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Electrocatalytic water splitting is a cost-effective and environment-friendly technique for producing oxygen and hydrogen through
the oxygen/hydrogen evolution reaction (OER/HER). Developing the highly active and stable electrocatalyst, particularly for
bifunctional water electrolysis (i.e., both OER and HER), is still a formidable challenge. Herein, we demonstrated the enhanced
bifunctional water splitting activities by utilizing the molybdenum trioxide-anchored activated carbon (MoO3/AC)
nanocomposites. The MoO3/AC samples were fabricated by the ultrasonication method using sol-gel synthesized MoO3 and
biomass-derived AC, and they displayed a nanostreusel-like morphology with spherical MoO3 nanoparticle-decorated AC
nanosheets. For the water electrolysis test, the MoO3/AC nanocomposites exhibited the excellent bifunctional electrocatalytic
OER and HER performances with low overpotential and small Tafel slope values. Through analyzing the material
characteristics and the electrochemical properties of MoO3/AC, it was found that the superb bifunctional OER-HER activities
were attributed to the synergistic effects from the hybridization of highly conductive AC and electrochemically active α-MoO3.
The results pronounce that the MoO3/AC nanocomposites possess an aptitude as a superb bifunctional OER/HER
electrocatalyst for high-performance water electrolysis.

1. Introduction

Due to its zero-carbon emission as well as high energy density,
hydrogen has emerged as a promising green energy source that
can alternate the fossil fuels and release the environmental crisis
[1–3]. Electrocatalytic water splitting is a fascinating technique
for producing the renewable hydrogen energy source from
water because the method possesses many advantages such as
ecofriendliness, recyclability, and sustainability [4–8]. Water
electrolysis consists of two basic half-cell reactions at the anode
and the cathode; i.e., the oxygen evolution reaction (OER) takes
place at the anode, and in turn, the hydrogen evolution reaction
(HER) occurs at the cathode [9–11]. For OER and HER, Ir/Ru-
and Pt-based materials were typically used as electrode mate-
rials because of their superior electrocatalytic performances
[12–15]. However, the low natural abundance and the high cost
of both novel metal and rare earth material would somewhat

restrict their practical applications [16–19].Meanwhile, it is well
known that OER is less effective than HER because of its slug-
gish reaction kinetics and high energy consumption [20–23].
To perform the high electrocatalytic water splitting activities
of both OER and HER, therefore, developing a highly efficient
bifunctional electrocatalyst is vital. In practical application point
of view, particularly, finding a highly durable and low-cost elec-
trode material is of great essence.

Recently, transition metal oxides (TMOs) have garnered
ample attention as a proficient catalyst because of their high
electrochemical activity and cost-effectiveness [24–28].
Among various TMOs, molybdenum trioxide (MoO3) has
emerged as an efficient electrocatalyst because of its
double-layer planar structure, nontoxicity, high stability,
and intrinsic characteristics [29–33]. Crystallographically,
MoO3 possesses three different types of crystalline phases
(i.e., α, β, and h) [34–36]. Among them, orthorhombic α-
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MoO3 consists of the octahedral MoO6 double-layer structure
that performs high electrochemical reactivity and good ther-
modynamic stability [37, 38]. These play a key role for pro-
moting the oxygen-associated reaction during the
electrocatalytic water splitting process [33, 36]. Accordingly,
many research groups have attempted to fabricate high-
quality α-MoO3 by utilizing several experimental methods
(e.g., microwave-assisted chemical synthesis [39], ultrasonica-
tion [40], water-based exfoliation [41], hydrothermal growth
[38, 42], wet chemical process [43, 44], sol-gel [45–47], and
ball milling [48]). Despite such substantial efforts, the electro-
catalytic performances of α-MoO3 are still unsatisfiable
because of its small electrochemically active site, poor ionic
conductivity, poor electronic conductivity, and sluggish kinet-
ics [33, 49]. Aiming at improving the electrocatalytic activity
of α-MoO3, therefore, it was intensively tried to materialize
the α-MoO3-based nanocomposites by hybridizing with vari-
ous carbonaceous nanostructures (e.g., carbon nanotube
[50], graphene [51], graphene oxide [52], and activated carbon
(AC) [53]). Among those, AC is of good use for fabricating the
MoO3/AC nanocomposites as a high-performance OER and
HER catalyst [53]. This is because high conductivity and large
surface area of AC could help enhance the electronic charge
transfer and the ionic motion, respectively. Generally, AC
could be synthesized by two different approaches, i.e., physical
(thermal) and chemical activation processes. In physical acti-
vation, initially, the raw material was carbonized and subse-
quently gasified at higher temperatures (500–1000°C) in a
stream of oxidizing gas (e.g., air, steam, and CO2) [54, 55].
For chemical activation, the precursor material is mixed with
the chemical agents (e.g., KOH, ZnCl2, NaOH, H2SO4, LiOH,
and H3PO4) and followed by annealing at moderate tempera-
tures (400–700°C) [56–58]. In both cases, the textural charac-
teristics and the pore size distribution of AC can also be
modulated by changing the precursors, ambient gases, and
activation agents [59]. When using biomass-derived AC, fur-
thermore, there are additional advantages such as a cost-effec-
tiveness, an ecofriendliness, a massive abundance, and a fast
regeneration [60–63]. For instance, Hoang et al. [64] prepared
the hybrid Ni/NiO nanocomposite with N-doped biomass AC
and exhibited an overpotential of 346mV (for OER) and
180mV (for HER) in 0.1M KOH. Sangeetha et al. [53] pre-
pared the biomass AC-decorated h-MoO3 nanocomposite
via the hydrothermal method and showed an overpotential
of 282mV and Tafel slope of 169mV/dec for HER in 0.5 sul-
phuric acid. Kou et al. [65] synthesized the NiO-based nano-
composites decorated with nitrogen-doped biomass AC dots
and demonstrated an overpotential of 380mV at 10mA/cm2

for OER. Yaseen et al. [66] fabricated the hierarchical Co/
MoO2@N-doped biomass AC nanocomposites via the simple
annealing process and exhibited the excellent OER and HER
activity with a low overpotential of 272mV and 130mV in
1M KOH. In spite of all the above benefits from both MoO3
and biomass AC, the electrocatalytic activity of the MoO3/
AC nanocomposites has rarely been investigated [53].

All these prompt us to study on the fabrication of robust
MoO3/AC that could act as an excellent bifunctional OER/
HER electrocatalyst. In this study, we synthesized and char-
acterized the MoO3/AC nanocomposites that were devised

through facile ultrasonication by utilizing the sol-gel synthe-
sized MoO3 nanoparticles and the biomass human hair-
derived AC nanosheets. From the fabricated MoO3/AC
nanocomposites, we found that the excellent bifunctional
electrocatalytic water splitting activities could be achievable.
For example, low overpotential values (OER: 280mV at
10mA/cm2 and HER: 353mV at 10mA/cm2) were recorded
from MoO3/AC. Herein, the material characteristics and the
electrocatalytic performances are thoroughly assessed and
discussed in detail.

2. Experimental Details

2.1. Growth of MoO3 Nanoparticles. Figure 1 represents a
schematic diagram of the fabrication procedure for obtain-
ing high-quality MoO3/AC. Firstly, the α-MoO3 nanoparti-
cles were synthesized through the sol-gel process by using
ammonium heptamolybdate ((NH4)6Mo7O24) and nitric
acid (HNO3). As a primary task, (NH4)6Mo7O24 (6 g) was
added into deionized (DI) water (30mL). After continuous
stirring for 10min, HNO3 (15mL) was injected drop-by-
drop into the above aqueous ammonium heptamolybdate
solution and subsequently stirred for 4 h at 100°C in a sand
bath. After cooling down to 27°C, the mixture solution was
filtered and washed five times in DI water and ethanol.
Then, the suspension was dried for 10 h at 80°C. Finally,
the α-MoO3 nanoparticles were obtained by performing
postgrowth thermal annealing at 700°C for 3 h. Here, we
note that no additional purification was performed for all
the used materials that were purchased from Sigma-
Aldrich (St. Louis, MO, USA).

2.2. Derivation of AC Nanosheets. The AC nanosheets were
derived from the biomass resource of human hair (HH)
through thermal carbonization and KOH activation. Ini-
tially, the collected biomass HH bundles were cleaned and
rinsed with DI water (three times for each) and dried in
air for 24h. After that, the carbonization of HH was carried
out in air at 300°C for 60min. Then, the mixture of carbon-
ized HH ashes (5 g) and KOH (20 g) was prepared by utiliz-
ing a mortar. After subsequent annealing at 600°C for
120min in a muffle furnace, the KOH-activated HH ashes
were rinsed for 12h in DI water to extract potassium and
its related precipitates. Finally, the pure HH-derived AC
nanosheets were collected via filtrating, rinsing, and drying
(120°C, 12 h). The experimental procedures in more detail
for obtaining high-quality HH-derived AC were reported
elsewhere in our previous study [18].

2.3. Fabrication of MoO3/AC Nanocomposites. The nano-
composites of MoO3/AC were fabricated by the facile ultra-
sonication method. Initially, the MoO3 nanoparticles (1 g)
were blended and stirred in DI water (100mL) for 15min.
Next, the AC nanosheets (0.5 g) were added into the above
MoO3-blended aqueous solution and stirred for 30min.
Subsequently, the MoO3-AC mixture solution was sonicated
for 1 h (f ultra = 35 kHz, Pultra = 240W). During the ultrasoni-
cation step, the high-power ultrasound supplies an excessive
energy enough to cleave and break the big clusters into the
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tiny species [67–69]. Then, the dispersity of the nanoparti-
cles could be increased in the entire composite system. After
sonication, the powder-type MoO3/AC nanocomposites
were obtained via sieving, cleaning, rinsing, and drying
(120°C, 8 h) of the prepared colloidal suspension.

2.4. Material Characterization. The structural and the vibra-
tional properties of the prepared materials (i.e., MoO3, AC,
and MoO3/AC) were examined by X-ray diffractometry
(XRD) using an Ultima IV system (Rigaku, Tokyo, Japan)
and Raman scattering spectroscopy using a LabRAM HR-
800 system (Jobin Yvon, Longjumeau, France), respectively.
In addition, the morphological structure and the chemical
composition of MoO3 and MoO3/AC were monitored by
field emission scanning electron microscopy (FE-SEM) and
in situ energy-dispersive X-ray spectroscopy (EDX), respec-
tively, using an Inspect F50 system (FEI, Mahwah, NJ, USA).
Furthermore, the microstructural properties of the samples
were characterized by transmission electron microscopy
(TEM) using a JEM 2100F system (JEOL, Tokyo, Japan).

2.5. Electrocatalytic Measurements. The water electrolysis
characteristics of MoO3 and MoO3/AC were assessed by
using a VersaSTAT 3 workstation (Ametek Scientific Instru-
ments, Berwyn, PA, USA). To examine the electrocatalytic
OER and HER performances, as a primary task, the conven-
tional three-electrode system was prepared in a KOH
solution (1M). Firstly, the working electrodes were devised
by using the bare MoO3 nanoparticles and the MoO3/AC
nanocomposites. For this step, initially, each catalyst (i.e.,
either MoO3 or MoO3/AC) was blended with N-methyl-2-
pyrrolidinone and coated onto the stainless steel substrate
(1 cm × 1 cm). Thereafter, the prepared substrates were dried
for 8 h at 180°C to cure the active materials. To configure the
three-electrode system, the counter electrode of platinum
mesh (Nilaco Co., Tokyo, Japan) and the reference electrode
of saturated calomel (Sanxin, Shenyang, China) were also
prepared. Then, the cyclic voltammetry (CV) measurements
were conducted at the potential window of 0.0–0.5V under
various scan rates of 10–100mV/s. Additionally, the linear
sweep voltammetry (LSV) characteristics were measured at
potential windows of -0.1–1V (for OER) and -1.8–0V (for
HER) under the scan rate of 1.0mV/s. Furthermore, the
chronopotentiometric (CP) characteristics of the prepared
materials were investigated upon varying the applied current

density (i.e., “10 → 20 → 30 → 40 → 50 → 100mA/cm2 for
OER” and “-10 → -20 → -30 → -40 → -50 → -100mA/cm2

for HER”). Here, the working electrodes were polarized at
every current densities, and each polarization state at each
current density was maintained for 10min. To examine the
electrical properties of MoO3 and MoO3/AC, furthermore,
the electrochemical impedance spectroscopy (EIS) charac-
teristics were also evaluated at 1Hz–10 kHz.

3. Results and Discussion

Figure 2(a) shows the crystallographic properties of MoO3 and
MoO3/AC. In both samples, the polycrystalline XRD patterns
were detected at 12.78, 23.42, 25.74, 27.33, 33.71, 35.50, 39.02,
45.67, 46.34, 49.26, 58.83, 64.47, and 67.53°, which were
sprouted from the lattice planes of (020), (110), (040), (021),
(111), (041), (060), (200), (210), (002), (081), (062), and
(0100) of orthorhombic α-MoO3 (JCPDS card no.: 05-0508
[70–73]), respectively. No secondary phases in both MoO3
and MoO3/AC indicate the high crystal quality of the synthe-
sized samples. Here, we notice that the absence of carbon-
related peaks in MoO3/AC is thought as resulting from the
small volume of the AC nanosheets in the entire MoO3/AC
composites. The average crystallite distribution sizes were cal-
culated to be 45 and 32nm for MoO3 and MoO3/AC, respec-
tively, by using Scherrer’s formula, as follows [74, 75]:

D =
Kλ

β cos θ
, 1

where K, θ, λ, and β are the Scherrer constant, Bragg angle, X-
ray wavelength, and full width at half-maximum in radian,
respectively. Such a result is thought as attributing to the sono-
chemical exfoliation of the MoO3 particles (i.e., intercon-
nected nMoO3 → exfoliated MoO3(n)), as discussed later.

The vibrational properties of MoO3 and MoO3/AC were
further characterized by the Raman scattering spectroscopy.
As can be seen from Figure 2(b), both MoO3 and MoO3/AC
exhibited the Raman peaks at 122, 150, 190, 214, 239, 282,
334, 374, 466, 661, 814, and 992 cm-1, arising from the local
vibrations in orthorhombic α-MoO3 [76]. The Raman scat-
tering mode at 992 cm-1 originates from the stretching vibra-
tion of terminal oxygen (Mo6+=O), which is indicative of the
layered α-MoO3 structure [77]. The strong Raman peak at
814 cm-1 comes from the stretching vibration of

(NH4)6Mo7O24
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Figure 1: Experimental procedures for the fabrication of the MoO3 nanoparticles and the MoO3/AC nanocomposites.
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bicoordinated oxygen (Mo-O-Mo), which is corner-shared
in two MoO6 octahedra [78]. The peak at 661 cm-1 corre-
sponds to the stretching vibration mode of triply coordi-
nated oxygen (Mo3-O), where the edge-shared oxygen
atom mutually exists with three octahedra [79]. Asymmetric
O-Mo-O bending and stretching are observed at 466 cm-1.
The Raman scattering modes at 374 and 334 cm-1 are associ-
ated with the O-Mo-O scissoring and bending vibrations,
respectively [80]. The vibrational modes at 282, 239,
214,190, 150, and 122 cm-1 are credited to the wagging and
twisting modes of O=Mo=O as well as MoO4Rc rotational
rigid chains [76, 81]. In the case of MoO3/AC, one can see that
there are two additional Raman scattering features at 1339 and
1596cm-1. Through double-checking with the bare AC nano-
sheets (Figure 2(b)), the former and the latter were confirmed
to originate from the D and G bands of graphitized 2D AC,
respectively [48, 63]. The D band arises from the disordered
graphitic AC, and the G band belongs to the E2g vibrational
Raman scattering mode at sp2-hybridized carbon lattices [82,
83]. The large intensity ratio of IG/ID (≈1.02) implies that the
AC nanosheets in MoO3/AC were highly graphitized with
small numbers of stacked layers [84–92]. Thus, one can con-
jecture the present MoO3/AC nanocomposites to comprise
highly conductive AC that may improve the electrical conduc-
tivity of the entire MoO3/AC nanocomposite system.

Figure 3 displays the morphological properties of the syn-
thesized materials. In the case of MoO3, the sample exhibited
the nanoparticle-interconnected cluster-like morphology
(Figures 3(a) and 3(b)). After sonicating the MoO3 nanoparti-
cles with the biomass HH-derived AC nanosheets (see also
Figure S1 for the AC morphology), the sample exhibited the
MoO3/AC nanocomposite structure where the MoO3
nanoparticles were aggregated with the cleaved AC
nanosheets (Figures 3(c) and 3(d)). Here, it should be
noticed that the MoO3 particle size was much decreased
after ultrasonication (see also Figure 4). Namely, the average
particle size was reduced from 600nm (bare MoO3) to
200nm (MoO3/AC composite). This can be explained by the
following ultrasonication mechanism. During ultrasonication
in the aqueous solution, H2O renders the two important
radicals that can promote the sonochemical reaction; i.e., one
is hydrogen (H∗) and the other is hydroxyl (OH∗). These
two radicals play key roles as the reductants during the

sonication process [93–97]. Namely, when applying high
ultrasonic power in H2O, the bigger MoO3 particles (i.e.,
interconnected nMoO3) would be cleaved and collapsed so
that the smaller MoO3 particles (i.e., exfoliated MoO3(n))
could be formed via the following reactions:

H2O ⟶
Sonication

OH∗ +H∗ 2

nMoO3 + OH∗ + H∗ ⟶
Sonication

MoO3 n 3

nMoO3 + AC +OH∗ +H∗ ⟶
Sonication

MoO3 n −AC −MoO3 n

4

From the in situ EDX measurements (Figures 3(e) and
3(f)), it was confirmed that both MoO3 and MoO3/AC
were composed of their own elements of Mo, O, and C.
Here, it should be noted that the Pt peaks in the EDX
spectra were arisen from the ultrathin Pt layer, which was
coated onto the sample surface before the FE-SEM
measurements to minimize the electron charging effect.

To monitor the microstructural insights into both MoO3
and MoO3/AC, TEM measurements were carried out. The
MoO3 sample exhibited a typical topography of the colloidal
nanoparticles where the spherical MoO3 nanoparticles were
interconnected with each other (Figures 4(a) and 4(b)). As
depicted in Figure 4(c), one can confirm the interplanar spac-
ing of MoO3 to be 0.38nm (i.e., direction of d100), which coin-
cides with that of orthorhombic (110) α-MoO3 [98, 99].
Furthermore, the SAED pattern clearly showed the circularly
dispersed spots, presenting a polycrystalline nature of ortho-
rhombic α-MoO3 [78, 100] (Figure 4(d)). Different from bare
MoO3, the MoO3/AC nanocomposites clearly exhibited an
intertwingled texture of the AC nanosheet-encapsulated
spherical MoO3 nanoparticles (Figures 4(e) and 4(f)). More-
over, it can be seen from the high-resolution TEM image that
the crystallized spherical MoO3 nanoparticles were aggregated
with the amorphous AC nanosheets (Figure 4(g)). The coexis-
tence of both ring patterns (i.e., amorphous AC [56, 101]) and
circularly dispersed spots (i.e., polycrystallineMoO3 [78, 100])
further verifies the effective formation of the MoO3/AC com-
posites (Figure 4(h)).
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To investigate the effects of the AC incorporation on the
electrochemical characteristics of MoO3/AC, we examined
and compared the CV characteristics of MoO3 and MoO3/
AC. Figures 5(a) and 5(b) present the CV curves of MoO3
and MoO3/AC, respectively. Both samples exhibited the typ-
ical oxidation and reduction peaks, representing the inser-
tion and the desertion of electrolyte ions through the
cathodic and the anodic reactions, respectively. The feature
of the observed redox reaction belongs to the pseudocapaci-
tive behavior, which would strongly affect the OER and HER
activities. As the scan rate increased, the current density also
increased because of the low diffusion resistance of the active
catalyst material. Compared to bare MoO3, MoO3/AC dis-
played a larger CV window and a higher current density.
This depicts that MoO3/AC possesses a larger number of
active sites than that of MoO3. We believe such an improved
electrochemical activity of MoO3/AC to arise from two pos-
sible reasons. One is the increased electrical conductivity
[17, 53], and the other is the increased active surface area

[24, 102, 103]. The former will be discussed in detail later
at the EIS part, and the latter is to be verified as follows.

To clarify the improved electrocatalytic performance of
MoO3/AC, firstly, we calculated the electrochemically
active surface area (ECSA) by using the following equa-
tions [17, 24, 104, 105]:

JDL = CDL ×
ν

A
, 5

ECSA =
CDL
Ce

, 6

where JDL is the double-layer charging current, CDL is the
non-Faradic capacitance, ν is the scan rate, A is the electrode
area, and Ce is the electrolyte capacitance (0.04mF/cm2 for
KOH). From the non-Faradic CV region, the magnitudes of
ECSA were determined to be 124 and 153 cm2 for MoO3
and MoO3/AC, respectively (Figures 5(c) and 5(d)). This
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depicts that MoO3/AC has a larger number of the electro-
chemically active sites than that of MoO3. One can ascribe
such a result to the sonochemical exfoliation of the MoO3
crystallites, as confirmed from FE-SEM, XRD, and TEM. In
other words, since the smaller crystallites provide the larger

surface-to-volume ratio, it can be inferred that the electro-
chemically active surface area was increased in MoO3/AC
via the sonochemical exfoliation of the MoO3 crystallites.

Next, the electrochemical resistive behaviors were exam-
ined by the EIS measurements. As shown in the Nyquist
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plots (Figures 5(e) and 5(f)), both MoO3 and MoO3/AC
exhibited the straight lines and the parabolic curves at the
low and the high frequency regions, respectively. The former
is relevant to the series resistance (Rs) of the working elec-
trodes, relating to the charge transfer resistance of the cata-
lyst materials [18, 106]. The latter is attributed to the
dispersion of electrolytes inside the working electrodes [24,
51]. Using the equivalent circuit model (insets of
Figures 5(e) and 5(f)), the magnitudes of Rs were deter-
mined to be 4.02 and 1.06Ω for MoO3 and MoO3/AC,
respectively. Thus, one can surmise that MoO3/AC has a
smaller charge transfer resistance than that of bare MoO3.

The increases in both the electrical conductivity and the
active surface area help promote the fast electronic charge
transport and the swift ionic diffusion, and it may in turn
lead to the enhanced OER/HER activities. To assess the elec-
trocatalytic OER/HER performances, therefore, we mea-
sured and compared the LSV characteristics for MoO3 and
MoO3/AC. Figure 6(a) shows the iR-corrected LSV curves
at 1mV/s of MoO3 and MoO3/AC. From the measured
LSV data at 10mA/cm2, the overpotential (η) values of
MoO3 and MoO3/AC were determined to be 350 and
280mV, respectively, by using the following equations:

ERHE = ESCE + 0 059 pH + E0
SCE, 7

η = ERHE – 1 23V forOER , 8

η = ERHE forHER , 9

where ERHE and E
0
SCE are the standard potentials of the revers-

ible hydrogen electrode and the reference electrode, respec-
tively. The η values obtained from the present MoO3 and
MoO3/AC catalysts are comparable to and even lower than
the literature values (Table S1). Particularly, MoO3/AC
recorded the lowest η among the well-known metal oxide-
based electrocatalysts. For better understanding, we note that
the turnover frequencies of MoO3 and MoO3/AC were
estimated to be 0.019 and 0.712 s-1 at the potential of 1.51V,
respectively (Figure S4(a)). This implies the MoO3/AC
nanocomposites to hold the improved intrinsic reaction
kinetics, which could enhance the OER performance in the
alkaline electrolyte [17, 24, 38, 43]. The improved OER
reaction kinetics can be further authenticated through
evaluating the Tafel slope (ST), which can be calculated by
using the following equation:

η = ST log J + a, 10

where J and a are the current density applied to the electrodes
and the fitting parameter, respectively. From the measured
Tafel curves (Figure 6(b)), the small ST values were
determined for both MoO3 (47mV/dec) and MoO3/AC
(35mV/dec). Particularly, MoO3/AC exhibited to have a
smaller ST value, compared to other metal oxide-based
electrocatalysts (Table S1). Namely, as discussed above,
MoO3/AC showed the improved intrinsic reaction kinetics
because of its larger ECSA and smaller Rs.

The intrinsic reaction kinetics may also affect the chron-
opotentiometric responses. As shown in voltage-step profiles
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Figure 6: OER performances: (a) iR-corrected LSV curves, (b) Tafel plots, (c) voltage-step profiles at different current densities (10 to
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(Figure 6(c)), MoO3/AC showed the smaller overpotential
values at every current density step than those of bare
MoO3. This validates that sonochemical hybridization of
MoO3/AC could help enhance the ion storage performance
as well as the catalytic activity. In addition, MoO3/AC
showed the long-term stability, compared to MoO3
(Figure 6(d)). Initially, both MoO3 and MoO3/AC revealed
an enhanced potential activity because of the preliminary
activation of the catalyst. After a few hours, however, the
potential dramatically reduced and maintained constantly
because of the catalyst stabilization. Furthermore, the sample
showed the nearly identical LSV characteristics even after
10 h of the stability test (Figure S2). These suggest that
MoO3/AC could act as a superior and stable
electrocatalytic OER catalyst.

Finally, we examined the HER performances to assess the
bifunctional water electrolysis activities. Figure 7(a) displays
the iR-corrected LSV characteristic curves, which were mea-
sured in the KOH electrolyte at 1mV/s. From LSV data at
-10mA/cm2, the η values were calculated to be 387 and
353mV for MoO3 and MoO3/AC, respectively. In addition,
the low ST values of 146 and 124mV/dec were obtained from
MoO3 and MoO3/AC, respectively, as can be seen from the
Tafel curves (Figure 7(b)). Compared to bareMoO3, the values
of η and ST of MoO3/AC are comparable to and even smaller
than those of other metal oxide-based electrocatalysts
(Table S2). Furthermore, the turnover frequencies of the
prepared MoO3 and MoO3/AC catalysts were calculated to

be 0.00111 and 0.00184 s-1 at the potential of 0.35V,
respectively (Figure S4(b)). For the chronopotentiometric
HER performance test (Figure 7(c)) and the stability test
(Figure 7(d) and Figure S3), MoO3/AC showed the better
electrocatalytic activities than those of MoO3. From all the
above result, therefore, it can be concluded that
sonochemical hybridization of orthorhombic α-MoO3 and
highly graphitized AC is of good use for improving the
bifunctional OER/HER activities. For further improvements
of both bifunctionality and stability, using the highly
conductive and highly porous substrates (e.g., Ni foam, C
clothes, and C sheets) can also be the next step toward the
practical OER/HER application of the MoO3/AC catalyst.

4. Conclusions

The high-performance bifunctional OER/HER electrocatalysts
of MoO3/AC were fabricated through the facile ultrasonica-
tion by using the biomass-derived AC nanosheets and the
sol-gel grown α-MoO3 nanoparticles. MoO3/AC exhibited
the excellent electrocatalytic water splitting activities in both
OER and HER. Namely, MoO3/AC not only showed the
superb OER performances (i.e., low ɳ of 280mV and low ST
of 35mV/dec) but also displayed the remarkable HER perfor-
mances (i.e., low ɳ of 353mV and low ST of 124mV/dec).
Such excellent bifunctional OER/HER activities were con-
firmed to arise from the large ECSA (153cm2) and the Rs
(1.06Ω) of MoO3/AC, attributing to sonochemical
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hybridization of the highly conductive nanoconstituent (i.e.,
graphitized AC nanosheets) and the electrochemically active
nanoconstituent (i.e., α-MoO3 nanoparticles).
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