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Stochastic programming has become increasingly vital in energy applications, especially in the context of the growing need for
renewable energy solutions. This paper presents a significant advancement in this field by introducing an efficient and robust
algorithm for optimally sizing hybrid renewable energy systems. Utilizing a two-stage stochastic programming approach, the
proposed algorithm addresses the challenges posed by the unpredictability of renewable energy sources. The proposed solution
leverages the three-block alternating direction method of multipliers (ADMM), a cutting-edge technique that facilitates parallel
computation and enhances computational efficiency. The distinctiveness of this method lies in its ability to solve complex
stochastic optimization problems without compromising the mathematical integrity of the model. This is achieved by applying
first-order optimality conditions, ensuring both robustness and efficacy. To demonstrate the practical applicability and
superiority of the algorithm, a case study was conducted in a rural area of South Africa. The proposed algorithm was applied
to design an optimal hybrid renewable energy system, and its performance was compared against traditional methods such as
progressive hedging and Monte Carlo techniques. Results affirm the superiority of the approach, saving approximately 8.16%
capital cost when compared to progressive hedging. In addition, the proposed algorithm outperforms the Monte Carlo method
both in terms of CPU time and the number of cost function evaluations.

1. Introduction

Two types of methods are used in generating electricity: con-
ventional and renewable. The first type, particularly oil-
based generation plants, is crucial for its ability to guarantee
stable energy production and thus cannot be entirely
replaced. Conventional methods, such as oil, gas, and coal,
are popular for their deterministic nature. The second type
consists of renewable methods.

Recent literature emphasizes the potential of renewable
energy in reducing greenhouse gas emissions and offering
cost-effective solutions [1, 2]. These studies explore technical
advancements and the economic viability of renewable sys-
tems, underlining the importance of innovative designs
and optimization models [3, 4].

Adapting renewable methods, which depend on natural
resources obtained from the environment, such as the sun,
wind, hydro, hydrogen, and geothermal, is essential to

decrease dependency on nonrenewable sources. This adapta-
tion is vital due to the essential shortcomings of conven-
tional methods, like their dependence on depleting fossil
fuels that are not evenly distributed worldwide. Moreover,
reducing toxic gases like carbon dioxide and carbon monox-
ide, known as greenhouse gas emissions, is important.

From an economic perspective, the initial construction
costs for conventional generators are reasonably suitable.
However, the running costs are extremely high compared
to renewable ones. This is due to the continuous demand
for fuel to keep the generator running.

Under these circumstances, scientists and engineers have
worked hard to find alternative methods to generate electric-
ity effectively and reliably to meet the demand and keep the
environment unharmed. The innovative approaches should
minimize greenhouse gas emissions to an acceptable level
and accommodate future population growth and related
human activities. Renewable sources are considered a well-
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suited solution for power generation since they use free nat-
ural resources that are not depletable and produce clean
power. Although the installation costs of renewable systems
are high, the operating costs are much lower than those of
conventional methods in long-term projects. Weather con-
ditions and seasonal cycles are the main factors affecting
electricity production by renewable sources.

Recent studies have highlighted challenges of reliability
in renewable systems due to weather fluctuations and pro-
posed various optimization methods to address these issues,
including the use of Loss of Power Supply Probability
(LPSP) for reliability assessment [5–7]. Additionally, meta-
heuristic algorithms like Genetic Algorithm (GA) and Parti-
cle Swarm Optimization have been investigated for their
effectiveness in optimizing hybrid systems [8, 9]. In the
evolving landscape of hybrid renewable energy systems
(HRES), the last decade has seen significant advancements
in sizing methods, primarily through mathematical model-
ing and optimization techniques. Optimization methods
are crucial for determining efficient and cost-effective com-
binations of renewable energy resources, ensuring a certain
reliability level. The use of classical [10], heuristic, and meta-
heuristic optimization methods, such as Pattern Search,
PSO, and Genetic Algorithms, has become prevalent [11,
12]. Despite these advancements, these methods face chal-
lenges in constraint handling and dimensionality [13, 14],
underscoring the need for continuous research. Moreover,
while our model exhibits improvements in computational
efficiency and solution convergence over traditional methods,
including Monte Carlo and progressive hedging algorithms,
through parallel computation, it is noted that its efficiency
may decrease as the number of scenarios increases. However,
it still maintains a comparative advantage due to its parallel
computation capabilities.

Using a single source of renewable energy may affect sys-
tem reliability. Hybridizing two or more sources, possibly
with backup sources like a conventional generator and batte-
ries, will enhance system reliability.

The focus of this study is primarily on exploring the
optimal combination and sizing of solar, wind, and
hydrogen-based renewable energy systems. While other
renewable sources like bioenergy, hydro, and tidal energy
are crucial in the broader context, the focus here is on these
selected sources due to their increasing relevance and poten-
tial in the current renewable energy landscape.

In recent years, determining the optimal size of hybrid
renewable energy systems has become increasingly popular.
While notable studies have addressed this challenge, existing
methodologies have limitations. A proposed approach by
Dong et al. [15] involved using photovoltaic (PV), wind
power, battery, and hydrogen subsystems as backup sup-
pliers to design an optimal system with lower annual costs
and higher reliability. However, their use of Ant Colony
Optimization did not guarantee optimal solutions. Other
studies [16] have utilized stochastic programming and
Monte Carlo techniques, which can be time-consuming
and computationally intensive.

Mathematical optimization techniques based on decom-
position, such as Benders’ decomposition and progressive

hedging (PH), have been suggested [17] for dealing with
large problem sizes. Such techniques generally require mul-
tiple solutions of subproblems and may also depend on the
optimization problem at hand. Many heuristics and meta-
heuristics have also been suggested in the literature
[18–21]. However, solutions obtained by such heuristics
cannot be verified mathematically. Moreover, these methods
cannot be applied to problems with a large number of con-
straints. Hence, the numerical intractability of the problem
with many variables and constraints remains a drawback.

This paper proposes an efficient algorithm for the opti-
mal sizing of hybrid renewable energy systems using a
two-stage stochastic programming approach. The approach
maintains the integrity of the mathematical model for
numerical tractability and employs first-order optimality
conditions, ensuring robustness and efficacy in solving com-
plex stochastic optimization problems. Utilizing the state-of-
the-art three-block alternating direction method of multi-
pliers (ADMM), the algorithm inherently supports parallel
computation, facilitating the efficient resolution of the
model. By leveraging specific power demand data for the tar-
get region, this method provides a robust framework for
determining the optimal configuration of renewable energy
systems. Notably, the proposed mathematical procedure
and optimization technique demonstrate clear advantages
over traditional Monte Carlo and progressive hedging algo-
rithms, including enhanced computational efficiency and
guaranteed convergence. These benefits are instrumental
for the model’s wide applicability in various settings,
addressing the critical need for efficient and effective renew-
able energy system optimization.

The rest of the paper is organized as follows. Section 2
overviews the features of renewable power used in the study.
Section 3 presents the mathematical formulation of two-
stage stochastic programming (SP) using ADMM. Section
4 introduces the optimization of the renewable energy sys-
tem. Section 5 applies the optimization of two-stage SP to
build a hybrid renewable energy system in a South African
village as a case study and compares it with the results
obtained using PH. Section 6 establishes the efficiency of
the three-block ADMM with a two-stage SP based on Monte
Carlo using another case study from the literature. Section 7
concludes the paper.

2. Hybrid Power System

Renewable energy depends solely on weather conditions,
which may affect system reliability. For any energy system
that uses renewable energy sources, hybridizing two or more
power generation methods with backup sources, like a con-
ventional generator and batteries, will enhance system reli-
ability. This section provides a preview of three types of
renewable plants for generating electric power.

2.1. Solar System. Constructing a solar farm requires choos-
ing a suitable location that maintains a good potential for
solar intensity. Performing a feasibility study for the location
site requires at least one year of solar data to analyze the
solar reliability in that location.
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The power produced by each PV cell at a specified time t
is given by

ppv t =
G t
GSTC

ppv,rated · ηpv, 1

where ppv,rated is the generated power by the PV cell at the
standard temperature conditions at time t (1 kW/m2 solar
irradiance, 25°C air temperature, and 1.5 air mass [22]),
G t is the perpendicular solar insolation at the PV cell
surface at time t, GSTC is the solar insolation at the stan-
dard temperature condition, and ηpv is the efficiency factor
of the PV cell which is determined by many factors like
the aging of the panel, deviation of the temperature from
25°C, and other factors. The total power produced by the
PV system at time t is given by

Ppv t =Npv · ppv t , 2

where Npv is the number of cells.
We present the IV (current-voltage) curve of a PV panel

on Figure 1, a crucial characteristic for understanding its
performance. The curve is plotted with voltage on the x
-axis and both current and power on the y-axis. Key points
on this curve include the short-circuit current (ISC), where
the curve meets the current axis indicating the maximum
current with no voltage, and the open-circuit voltage (VOC
), where the curve intersects the voltage axis showing the
maximum voltage with no current flow. The maximum
power point (PMP) is another critical aspect, represented by
Vmp (voltage at maximum power) and IMP (current at max-
imum power), indicating where the product of voltage and
current (P = V × I) is at its peak. This point is where the
PV panel operates at its optimum efficiency. The curve visu-
ally demonstrates how the PV panel’s power output varies
with changes in voltage and current, providing essential
insights for optimizing solar energy systems.

2.2. Wind Energy. The rapid growth of technologies and
research helps the development of wind turbine design,

which is providing its worth as the percentage of power gen-
erated by the wind grows. Wind power is heavily influenced
by wind speed and hub height, where hub height is the
height of a wind turbine from the ground.

Wind turbine power is closely dependent on wind speed.
At a minimal cut-in speed, the turbine begins to generate
power. When the wind speed surpasses the maximum cut-
out speed, making the turbine potentially dangerous, a
braking mechanism, which can be either aerodynamic or
mechanical, is employed to safely halt the turbine. The max-
imum power generated by a wind turbine, known as rated
power, is attained at the rated wind speed [3].

The general shape of the power curve of a wind turbine
appears in Figure 2. The power curve depicts the connection
between wind turbine power output and wind speed. At a
time t, the amount of power produced by a wind turbine is
given by [24]

pwind t =

q v t vcutin < v t < vrated,

Prated vrated ≤ v t ≤ vcutout,

0 otherwise,

3

where Prated is the rated (maximum) power of the turbine in
kilowatt (kW), vcutin is the cut-in speed (m/s), vcutout is the
cut-out speed (m/s), and v is the wind speed (m/s) [25].

2.3. Hydrogen Energy. In recent years, there has been a surge
in interest in hydrogen and fuel cell technologies, which are
seen as clean, dependable renewable energy sources. The fuel
cells that use hydrogen as fuel produce no harmful emis-
sions. These technologies are considered an effective solu-
tion to greenhouse gas-free 21st century.

Hydrogen is not an energy source, but it is an energy car-
rier. The hydrogen H2 is the most abundant element in the
universe [26, 27] since the sun consists of 70% of hydrogen
and 28% of helium. Although hydrogen is an abundant
amount in the universe, it is less likely to be found alone in
nature. Usually, it creates a compound with other chemical
elements due to its chemical bonds. Since hydrogen can
not be alone, one way of producing hydrogen—without
chemical waste and environmental damage—is to use water
as a source of hydrogen distillation. Water splitting is the
technique of obtaining hydrogen from water. This method
employs either electricity (electrolysis) or heat (thermolysis).
In the system that we intend to develop in this research, we
plan to use the excess electricity of renewable energy to pro-
duce hydrogen by the electrolysis method.

When the generated power exceeds the load demand, the
remaining one is transferred into hydrogen. The following
equation describes the power transfer from the electrolyzer
to the hydrogen tank [5]:

Pel−tank = Pg−el × ηel, 4

where Pel−tank is the power transferred from the electrolyzer
to the hydrogen tank, Pg−el is the generator’s surplus power
provided to the electrolyzer, and ηel is the electrolyzer
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Figure 1: Current-voltage (IV) curve of a solar cell [23].
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efficiency. The energy of hydrogen contained in tanks at
time t is calculated as follows:

Etank t = Etank t − 1 + Pel−tank t − Ptank−fc t × ηtank, 5

where Etank t stands for the amount of energy stored in the
tank at time t, Ptank−fc t is the amount of power generated
by fuel cells using the hydrogen from the tank at time t,
and ηtank is the storage efficiency.

3. Two-Stage Stochastic Programming
Using ADMM

3.1. Two-Stage Stochastic Programming. Define the two-
stage stochastic programming (SP) as

min
x

cTx + EξQ x, ξ 6

subject toAx = b, x ≥ 0, x ∈ℝn1 , 7

where c ∈ℝn1 , A ∈ℝm1×n1 , and b ∈ℝm1 are constants and E
is the expected value over the the random variable ξ that fol-
lows a known distribution [28]. The term Q x, ξ outlines
the second-stage optimum value and is defined as [29]

Q x, ξ =min
y

q ξ Ty ξ

subject toT ξ x +W ξ y ξ = h ξ

y ξ ≥ 0, y ξ ∈ℝn2 ,

8

where q ξ ∈ℝn2 , T ξ ∈ℝm2×n1 , W ξ ∈ℝm2×n2 , and h ξ
∈ℝm2 encode the random variable data [30].

The value of the first-stage variable, x, needs to be deter-
mined before any future revealing of the random variable ξ;
y is known as the second-stage decision variable, which cor-
responds to the decisions after the realizations of the ran-
dom variable revealed; y ξ is also known as recourse
decision variable since it compensates any bad decisions that
may occur at the first stage.

When the random variable ξ has finitely many realiza-
tions, or scenarios S = ξ1, ξ2 ⋯, ξs , with corresponding
probabilities p1, p2,⋯, ps , problem (6) can be reformu-

lated as a large linear programming (LP) problem [31] in
the form

min
x,y

cTx + 〠
s

i=1
piq

T
i yi 9

subject toAx = b 10

Tix +Wiyi = hi, i = 1, 2,⋯, s 11

x, yi ≥ 0, i = 1, 2,⋯, s, 12

where ξ = ξi is the i-th scenario.
The proposed algorithm solves the two-stage problem

when the recourse matrix, W, is random or constant. Prob-
lem (9) can be equivalently restated as

min cTx + I x̂ + 〠
s

i=1
piq

T
i yi + I ŷi , 13

subject toAx = b, 14

x − x̂ = 0, 15

yi − ŷi = 0, i = 1, 2,⋯, s, 16

Tix +Wiyi = hi, i = 1, 2,⋯, s, 17

where

I z =
0, z ≥ 0

+∞, otherwise
18

is a convex function since it is defined on a convex set [32].
The two indicator functions in (13) for the pairs x̂, ŷi

compensate for the nonnegativity condition of the variables
x and yi in the constraints (15) and (16), respectively. The
new formulation in Equations (13)–(17) is considered as a
three-block ADMM model. The first-stage decision variable
x is presented in the first block, while the second-stage deci-
sion variable yi in the second block and the third one for the
pair x̂, ŷi , i = 1, 2,⋯, s [29].
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Figure 2: Power curve for wind turbine.
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3.2. Three-Block ADMM. The classic 2-block ADMM, its
numerical implementation, and convergence properties have
been established in the literature [33–35]. Sun et al. [36]
have applied an extension called 3-block semiproximal
ADMM to a class of convex conic programming with four
types of constraints. The 3-block ADMM has now been
implemented in stochastic programming, which addresses a
wide range of problems than the classical one. To the best of
our knowledge, this is the first application that uses 3-block
ADMM to solve energy-related two-stage stochastic pro-
gramming problems.

Define the three-block minimization problem as follows:

min
x1,x2,x3

f x1 + g x2 + h x3 19

subject toA1x1 + A2x2 + A3x3 = t, 20

where f ℝn1 ⟶ℝ, g ℝn2 ⟶ℝ are proper lower semi-
continuous functions, h ℝn3 ⟶ℝ is a linear function, b
∈ℝm, and A1, A2, and A3 are in appropriate dimensions
[37]. The augmented Lagrangian for problem (19) is defined
as

Lρ x1, x2, x3, μ ≔ f x1 + g x2 + h x3

+ μT A1x1 + A2x2 + A3x3 − t

+
ρ

2
A1x1 + A2x2 + A3x3 − t 2

21

Regularized terms are added to the solution procedure of
problem (19). These terms enhance convergence by reduc-
ing oscillation between progressive iterates [38]. The follow-
ing iterative procedure incorporates these regularized terms:

xk+11 = arg minx1 Lρ x1, xk2, x
k
3, μ

k +
λ

2
x1 − xk1

2
,

22

xk+12 = arg minx2 Lρ xk+11 , x2, xk3, μ
k +

λ

2
x2 − xk2

2
,

23

xk+13 = arg minx3 Lρ xk+11 , xk+12 , x3, μk +
λ

2
x3 − xk3

2
,

24

μk+1 = μk + ρ A1x
k+1
1 + A2x

k+1
2 + A3x

k+1
3 − t , 25

where λ is a penalty parameter linked with the regularized
terms. The augmented regularized term added to each sub-
problem in (22) eliminates the need for a convex objective
function [29, 37].

Boyd et al. [33] state the necessary and sufficient opti-
mality conditions for problem (19) as follows:

A1x
∗
1 + A2x

∗
2 + A3x

∗
3 − t = 0, 26

0 ∈ ∂f x∗1 + AT
1 μ

∗, 27

0 ∈ ∂g x∗2 + AT
2 μ

∗, 28

0 ∈ ∂h x∗3 + AT
3 μ

∗, 29

where Equation (26) is the primal feasibility and Equations
(27)–(29) are dual feasibilities. Here, ∂f denotes the subdif-
ferential set of f (see [37]).

Provided that xk+13 minimizes Lρ xk+11 , xk+12 , x3, μk , we
have

0 ∈ ∂h xk+13 + AT
3 μ

k + ρAT
3 A1x

k+1
1 + A2x

k+1
2 + A3x

k+1
3 − t

= ∂h xk+13 + AT
3 μ

k+1, by 16 ,

30

which means that xk+13 and μk+1 satisfy the duality condition
in Equation (29).

In the case of xk+12 , we have

0 ∈ ∂g xk+12 + AT
2 μ

k + ρAT
2 A1x

k+1
1 + A2x

k+1
2 + A3x

k
3 − t

= ∂g xk+12 + AT
2 μ

k+1 + sk+11 ,

31

where

sk+11 = ρAT
2A3 xk3 − xk+13 32

is the residual for the dual feasibility.
By repeating the same steps, we find the residual associ-

ated with xk+11 as

sk+12 = ρAT
1 A2 xk2 − xk+12 + A3 xk3 − xk+13 33

At iteration k + 1, using the last equation of (22), we
define

rk+1 = A1x
k+1
1 + A2x

k+1
2 + A3x

k+1
3 − t =

1
ρ

μk+1 − μk , 34

as primal residual and sk+11 ,sk+12 as dual residuals [33]. We
have proved the convergence of the three-block ADMM
and showed that all residuals converge to zero as k⟶∞
in [10].

3.3. Solving Two-Stage SP Using Three-Block ADMM. The
deterministic version of the two-stage SP (13)–(17) is con-
sidered, along with the notations used therein. The variables
x1, x2, and x3 of Equation (19) are redefined as x1 ≔
y1, y2,⋯,ys

T ,x2 ≔ ŷ1, ŷ2,⋯,ŷs, x̂
T , and x3 ≔ x to solve the
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two-stage SP as 3-block ADMM. Correspondingly, the func-
tions will be defined as follows:

f x1 ≔ 〠
s

i=1
piq

T
i yi,

g x2 ≔ 〠
s

i=1
I ŷi + I x̂ ,

h x3 ≔ cTx

35

In what follows, the detailed steps to find the solution to
problem (13)–(17) are derived, followed by a presentation of
a step-by-step algorithm for the solution. Consider the fol-
lowing augmented Lagrangian function:

Lρ x, x̂, y, ŷ = cTx + βT x − x̂ + I x̂ + 〠
s

i=1
piq

T
i yi + γTi yi − ŷi

+ I ŷi + αT Ax − b + 〠
s

i=1
δTi Tix +Wiyi − hi

+
ρ

2
Ax − b 2 + x − x̂ 2

+ 〠
s

i=1
Tix +Wiyi − hi

2 + yi − ŷi
2 ,

36

where β ∈ℝn1 , α ∈ℝm1 , γi ∈ℝ
n2 , and δi ∈ℝm2 , i = 1, 2,⋯, s.

The vector of multipliers is defined as

μ = α, β, γ1,⋯,γs, δ1,⋯,δs
T 37

Solving ∇x Lρ + λ/2 x − xk
2 = 0 for xk+1 yields

xk+1 = ATA + I 1 +
λ

ρ
+ 〠

s

i=1
TT
i Ti

−1

ATb + x̂k + 〠
s

i=1
TT
i hi −Wiy

k
i

+
−1
ρ

−λxk + c + β + ATα + 〠
s

i=1
TT
i δi

38

Similarly, ∇yi
Lρ + λ/2 yi − yki

2 = 0, for yk+1i  i = 1,
2,⋯, s, yields

yk+1i = WT
i Wi + I 1 +

λ

ρ

−1

WT
i hi − Tix

k + ŷki

+
−1
ρ

−λyki + piqi + γi +WT
i δi , i = 1, 2,⋯, s,

39

which allows parallel computing, enabling the concurrent
solution of all equations associated with the scenarios.

And by differentiating Lρ + λ/2 x̂ − x̂k
2

and Lρ +
λ/2 ŷi − ŷki

2
with respect to x̂, ŷi, respectively, yields

x̂k+1 = max β + ρxk + λx̂k

ρ + λ
, 0 , 40

ŷi
k+1 = max

γi + ρyki + λŷki
ρ + λ

, 0 , i = 1, 2,⋯, s 41

The updates for the dual variables will be expressed as

βk+1 = βk + ρ xk+1 − x̂k+1 , 42

αk+1 = αk + ρ Axk+1 − b , 43

γk+1i = γki + ρ yk+1i − ŷi
k+1 , i = 1, 2,⋯, s, 44

δk+1i = δki + ρ Tix
k+1 +Wiy

k+1
i − hi , i = 1, 2,⋯, s 45

Updating of γi, δi in (42) and ŷi in (40) together with
(33) and (34) is also performed in parallel.

Algorithm 1 presents the steps of ADMM for solving
two-stage SP in Equations (13)–(17). An important parame-
ter of Algorithm 1 is the penalization parameter ρ. The con-
vergence of the ADMM algorithm is very sensitive to ρ; poor
selection may lead to slow or nonconvergence in practical
problems [39]. A variant of ADMM, residual balancing,
where the penalty parameter ρk changes at each iteration k
is proposed in [40]. The intuition behind the method is
based on making the primal and dual residual norms have
similar magnitudes. By doing so, the primal and dual resid-
uals will have small values at the stage of convergence. This
approach makes the performance less dependent on the ini-
tial choice of ρ. The superlinear convergence with ρk ⟶∞
has been achieved in [41]. An iteration-dependent adaptive
ρk, as suggested in [40], is implemented. In Algorithm 1,
the preconditioning step initializes penalty parameter ρ,
the maximum number of iterations kmax, and the conver-
gence tolerance ε. The initialization in line 1 provides an ini-
tial first-stage solution for the primary iterations k ≥ 1. The
initial penalty parameter will be adaptively updated in [40]
to maintain the gap difference between the primal and dual
residuals (see Equation (46)). Algorithm 1 runs on deter-
ministic initializations, in which the first phase procedure
of linear programming is applied to bring the starting point
to a feasible region. Since Algorithm 1 decomposes the prob-
lem by scenarios, lines 5, 8, 12, 13, 15, and 18 are imple-
mented in parallel. Line 5 provides a scenario-wise solution
to the second-stage variable in parallel. The second-stage
solution needs to be assembled in one variable to find the
first-stage solution, which is given in line 9. Lines 10-13 give
the updates for the dual variables using (42). The primal and
dual residuals of Algorithm 1 are given in lines 14-19. Algo-
rithm 1 terminates in two ways: the convergence case, where
all the residuals are less than the threshold ε, line 20, or the
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nonconvergence case, line 21, where the algorithm hits the
maximum number of iterations without meeting the conver-
gence requirements. In the nonconvergence case, the algo-
rithm is enforced to stop by the maximum iteration [29].

In the initialization step, we have defined the penalty
parameter ρ as [40]

ρk+1 =

νρk, rk > μ max s1k , s2k ,
ρk
ν
, min s1k , s2k > μ rk ,

ρk, otherwise,

46

where ν > 1 and μ > 1. We choose ν = 2 and μ = 4. The
values ε = 10−3 and kmax = 5 × 104 were used, respectively,
in steps 20 and 21 of Algorithm 1. The primal and dual
residuals are given in line 19 of Algorithm 1, where r is the
primal residual and s1 and s2 are the dual residuals.

4. Optimization of Hybrid Renewable Energy

The optimization problem for a hybrid renewable system
will be formulated by constructing an objective function
along with the constraints throughout the remainder of this
section.

4.1. Reliability of the System. The uncertainty of weather
conditions leads to fluctuating energy production, which
has an impact on the system’s reliability. The LPSP is

employed as an index for reliability estimation. In the
constraints, a specific level of reliability is ensured to
meet the system demand by a designated probability per-
centage of LPSP. The system reliability for the time inter-
val T , as given in [42], is described in terms of LPSP and
expressed as

LPSP =
∑T

t=1LPS t

∑T
t=1Pl t

≤ α, 0 ≤ α ≤ 1, 47

where LPS t is the loss of power supply at time t and
given by

LPS t = Pl t − Pg t , 48

where Pl t and Pg t are the required load and the generated
power, respectively, at time t. The system will be more reliable
when it has a small LPSP, α⟶ 0, and less reliable when it is
large, α⟶ 1. We can write Equation (47) as

〠
T

t=1
Pg t ≥ 1 − α 〠

T

t=1
Pl t 49

4.2. The Mathematical Model. We assume that the projected
demand for electricity follows a known probability distribu-
tion. We consider m blocks of demand for various quantities
of power throughout the year. The formulation of the

Precondition: ρ > 0, λ, kmax > 0, ε > 0. All the initialization to the variables x̂1, y0i , ŷ1i , i = 1,⋯s, are obtained by first phase Linear Pro-
gramming (LP) step, while α1, β1, δ1i , γ1i , i = 1,⋯, s, are random variables following the standard normal distribution.
1: x1 = arg minxLρ x, x̂1, y0i , ŷ1i
2: k⟵ 1
3: while True do
4: for i⟵ 1 to s do

5: yki = arg miny Lρ xk, x̂k, y, ŷki + λ/2 yi − yk−1i
2

6: end for
7: x̂k+1 = max β + ρxk + λx̂k/ρ + λ , 0
8: ŷi

k+1 = max γi + ρyki + λŷki /ρ + λ , 0 , i = 1, 2,⋯, s
9: xk+1 = arg minx Lρ x, x̂k+1, yki , ŷk+1 + λ/2 x − xk

2

10: αk+1 ⟵ αk + ρ Axk+1 − b
11: βk+1 ⟵ βk + ρ xk+1 − x̂k+1

12: δk+1i ⟵ δki + ρ Tix
k+1 +Wiy

k+1
i − hi , i = 1,⋯, s

13: γk+1i ⟵ γki + ρ yk+1i − ŷk+1i , i = 1,⋯, s
14: r0 ⟵ Axk+1 − b
15: ri ⟵ Tix

k+1 +Wiy
k+1
i − hi, i = 1,⋯, s

16: s1i ⟵ ρ xk+1 − xk

17: s20 ⟵ ρ x̂k − x̂k+1

18: s2i ρ ŷki − ŷk+1i

19: r = r0, r1 rs,
T , s1 = s11, s12,⋯, s1s ,

T , s2 = s20, s21,⋯, s2s ,
T

20: If r ≤ ε, s1 ≤ ε, and s2 ≤ ε stop; otherwise k⟵ k + 1
21: If k equals kmax, stop; the algorithm does not converge.
22: end while

Algorithm 1: Solving two-stage SP using ADMM.
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objective function for n different renewable energy plants atm
demand blocks of generation in t years is given by

min 〠
n

k=1
ckxk + Eω 〠

n

k=1
〠
m

j=1
〠
t

l=1
qkωτjykjlω , 50

subject to 〠
n

k=1
ykjlω ≥ 1 − α djlω, j = 1,⋯,m, l = 1,⋯, t,∀ω,

51

ykjlω ≤ xk, k = 1,⋯, n,∀j, l, ω, 52

〠
n

k=1
ckxk ≤ b, 53

xk, ykjlω ≥ 0,∀k, j, l, ω, 54

where ck is the investment cost per kilowatt (kW) of the power
plant k, xk is the capacity in kW to build for the power plant k,
b is the total allocated budget, ykjlω is the amount of electricity
capacity used to produce electricity by power plant k for
demand block j in year l under scenario ω measured in kW,
djlω is the load demand in year l at block j under scenario ω

in kW, α is the factor of LPSP, qkω is the operating cost of unit
k under scenario ω in $/kWh, and τj is the duration of the
demand at block j in hours.

The objective function in Equation (50) determines the
cost for kW capacity to be built for each plant together with
the operating cost. The constraint in Equation (51) repre-
sents the reliability condition as the power generated by
the hybrid system should meet a minimum level of reliability
given by α. Equation (52) ensures that the electricity gener-
ated by unit k does not exceed the total capacity of that unit.
Equation (53) guarantees that the investment cost does not
surpass the available budget.

To monitor the times when the system uses the power
supplied by each plant or a combination of them, a number
of modes can be used to track the system’s behavior. An
example of this is shown in Section 5.2.

The problem, therefore, is to design an optimal sizing
system of hybrid renewable energy that ensures system reli-
ability using SP based on three-block ADMM and the con-
cept of LPSP. Such ecofriendly systems seek to minimize
the effect of greenhouse gas emissions by using entire renew-
able sources. Figure 3 represents a possible flowchart of the
optimal sizing process for the hybrid renewable energy sys-
tem (HRES) components.

Start

Provide meteorological and load demand data

Configure the hybrid renewable system

Provide capital and operating costs, budget
constraints, and reliability factor Optimal configuration?

Optimal sized system with the specified reliability factor

End

Figure 3: Flowchart of optimized process of HRES.
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5. Case Study: Ga-Nkoana

In this study, an analysis is conducted to construct a hybrid
renewable energy system in the village of Ga-Nkoana to

meet both current and future electrical power demands.
Ga-Nkoana is a suburb located in Limpopo province, South
Africa, with coordinates at a latitude of -24.416673° and a
longitude of 29.783335°. According to the 2011 SA census,
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>27.5

Figure 4: Wind rose of Ga-Nkoana.

Table 1: Monthly average load and climatic data for Ga-Nkoana.

Load (kW) Solar irradiance (W/m2) Wind speed (m/s) Temperature (C°)

January 8.60 377.36 3.79 23.03

February 6.42 376.77 3.57 22.67

March 6.55 365.21 3.18 21.55

April 6.91 343.62 3.11 19.20

May 6.45 303.55 2.95 16.51

June 6.68 282.99 3.39 13.67

July 7.01 284.19 3.60 13.61

August 6.87 300.19 3.91 16.66

September 6.80 327.52 4.39 19.99

October 6.67 351.60 4.70 21.40

November 6.15 367.99 4.34 22.67

December 6.94 380.23 3.81 23.50
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Ga-Nkoana has a population of 443 households. Assuming
an annual household growth rate of 3% and using the logis-
tic growth equation with a carrying capacity of K = 10,000
[43], the estimated number of households by the year 2023
will be approximately 623. The renewable system is intended
to be constructed once and used for the entire project dura-
tion of 20 years. For this study, four renewable resources are
considered: solar power (x1), wind power (x1), hydrogen
power (x3), and backup batteries (x4). The initial budget
allocated for this construction is set at $120,000. The pri-
mary objective is to determine the optimal combination of
these renewable plants that minimizes the sum of the capital
cost and the expected operating cost over the course of 20
years while ensuring a specified reliability percentage using
LPSP. The operating cost is assumed to be stochastic due
to the uncertainty in weather conditions and fluctuating load
demand.

The hourly load day for Ga-Nkoana is obtained from the
Domestic Electrical Load Metering Data (DELM) between
1994 and 2014 available in DataFirst’s secure center [44].
The climatic data for the village is obtained from the Predic-
tion of Worldwide Energy Resources (POWER) [45] project
from 2013 to 2020, run by NASA. The data consist of tem-
perature at 2-meter height, wind speeds at 10-meter height,
and solar irradiance.

The load data for 632 residential households in Ga-
Nkoana has been aggregated to represent the monthly load
profile for the entire village. Table 1 displays the average
monthly load profile along with data on solar irradiance,
wind speed, and temperature. The average annual load is
6.837 kW, which is relatively low compared to urban areas.
Additionally, it is observed that the average load remains
fairly consistent throughout the months, with a slight
increase in January. The yearly growth rate for the demand
load is assumed to align with the population growth rate of
3%, accounting for annual increases due to population
growth. The table also provides information on the average
temperature, a significant factor influencing power genera-
tion by PV cells. Notably, the highest temperatures and solar

irradiance occur during the summer months of December
and January, while the lowest values are recorded in June
and July, corresponding to the winter season. Consequently,
peak solar power output is expected during months with
higher temperatures and solar irradiance. In contrast, the
highest wind speed is observed in October, while the lowest
occurs in May. This indicates that wind turbines are most
productive during months with elevated wind speeds.

The wind rose in Figure 4 reveals a predominant wind
direction, marked by the longer and denser segments,
which is crucial for positioning wind turbines in renewable
energy projects. The intensity and frequency of winds from
these dominant directions, indicated by the extent and
color saturation of the segments, suggest consistent wind
patterns that are ideal for wind power generation. Lesser
segments in other directions indicate variability, but the
primary focus for turbine alignment would be towards the
most frequent wind directions. This graph is a valuable tool
in site selection for wind farms, ensuring that turbines are
optimally placed to maximize energy capture from prevail-
ing winds.

The histogram of Ga-Nkoana’s wind speeds in Figure 5
shows the prevalence and variability of wind in the village.
Peaks indicate expected wind speeds, essential for assessing
wind energy potential. A concentration at higher speeds sug-
gests favorable conditions for wind power generation. The
range of speeds informs turbine selection and expected effi-
ciency, making this data crucial for planning and optimizing
wind energy projects in Ga-Nkoana.

Table 2: Capital cost per kW capacity [48–51].

Plant Cost per kW in $ (ck)

Solar x1 3000

Wind turbine x2 1300

Fuel cell and electrolyzer x3 1700

Batteries x4 1500

70000

60000

50000

40000

30000Fr
eq

ue
nc

y
20000

10000

0
0 5 10

Wind speed
15 20 25

Figure 5: Wind speed histogram of Ga-Nkoana.
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The prices of power plants are determined according to
their electric capacity, measured in kilowatts (kW). Table 2
shows the capital cost per kW of capacity for each power
plant.

Demands for electric power are described using the load
duration curve, which illustrates the relationship between
generation capacity requirements and capacity utilization
[46]. The load duration curve is ordered in descending order
by magnitude. The electric load for Ga-Nkoana using the
continuous load duration curve is shown in Figure 6, which
displays the load duration curve for 2013 for a total of 8760
hours. For example, in Figure 6, the load was approximately
above 5 kW for 5256 h in 2013 and above 9 kW for 1752 h.
We obtained the quantized demand set in Table 3 from
the continuous curve using the midriser and midtread uni-
form quantizer [47].

Table 6: Operation cost of power generation.

Plant Cost $/kWh (qk)

Solar∗ 0.060

Wind turbine∗ 0.015

Fuel cell and electrolyzer 0.025

Backup batteries 0.150
∗Solar plant and wind turbine operating costs are expected values.

Table 7: Optimal power plant that supply the load of Ga-Nkoana
using ADMM and PH.

Plant
Optimal decision
using ADMM

Optimal decision
using PH

Solar PV 19.31 kW 21.25 kW

Wind turbine 10.83 kW 8.72 kW

Fuel cell 8.84 kW 11.53 kW

Batteries 9.30 kWh 10.22 kWh

Capital cost ($) 101020 110 000

Operating cost ($) 16679 15921

Total cost ($) 117699 125921

Table 3: Expected power demand data for Ga-Nkoana.

Demand block Demand (kW) (djl) Duration (hours) (τj)

1 23.1380 29

2 18.0440 121

3 12.9510 935

4 7.8570 3134

5 2.7640 4541

Table 4: Probability distribution of PV operating costs [48].

Scenario Cost ($/kWh) Probability

1 0.0583 10%

2 0.0592 20%

3 0.0603 40%

4 0.0614 20%

5 0.0615 10%

Table 5: Probability distribution of wind turbine operating
costs [50].

Scenario Cost ($/kWh) Probability

1 0.0141 10%

2 0.0148 20%

3 0.0149 40%

4 0.0153 20%

5 0.0154 10%
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Figure 6: Projected load duration curve of the demand.
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5.1. Problem Formulation. A hybrid renewable energy sys-
tem has been created, utilizing a two-stage SP optimization
technique to reduce total investment and operational costs
over a certain period. The first-stage variables determine
the necessary capacity in kW for each plant, defined by the
vector x ∈ R4. The sequence of energy sources is as follows:
(1) solar, (2) wind, (3) hydrogen, and (4) batteries. The sub-
script notation x1, x2, x3, x4 corresponds to each type,
respectively. Investment costs are represented by the vector
c ∈ R4, as detailed in Table 2.

The second-stage variable y corresponds to the decision
after the realization of the random event, which represents
the capacity used to produce electricity at each power plant
for each demand block in each year. The expected power
demands over scenarios with the duration of five blocks dur-
ing the first year are shown in Table 3.

The second-stage decisions depend on stochastic prob-
lem data. Each possible value of the stochastic data is
called a scenario indexed by ω. For this problem, there
are five possibilities of operating costs for PV (see
Table 4) and five possible operating costs for wind tur-
bines (see Table 5), for a total of ω = 5 × 5 = 25 scenarios.
The reason is that the probabilities of the operating costs
are independent.

The operating costs, qkω, k = 1,⋯, 4, and ω = 1,⋯, 25,
for different electricity sources are specified in $/kWh (see
Tables 4–6). A growth rate of 3% was applied to estimate
the operating costs for subsequent years. The duration in
hours of each demand block, τj, j = 1,⋯, 5, is presented in
the third column in Table 3. The randsample function in
MATLAB was utilized to generate 25 scenarios representing
the operating costs for both PV and wind turbine systems,
using the probability distribution in Tables 4 and 5. This
function facilitated the generation of random data by defin-

ing three essential parameters: values, sample size, and prob-
abilities. In this context, the values are the operating costs
qkω, ∀k. The sample size, set at ω = 25, was specified as the
second argument to produce the required number of ran-
dom data points. It should be noted that the operating cost
for fuel cell and electrolyzer and batteries will remain con-
stant across all 25 scenarios.

We can write the full optimization formulation as

min
x,y

〠
4

k=1
ckxk + 〠

25

ω=1
pω 〠

4

k=1
〠
5

j=1
〠
20

l=1
qkωτjykjlω, 55

subject to 〠
4

k=1
ckxk ≤ b, budget constraint, 56

ykjlω ≤ xk, k = 1,⋯, 4,∀j, l, ω, capacity constraint, 57

〠
4

k=1
ykjlω ≥ 1 − α djlω,∀j, l, ω, demand constraint, 58

where djlω is the demand load in block j and year l under
scenario ω. Equation (55) was transformed into a linear pro-
gramming (LP) problem, as formulated in Equation (9), by
incorporating the necessary slack and artificial variables. Fol-
lowing this conversion, the budget constraint is represented by
Ax = b. Meanwhile, the demand and capacity constraints
embody the second-stage constraint Tix +Wiyi = hi, i = 1,
2,⋯, s.

The size of these problems is enormous, and the stan-
dard linear programming (LP) solvers might face difficulties
in solving them. There are four first-stage variables and 4
× 5 × 20 × 25 second-stage variables in this problem, for a
total of 10,004 variables. There is also one budget constraint,
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Figure 7: Convergence behavior of the Hybrid Optimal Power System using ADMM.
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4 × 5 × 20 × 25 capacity constraints, and 5× 20× 25 demand
constraints, totaling 12,501 constraints. Such a problem size
presents some difficulties tomanymodern LP solvers. Increas-
ing the number of scenarios will lead to an explosion in the
problem size, making the use of the LP solver unrealistic.

5.2. Numerical Experiments and Comparison. This section
discusses the numerical experiment of Algorithm 1 imple-
mented to solve the two-stage SP of the hybrid renewable
energy system presented above. Results obtained have been
compared to progressive hedging (PH). Both algorithms
were provided with identical input data, set with a tolerance
level of 10-5, and a predefined maximum iteration limit of
5000. The computer specification that runs the experiments
has CPU Intel® Core™ i7-7700 CPU at 3 60GHz × 8 and

15.5GB of RAM using MATLAB 2020b. The CPU times
for all problems are given. The graphs of the residuals are
provided in the log/log scale.

Algorithm 1 and PH were executed using load data for
Ga-Nkoana at a Loss of Power Supply Probability (LPSP)
of 0.01. Through these computations, the optimal configura-
tion for the hybrid renewable energy system was determined
using ADMM and PH, as illustrated in Table 7.

Under optimal conditions, these configurations generate
a maximum power output of x1 + x2 + x3 = 38 98 kW using
ADMM and x1 + x2 + x3 = 41 50 kW using PH. Assuming
that the battery can be charged or discharged at a constant
rate per hour, the energy storage capacity of the system is
9.30 kWh using ADMM and 10.22 kWh using PH. The asso-
ciated capital cost for the ADMM configuration amounts to
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$101,020, while for PH, the total is $110,000. ADMM dem-
onstrates its superiority by offering a substantial cost advan-
tage, saving approximately 8.16% in capital costs compared
to PH.

From Figure 7, all the primal-dual residuals of ADMM
Algorithm 1 are converged at 76 iterations on the hybrid
renewable energy problem. Figure 8 shows the convergence
behavior of the objective function to the optimal value.
ADMM is notably faster, converging approximately 5.18
times quicker than PH.

Figure 9 shows the relationship between LPSP and the
system cost. As depicted in the figure, a system with small
LPSP values and higher system reliability is costlier because
it requires building more units of renewable sources to avoid
any power outage. Decreasing the tightness of reliability
results in a high reduction in the cost of the system, which
is good from an economic perspective, but it might have
some power outages from time to time.

Figure 10 presents a bar plot depicting the five of the
hybrid system at a Loss of Power Supply Probability (LPSP)
of 0.01. This figure illustrates changes within the system
across different modes, based on the optimal solution. It is
evident from the figure that wind power alone cannot meet
the load demand, as seen in mode 1, where it contributes
independently to 13.6% of the system. In mode 2, the
hybridization of wind and solar power enhances the system’s
robustness, meeting the demand 62.5% of the time. The

combination of batteries with wind and solar power,
accounting for 10.7% of usage, addresses potential shortages
due to peak load demands or weather uncertainties. Mode 4
shows hydrogen power supplying the system 12.9% of the
time. It is noted that the system experienced a power outage
in 0.4% of instances, as in mode 5, due to setting the LPSP at
1% to achieve 99% reliability.

Table 9: The investment costs for power plants.

Power plant type Cost per GW in billion ($)

Gas turbine 1.1

Coal 1.8

Nuclear power 4.5

Hydroelectric 9.5

Table 10: Operating cost of power generation.

Power plant type Cost ($/kWh)

Gas turbine 0.0392

Coal 0.0244

Nuclear 0.0140

Hydroelectric 0.0040

External source 0.1500

Table 8: Power demand during the year.

Demand block Expected power demand, μ j (GW)
The standard deviation of power

demands, σ j (GW)
Block duration (τj)

1 26.0 1.3 490

2 21.5 1.1 730

3 17.3 0.9 2190

4 13.9 0.7 3260

5 11.1 0.6 2090
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Figure 10: Modes of the system with LPSP = 0 01.
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The reliability of an energy system is strongly related to
the system’s energy storage capacity. In finding the optimal
sizing of an energy system, it is possible to assign a higher
weight to the reliability factor. When doing so, the optimiza-
tion algorithm prioritizes the fulfillment of having a more
reliable system. As a result, the algorithm will naturally
adjust the sizing of the energy storage and renewable energy
production components, ensuring that they are adequately
scaled to meet reliability requirements. This approach guar-
antees that the energy system can effectively handle varia-
tions in renewable energy generation and fluctuations in
energy demand, ultimately leading to increased overall reli-
ability. Therefore, in the optimization process, giving greater
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Figure 11: Convergence behavior of the objective function using ADMM.
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Table 11: Optimal power plant sizing based on the stochastic data.

Power plant
Size in GW using
Monte Carlo

Size in GW using
ADMM

Gas turbine 4.4500 4.4497

Coal 4.3600 4.3593

Nuclear 4.6000 4.6003

Hydroelectric 5.0000 4.9995

Cost (billion $) 16 508 ± 0 028 16 5037 ± 0 023
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weight to reliability automatically drives the system towards
larger storage and renewable production sizes, solidifying
the reliability of the energy system.

6. Comparing ADMM with Monte
Carlo Method

The performance of ADMM is compared against another
case study presented in [16]. In their research, Sakalauskas
and Žilinskas [16] explored power plant investment by
addressing a two-stage stochastic programming challenge
using Monte Carlo methods. Their study spanned 15 years,
with a projected cost of $10 billion for constructing four
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Figure 13: Convergence behavior using ADMM on the expected data.
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Figure 14: Convergence behavior of the objective function using ADMM on the expected data.

Table 12: Optimal power plant sizing based on the expected data.

Power plant
Size in GW using
Monte Carlo

Size in GW using
ADMM

Gas turbine 1.78 1.7791

Coal 3.23 3.2286

Nuclear 4.07 4.0669

Hydroelectric 5.00 4.9937

Cost (billion $) $17 137 ± 0 053 17 2810 ± 0 0318
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types of power plants: gas turbines, coal, nuclear power, and
hydropower. The study utilized five independent and nor-
mally distributed demand blocks to represent varying power
consumption levels throughout the year. Table 8 details the
mean and standard deviation of the forecasted power
demands in gigawatts (GWs) based on the duration of these
blocks.

The price of each power plant is determined based on its
electricity production capacity in gigawatts. [16] displayed
the investment costs for each plant (see Table 9). They stated
that the hydropower capacity does not exceed 5 0GW due to
geographical constraints in the area.

Table 10 shows the operating costs and the cost of
obtaining power from a third party for the first year of each
type of power plant in dollars per kilowatt-hour (kWh).

They proposed the two-stage SP formulation for the
problem as follows:

min  
x≥0

〠
4

k=1
ckxk + Eω 〠

4

k=1
〠
5

j=1
〠
15

l=1
qkωτjykjlω

subject to 〠
4

k=1
ckxk ≤ 10 billion

x4 ≤ 5 0

ykjlω ≤ xk, k = 1,⋯, 4,∀j, l, ω

〠
5

k=1
ykjlω ≥ djlω,∀j, k, ω

x ≥ 0, ykjlω ≥ 0

59

Sakalauskas and Žilinskas [16] applied the Monte Carlo
method to expected and stochastic data. They found that
the cost of the system based on expected data is $17 137 ±
0 053 billion and the one based on stochastic data is $
16 508 ± 0 028 billion. Through this experiment, they
argued the importance of using uncertain data in the invest-
ment planning of power systems, which costs less than the
deterministic approach.

Using the data from Sakalauskas and Žilinskas, the same
problem was addressed using both 3-block ADMM and
Monte Carlo methods. The ADMM method terminated
after 121 iterations, taking only 0.019734 seconds of CPU
time. In comparison, the Monte Carlo method needed 123
iterations to converge. While the Monte Carlo method
achieved convergence in a moderate number of iterations,

it involved a considerably large sample size in the objective
function. At each iteration, a sample size of 15,887 was nec-
essary for the sampling objective estimator. The large sample
size used in the Monte Carlo method suggests a significantly
greater CPU time compared to ADMM. Hence, the results
demonstrate the efficiency of the ADMM method over the
Monte Carlo method in terms of both computational time
and sample size requirements.

Figures 11 and 12 show the behavior of the optimal
objective function and the convergence of ADMM, respec-
tively. Table 11 compares the solutions of Monte Carlo and
ADMM using stochastic data. The cost of the system using
ADMM is $16 5037 ± 0 023 billion, which is almost identical
to their solution. Also, the decisions of the power plants were
the same.

The ADMMmethod was also applied to the expected data
presented by the authors in the second column of Table 8. It
was found that ADMM converged after 112 iterations, with
a CPU time of 0.035427 seconds. Figure 13 illustrates the con-
vergence behavior of ADMM based on the expected data. The
cost calculated using this data is $17 2810 ± 0 0318 billion.
Figure 14 displays the convergence of the optimal value using
ADMM. The results of both methods, employing the expected
data, are provided in Table 12.

Table 13 presents a comparative summary, highlighting
key differences and methodologies between the current
study and previous papers. The comparison covers three
main categories of optimization techniques: linear program-
ming (LP), nonlinear programming (NLP), and stochastic
programming (SP). The symbol✔ indicates that the method
employed the respective methodology, while ✘ signifies its
absence. This study is the first to address a sizing problem
for hybrid renewable energy using two-stage SP with four
types of renewable components, incorporating uncertainty
in weather and load demand data.

7. Conclusion

The two-stage SP with three-block ADMM developed in this
study represents a significant advancement in solving sto-
chastic linear programming problems, specifically for opti-
mally sizing hybrid renewable energy systems using
stochastic load demand. This method effectively handles
the unpredictability of weather and the dynamic load
demand that varies throughout the year. The focus on a
20-year period for the renewable system emphasizes com-
mitment to reducing environmental impact, with the entire
proposed model being renewable.

Table 13: A comparative summary of this study and previous papers.

Ref Uncertainty PV Wind Hydrogen Battery Problem type

[15] ✘ ✔ ✔ ✔ ✔ LP

[16] ✘ ✘ ✘ ✘ ✘ LP

[52] ✘ ✔ ✔ ✔ ✔ —

[24] ✘ ✔ ✔ ✘ ✘ NLP

[26] ✘ ✘ ✔ ✔ ✔ NLP

This study ✔ ✔ ✔ ✔ ✔ SP
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The algorithm consistently converges to the optimal point
efficiently, as evidenced by reasonable CPU times and the uti-
lization of parallel computing. This approach surpasses the PH
method in terms of speed, especially for large-scale problems,
and demonstrates its superiority by achieving an 8.16% saving
in capital costs compared to PH. The optimal decisions using
ADMM for the hybrid power plant in Ga-Nkoana included
19.31kW for solar PV, 10.83kW for wind turbine, 8.84kW
for fuel cell, and 9.30 kWh for batteries, with a total capital cost
of $101,020. In contrast, the pH method resulted in a slightly
different configuration with a higher total cost of $110,000.

Furthermore, addressing the reliability issues in renew-
able systems, the algorithm uses the LPSP to regulate the
reliability percentage, successfully converging to a stable
minimizer even with small LPSP values. The validation of
this approach, through comparison with Monte Carlo algo-
rithms in existing studies, confirms the correctness and
mathematical convergence of the algorithm.

This study is instrumental in implementing hybrid renew-
able energy systems in regions with load demands similar to
Ga-Nkoana, Limpopo, South Africa, leveraging the proposed
sizing algorithm’s adaptability for various locations with acces-
sible load demand and weather data. However, a notable
shortcoming is the model’s approach of determining the com-
position of renewable energy systems at the project’s onset,
rather than a phased, yearly rollout, which may limit adaptabil-
ity and elevate operational costs over the 20-year project hori-
zon. Current research is ongoing to address the above issue
which we hope to report in near future. Future research could
enhance this model by considering the integration of grid-
connected power and conventional methods alongside extend-
ing its application, offering a comprehensive solution for
sustainable energy generation. This direction not only addresses
the limitation of initial component determination but also
broadens the algorithm’s applicability to more diverse energy
systems, contributing to a more adaptable and economically
viable framework for renewable energy optimization.

Nomenclature

Abbreviations

HRES: Hybrid renewable energy systems
SP: Stochastic programming
ADMM: Alternating direction method of multipliers
LPSP: Loss of Power Supply Probability
PH: Progressive hedging
GA: Genetic Algorithms
kW: Kilowatt
PV: Photovoltaic.

Variables

ppv t : The generated power by a PV cell at a specified
time t (kW)

ppv,rated: The rated power of a PV cell under standard
temperature conditions t (kW)

Ppv t : The total generated power by the PV system at a
specified time t (kW)

G t : The perpendicular solar insolation at a PV cell
surface at time t (W/m2)

GSTC: Solar insolation at the standard temperature
condition (kW/m2)

ηpv: Efficiency factor of a PV cell
Npv: The number of PV cells
ISC: Short-circuit current—the maximum current

generated by a PV panel when there is no voltage
across it (A)

VOC: Open-circuit voltage—the maximum voltage
across a PV panel when there is no current
flowing through it (V)

PMP: Maximum power point—the point on the IV
curve where the product of voltage and current is
at its peak, indicating optimum efficiency (kW)

Vmp: Voltage at maximum power—the voltage at the
maximum power point (V)

IMP: Current at maximum power—the current at the
maximum power point (A)

pwind t : The generated power by a wind turbine at time t
(kW)

Prated: The rated power of a wind turbine (kW)
v t : Wind speed at time t (m/s)
vcut in: The cut-in speed (m/s)
vcut out: The cut-out speed (m/s)
Pel‐tank : Power transferred from the electrolyzer to the

hydrogen tank (kW)
Pg−el: Generator’s surplus power provided to the elec-

trolyzer (kW)
ηel: Electrolyzer efficiency
Etank t : Energy stored in the tank at time t (kWh)
Ptank‐fc t : Power generated by fuel cells using the hydrogen

from the tank at time t (kW)
ηtank : Storage efficiency of the tank
ck: Investment cost per kilowatt (kW) of the power

plant k ($/kW)
xk: Capacity in kW to build for the power plant k

(kW)
b: Total allocated budget ($)
ykjlω: Amount of electricity capacity used by power

plant k for demand block j in year l under sce-
nario ω (kW)

djlω: Load demand in year l at block j under scenario
ω (kW)

α: Factor of LPSP
qkω: Operating cost of unit k under scenario ω

($/kWh)
τj: Duration of the demand at block j in hours.
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