and

a working sample of the most promising virtual compounds
is given in Table S5. It can be observed from Figure 7(b)
that 103,452 out of 179,395 NASICON-structured virtual
compounds exhibit a predicted total phonon band center
value less than 40meV. For other prototypes (Garnet type
(LLZO), perovskite, argyrodites, LGPS, and LiPS), 30,501
compounds were found to show low band centers
(<40meV) as well, suggesting that these virtual compounds
can be used as part of a database from which promising
solid electrolytes are screened for further investigations.

Figures 7(c)–7(h) show the predicted band centers of
nonrelaxed structures as a function of the feature “mean_
row,” which is the mean value of the individual row
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placement for each element in the composition according
to their position in the periodic table. Interestingly,
Figures 7(c)–7(h) show remarkable trends of decreasing
total phonon band centers with increasing “mean_row”
feature values, and this is in accordance with what we
have discussed before on the effect of the crystal size on
the ionic conductivity.

All in all, this work provides a new perspective on the
predictive modeling of Li-ion solid electrolyte performance
using an accessible and rapid proxy, total phonon band cen-
ter, that allows for multiple applications in the field on Li-
ion industry for reliable initial screening of promising Li-
ion candidates prior to experimental investigations that
could be laborious. Yet, the proposed framework of discov-
ery is only a stepping stone in this field, and this framework
could definitely be expanded by increasing the initial data
pool and establishing a model that is based on experimental
characterization of PhDOS rather than computational
results. Additionally, the applicability of this model can be
further expanded on the prediction of new solid-state Na-,
Mg-, and Zn-ion electrolytes that have a superior perfor-
mance in a field that is in dire need of new solid-state, cheap,
and easily synthesized materials for battery applications.
Thus, more works based on theoretical calculations and
experimental investigations will be needed for further under-
standing of the composition-structure-property relation-

ships in solid electrolytes for LIBs and the application of
statistical modeling in this field in specific.

4. Conclusion

The present work was designed to build an ML model that
can be used to discover high-performance ceramic electro-
lytes for solid-state LIBs. For this purpose, PhDOS calcula-
tions of ~1272 compounds (114 Li-containing compounds)
were involved in a learning process, where the total phonon
band center was used as a proxy to represent ionic conduc-
tivity in the learning process. The results showed that the
model built based on extra random tree (XT) algorithm per-
forms accurately with high scores as compared to other
models employing different algorithms. This was also con-
firmed through an experimental validation process using
electrochemical impedance spectroscopy (EIS) measure-
ments conducted for Li6PS5Cl (high ionic conductivity)
and Li2CO3 (low ionic conductivity). For discovering high-
performance electrolytic materials, the built XT-model was
involved in a large-scale prediction process conducted on
relaxed structures, which included 17,114 Li compounds
from the MP database, and this was conducted on 230,136
nonrelaxed structures obtained from 6 prototypes for well-
known solid electrolytes in LIBs. In total, 136,041 com-
pounds, from both relaxed and nonrelaxed, were predicted

20 30 40 50 60 70
0

5 k

10 k

15 k

Co
un

t

ML-center (meV)

NASICON

LiGe2 (PO4)3 (NASICON)
(LiC2 (C’X4)3) a

b

c

(a) (b)

Low
conductivity

X-site C-site
B-siteX/C-sites

High
conductivity

LiB2 (CX4)3
LiC2 (C’X4)3
LiBB’ (CX4)3
LiCC’ (C’’X4)3
LiBC (C’X4)3

175 K compounds

P
Li

Ge

For a general Li-ion compound: LiBCX

O

1
H

2
He

5
B

6
C

7
N

8
O

9
F

10
Ne

18
Ar

36
Kr

35
Br

34
Se

33
As

32
Ge

31
Ga

30
Zn

29
Cu

28
Ni

27
Co

26
Fe

25
Mn

24
Cr

23
V

22
Ti

21
Sc

20
Ca

17
CI

16
S

15
P

14
Si

13
AI

3
Li

11
Na

19
K

37
Rb

38
Sr

39
Y

40
Zr

41
Nb

42
Mo

43
Tc

44
Ru

45
Rh

46
Pd

47
Ag

48
Cd

49
In

50
Sn

51
Sb

52
Te

53
I

54
Xe

86
Rn

118
Og

85
At

117
Ts

84
Po

116
Lv

83
Bi

115
Mc

82
Pb

114
FI

81
TI

113
Nh

80
Hg

112
Cn

79
Au

111
Rg

78
Pt

110
Ds

77
Ir

109
Mt

76
Os

108
Hs

75
Re

107
Bh

74
W

106
Sg

73
Ta

105
Db

72
Hf

104
Rf

70
Yb

102
No

69
Tm

101
Md

68
Er

100
Fm

67
Ho

99
Es

66
Dy

98
Cf

65
Tb

97
Bk

64
Gd

96
Cm

63
Eu

95
Am

62
Sm

94
Pu

61
Pm

93
Np

60
Nd

92
U

59
Pr

91
Pa

58
Ce

90
Th

57
La

89
Ac

71
Lu

103
Lr

56
Ba

88
Ra

55
Cs

87
Fr

12
Mg

4
Be

10

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

20

30

40

50

60

70

80 NASICON

M
L-

ce
nt

er
 (m

ev
)

mean_row
2.0 2.5 3.0 3.5 4.0 4.5

10

20

30

40

50

60

70

80 Garnet

M
L-

ce
nt

er
 (m

ev
)

mean_row
2.0 2.5 3.0 3.5 4.0

20

30

40

50

60

70 Perovskite
M

L-
ce

nt
er

 (m
ev

)

mean_row
2.0 2.5 3.0 3.5 4.0 4.5

10

20

30

40

50

60

70

80 Argyrodites

M
L-

ce
nt

er
 (m

ev
)

mean_row
2.0 2.5 3.0 3.5 4.0 4.5 5.0 6.05.5

10

20

30

40

50

60

70

80

90

100 LGPS

M
L-

ce
nt

er
 (m

ev
)

mean_row
2.0 2.5 3.0 3.5 4.0 4.5 5.0

10

20

30

40

50

60

70

80 LiPS

M
L-

ce
nt

er
 (m

ev
)

mean_row

(c) (d) (e) (f) (g) (h)

Figure 7: (a) The structure of LiGe2(PO4)3 used as a prototype to generate new virtual compounds with nonrelaxed structures, for which the
total phonon band center is to be predicted using the XT-model built in this work, and the related periodic table which is highlighted to the
show the chemical substitution in this structure. The substitution procedures used for five other structures are introduced in the
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to have low values of total phonon band center (<40meV),
suggesting that these materials have the potential to show
high ionic conductivity. The migration enthalpy calculations
of LiBiO2, taken from the relaxed list with a predicted band
center of ~36meV, proved that this compound is a promis-
ing candidate as a Li-ion conductor, where it had a migra-
tion enthalpy of 0 27 ± 0 05 eV, which is comparable to
that of the liquid-state electrolytes.

5. Methods

5.1. Experimental Analysis. The electrochemical impedance
spectroscopy (EIS) experiments were conducted to deter-
mine the ionic conductivity of Li2CO3 and Li6PS5Cl at vari-
ous temperatures. Li2CO3 and Li6PS5Cl were provided by
Sigma-Aldrich. Pellets of the two materials (Li2CO3 and
Li6PS5Cl) were prepared by cold-pressing the sample under
a pressure of 60MPa. The EIS measurements were per-
formed with a Zive Lab MP2 (WonA-Tech, Korea) in the
frequency range from 0.1Hz to 100 kHz at the voltage
amplitude of 5mV.

5.2. First-Principle Calculations

5.2.1. Phonon Calculations. To calculate the PhDOS for the
compounds (Li3PO4 and LiAgF6), the Quantum ESPRESSO
(QE) [60] platform was used to calculate the SCF calcula-
tions which is then used to generate the force sets using
the Phonopy [61] extension that has been postprocessed fur-
ther for the generation of the PhDOS data. First, we have
pinpointed the space group of the compounds to be used
and have generated a consistent 2 × 2 × 2 primary supercell
for the relaxed primitive cell of the initial structures. Those
primary supercells have been involved in a PhDOS calcula-
tion procedure using Phonopy within the QE environment;
initially, a finite displacement of 0.01Å was given, according
to the so-called small displacement method [62, 63] where
the total energy and the effective potential are derived from
finite-difference approximations for the supercell according
to the Phonopy default preset and depending on the symme-
try of the supercell as well. Next, those displacements create
a list of modified supercells that are then calculated using the
conventional ab initio methodology; thus, the calculations
have been carried out using the Perdew–Burke–Ernzerhof
(PBE) exchange correlation functional and the generalized
gradient approximation (GGA) provided by the QE DFT
package. The calculations of the energy and stress have been
carried out consistently on the supercells of the specified
compounds (Li3PO4 and LiAgF6 and LiYO3, Li2CO4,
LiNiO3, LiGeO3, and LiSiO3), and the calculations were
done using a 5 × 5 × 5 dense k-point mesh for the supercells
and an optimized cutoff energy of ~50 eV for most of the
compounds. A fine self-consistent convergence threshold
of 10−6 eV for the energy calculations has also been utilized
in order to avoid any divergence that would occur at lower
thresholds. The choice of 5 × 5 × 5 here is an optimized
mesh according to the size of the specific input supercells
after displacement and the accuracy calculations done on
lower meshes; an increase in the k-point mesh above the

5 × 5 × 5 threshold will indeed increase the accuracy slightly,
yet it will lead to a significant increase in computational bur-
den overall; thus, 5 × 5 × 5 can indeed be used for the pur-
poses of this study. Phonopy was then used to calculate the
force constants to determine the local stresses in the supercell
and determine the finite force differences. This force set is
then used to generate the PhDOS using the densest
Monkhorst-Pack sampling grid for each compound accord-
ing to the available computational resources (25 × 25 × 25
grid on average), and due to the fact that the presence of
PhDOS artifacts hardly influenced the value of the total pho-
non band center generally, an increase in the Monkhorst-
Pack mesh does not vary the total phonon band center by a
significant amount (Figure S3 and Figure S4).

5.2.2. Li-Ion Migration Energy Calculations. To calculate the
migration energy of Li2CO3 and LiBiO2, the climbing image
nudged elastic band (NEB) methodology [64] as imple-
mented in the Quantum ESPRESSO (QE) environment has
been used. A 2 × 2 × 2 supercell of Li2CO3 and LiBiO2 has
been used to initiate the initial and final states using void
migration to relax the atomic positions only in both states
and obtain an equivalent energy that indicates that both
states are symmetrically equivalent. In the relaxation of both
compounds, those calculations have been carried out consis-
tently on the 2 × 2 × 2 supercell of the two compounds that
are to be used, with a 5 × 5 × 5 dense k-point mesh and a
preset default cutoff energy for both compounds as recom-
mended by the QE platform according to the used pseudo-
potentials. A fine self-consistent convergence threshold of
10−6 eV for a smooth convergence for the energy calcula-
tions has also been utilized as previous phonon calculations.
For the NEB calculations, 10 images to be calculated have
been used in both compounds, the error threshold has been
set to 0.005 eV/atom, and a climbing image scheme has been
implemented similarly to both. Additionally, identical
parameters have been used for the relaxation control of the
NEB calculations as well.
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