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Lithium-ion (Li-ion) batteries are widely used in high-performance energy storage applications because of their high energy
density. However, safety concerns related to thermal runaway remain a significant challenge for Li-ion batteries. Electrolyte
leakage and dendrite formation can trigger thermal runaway, and these factors typically damage traditional polyethylene (PE)
separators. Consequently, these separators struggle under extreme conditions and fail to control dendrite growth. In this study,
we proposed a solution by coating PE separators with graphene oxide (GO) layers. GO, as a ceramic material, provides
superior thermal and mechanical stability compared with polymers. Moreover, GO-coated PE separators (GO-S) do not
compromise the advantages of PE separators and effectively manage dendrite growth. In this study, the as-prepared GO-S
exhibits excellent electrochemical properties in terms of high ionic conductivity, suppression of Li dendrite growth during
charge/discharge process, and long-term cyclability for 7,000 h (3,500 cycles) as well as high thermal stability even after heat
treatment of 100°C. Thus, we expect that this research can highlight the potential application of functionalized GO sheets in
addressing the thermal and mechanical limitations of polymer-based separators, thereby enhancing the safety and reliability of
Li-ion batteries.

1. Introduction

Recent advancements in modern techniques have been
strongly driven by rapid progress in energy storage and gen-
eration systems [1–5]. In particular, most energy storage sys-
tems use secondary electrochemical energy storage devices
such as lithium-ion (Li-ion) batteries [6–8]. These batteries
can be used in a wide array of devices, from wearables and
smartphones to electric bikes, electric cars, and stationary
energy storage units. At present, the battery market focuses
on expanding the applicability of Li batteries by developing
varieties with high capacity, lightweight construction, and

miniaturization. However, despite these technical advance-
ments, serious thermal and fire issues arising from internal
thermal runaway continue to raise questions about the sta-
bility of Li batteries [9–12]. Several external and internal fac-
tors can contribute to the onset of this internal thermal
runaway [13–15]. For example, electrolyte leakage and
decomposition can be triggered by external factors such as
pressure and temperature fluctuations, thereby degrading
the performance and safety of the battery [16, 17]. In addi-
tion, the uneven deposition of Li during the charge–dis-
charge process can result in the formation of Li dendrites,
which pose a significant problem as they can lead to internal
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short circuits within the battery [18–20]. Therefore, the use
of mechanically and thermally stable separators can mini-
mize the external and internal factors that contribute to
thermal runaway.

Conventional polyethylene- (PE-) based separators have
many advantages, including high ionic conductivity, flexibil-
ity, and ease of fabrication [21, 22]. However, these polymer-
based separators encounter challenges under thermal runaway
conditions [23–25]. In particular, they struggle to handle
internal heat that exceeds 100°C and begin to decompose,
which further contributes to short circuits between the anode
and cathode. In addition, they are ineffective at blocking and
controlling the morphology of dendrites because of their
polymeric mechanical properties [26, 27]. In some cases, these
protruding dendrites can tear through the separator sheets,
leading to malfunctions. Therefore, developing new material
candidates and fabricating corresponding separators that
retain the advantages of polymer-based separators while
addressing their disadvantages are crucial for improving the
mechanical and thermal stability as well as ensuring the over-
all reliability of Li-ion batteries.

In this study, we reported that graphene oxide (GO)
coating layers can enhance the intrinsic mechanical and
thermal stability of PE-based separators. As ceramic-based
materials, GO coating layers provide superior thermal,
mechanical, and chemical stability compared with polymers,
thereby compensating for the weaknesses of PE-based sepa-
rators. To improve flexibility and ionic conductivity, the GO
samples were synthesized by treating raw graphite with
strong oxidizing agents, a process commonly known as
Hummers’ method. This treatment introduced numerous
hydroxyl and epoxy groups on the surface of GO, thereby
enhancing its absorptivity for lithium electrolytes while also
imparting insulating properties. Furthermore, the function-
alized groups on GO are known to improve the wettability
of the separator to the electrolyte, thus facilitating additional
pathways for lithium-ion transfer [28–44]. In addition, when
used as a coating shell on the PE-based separator, the
applied GO coating layers do not compromise the advan-
tages of PE-based polymer separators from Li dendrite
growth formed during the Li charge/discharge process. Con-
sequently, cells equipped with the GO-coated polymer sepa-
rator (GO-S) exhibit superior electrochemical performance
compared with those equipped with pure PE-based polymer
separators (PE-S). In symmetric Li/Li metal cells featuring
GO-S, a stable electrochemical plating/stripping cycling is
observed for over 7,000 h (3,500 cycles), maintaining a
constant overpotential at a capacitance of 0.1mAh cm−2

and a current density of 0.1mAcm−2. By contrast, cells with
PE-S exhibit an increased overpotential and unstable electro-
chemical plating/stripping behavior, indicating that GO-S
can effectively control the morphology of protruding den-
drites on the Li anode. Moreover, full cells featuring lithium
titanate (LTO) as the cathode and Li metal as the anode
(LTO//Li) with GO-S exhibit good rate retention and cycling
stability even after aging for 1 h at 100°C. Therefore, the use
of functionalized GO sheets as the coating layer can practi-
cally and effectively address the thermal and mechanical
limitations of polymer-based separators.

2. Materials and Methods

2.1. Preparation of GO-S. We synthesized GO using modi-
fied Hummers’method to prepare GO-S with thickness con-
trol. To prepare the GO solution, GO was added to isopropyl
alcohol (IPA), and the mixture was stirred. Before the GO
coating, sonication for more than 10min was performed
for stable dispersion. This dispersion was then vacuum fil-
tered through a PE separator to generate GO-S.

2.2. Characterization of GO-S. The sample morphology and
surface were observed using field-emission scanning electron
microscopy (FE-SEM, Hitachi S-4800, Japan). X-ray diffrac-
tion (XRD, Miniflex600 (Rigaku, Tokyo, Japan)) equipped
with Cu Kα radiation (40 kV, 15mA) was performed to ana-
lyze the crystal structure of the materials. X-ray photoelec-
tron spectroscopy (XPS, k-alpha+, Thermo Scientific) was
used to characterize the chemical state and composition of
the samples. Raman spectroscopy (LabRAM HR-800, HOR-
IBA JOBIN YVON, France) equipped with a 514nm laser
was used for the analysis. The contact angle of the electrolyte
on the separators was measured in air at room temperature
using the sessile drop method equipped with a contact angle
meter (DSA25S, KRUSS). The electrolyte uptake by the sep-
arators was calculated using the following equation [45, 46]:

Uptake = W −W0
W0

, 1

whereW0 andW are the weights of the separator before and
after soaking in the 1M LiPF6 (EC EMC = 1 1) electrolyte.

2.3. Electrochemical Measurements of the As-Prepared
Separators. The ionic conductivity of GO-S was measured
using electrochemical impedance spectra (EIS) in the fre-
quency range of 100kHz–0.1Hz by assembling the electrolyte
between two stainless steels. The temperature-dependent ionic
conductivity was tested at room temperature. The ionic
conductivity of GO-S was calculated by using the following
equation [47, 48]:

σ = L
Rb∙S

, 2

where Rb (Ω) is the resistance of the composite electrolytes, L
is the thickness (cm), and S is the active area (cm2) of the GO-
based and commercial separator. Electrochemical measure-
ments were conducted using symmetrical and asymmetrical
cell configurations involving symmetric Li//Li, asymmetric
Li//Li4Ti5O12 (LTO), and Li//LiFePO4 (LFP) cells as well as
CR2032-type coin cells. The galvanostatic charge/discharge
(GCD) of symmetric Li/Li cells was measured at current den-
sities of 1mAcm−2 and 0.01mAcm−2, respectively. For asym-
metric Li//LTO or Li//LFP cells, the LTO or LFP electrodes
were produced from mixed slurry with 80wt% LTO or LFP
as the active material, 10wt% carbon black as a conducting
material, and 10wt% polyvinylidene fluoride as a binder dis-
persed in N-methylpyrrolidone. The slurry was cast onto the
Cu or Al foil (20μm) and dried at 80°C for 12h under vacuum.

2 International Journal of Energy Research



Finally, the foil was cut intoΦ13mmdisks. The coin cells were
fabricated in an argon-filled glove box with Li anode metal,
LTO or LFP cathode, and GO-S (or PE-S). Electrochemical
tests were conducted using a WonATech battery tester
(WBCS3000Le).

3. Results and Discussion

3.1. Preparation and Characterization of GO-S. First, GO
solution was synthesized from graphite powder (Graphene
Supermarket, Ronkonkoma, NY, USA) using the modified
Hummers’ method. The GO solution dispersed in the IPA
was vacuum filtered through a PE separator (denoted as
GO-S). During filtration, the volume of GO (either 0.1mL
or 0.5mL) was controlled to regulate the thickness of the

GO layer. Following appropriate drying procedures, GO-S
was carefully punched to fit the size of a 2032 coin cell
(Figure 1(a)). The physical and chemical properties of the
PE membrane after filtration with 0.1mL (GO-S-0.1) and
0.5mL (GO-S-0.5) of GO solution were analyzed using
SEM, XRD, Raman spectroscopy, and XPS. As shown in
Figure 1(b), the surface of the commercially sourced pure
PE separator was composed of fiber-woven structures with
a number of pores. When 0.1mL of GO is filtered and sub-
sequently deposited onto the PE separator, most of the pores
are fully filled with GO because of its large lateral size, giving
the surface a nanosheet-like structure (Figure 1(c)). In addi-
tion, when 0.5mL of GO is used, bulky sheet structures can
be observed (Figure 1(d)) because of a thick layer of GO
deposited onto the PE membrane. The estimated thickness
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Figure 1: (a) Preparation of graphene oxide-based separator. SEM images of separator (b) PE, (c) GO-S-0.1, and (d) GO-S-0.5. (e) XRD
spectra of PE, GO-S-0.1, and GO-S-0.5. (f) Raman spectra of GO-S-0.1 and GO-S-0.5. (g) XPS patterns of GO-S-0.1 and GO-S-0.5.
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of PE-S, GO-S-0.1, and GO-S-0.5 is 10μm, 10.6μm, and
11.3μm, respectively (Figure S1). The thickness slightly
increased with the increased volume of GO in filtration
solution. XRD analysis of the samples reveals distinct peaks
at 2θ angles of 21° and 24°, which can be attributed to the
PE membrane [49]. Furthermore, an additional minor
XRD peak at a 2θ angle of approximately 11° corresponds
to the (001) plane of GO (Figure 1(e)), confirming the
presence of GO layers on the PE membrane [50].
Figure 1(f) presents the Raman spectra of GO-S-0.1 and
GO-S-0.5. Two representative carbon peaks are observed, a
slight broadening of the D-band and a G-peak at 1350 and
1590 cm−1, respectively, which indicate the presence of
oxidized functional groups, including epoxy, hydroxyl,
and/or carbonyl groups, on GO [51, 52]. The large number
of these functional groups indicates less sp2 bonding on
the edge and basal plane of GO, resulting in a relatively
high intensity of the D-band. Furthermore, based on the
XPS results, the XPS spectra of C 1s for GO-S can be
deconvoluted into three binding peaks: C–C bonding at
284 eV, C–O bonding at 286 eV, and C=O bonding at
288 eV (Figure 1(g)) [53, 54]. Given the high level of
functionalized groups and increased thickness, the XPS
spectra of GO-S-0.5 show high-intensity peaks originating
from the functional groups (at 284 and 286 eV) compared
with GO-S-0.1, and the ratio of functional groups for
GO-S-0.5 is 42.3%.

As shown in Figure 2(a), the surface polarity of GO-S
was evaluated through contact angle measurements using a
1.0M LiPF6 (EC:EMC) solution. The surface of GO-S-0.5
is more favorable than that of GO-S-0.1 and PE, with the
contact angle on GO-S-0.5 measuring only 7.9°. By contrast,
the contact angles for GO-S-0.1 and PE stabilize at 10.1° and
43.5°, respectively. The difference in contact angles indicates
that the GO-coated layers on the PE membrane enhance
surface wettability. Lower contact angles indicate better wet-
tability, which is crucial for electrolyte interactions in Li-ion
batteries. Figure 2(b) displays the temperature endurance
test of PE and GO-S-0.1, with heat applied ranging from
50°C to 200°C in a thermal oven. After heat treatment, the
surfaces of both samples were observed using optical micros-
copy. The PE-S began to shrink at 100°C and started to
decompose at 150°C, with 80% of its volume lost after reach-
ing 200°C. By contrast, GO-S-0.1 demonstrated high thermal
stability, as the original area and surface structure were well
maintained even at 200°C. Therefore, the GO-coated layers
enhance the thermal stability of the inner PE-S, indicating
that the GO layers can be a good candidate for the surface
protection layer on PE-S. Moreover, the electrolyte uptake of
PE-S, GO-S-0.1, and GO-S-0.5 was tested after 1h of impreg-
nation in a 1.0M LiPF6 (EC:EMC) solution (Figure 2(c)).
The electrolyte uptake for PE-S, GO-S-0.1, and GO-S-0.5 was
330%, 400%, and 450%, respectively. This finding indicates that
the large number of functionalized groups onGO-S contributes
to the high impregnation ratio. In addition, the ionic conduc-
tivities of PE-S, GO-S-0.1, and GO-S-0.5 were evaluated using
the bulk resistance values, as determined from the EIS results
(Figure 2(d)). The bulk resistances of PE-S, GO-S-0.1, and
GO-S-0.5 were calculated to be 2.18Ω, 1.83Ω, and 2.75Ω,

respectively. Based on the impregnation and EIS tests, com-
pared with the impregnation results, GO-S-0.1 showed the low-
est bulk resistance compared with GO-S-0.5, indicating faster
charge carrier and Li-ion diffusion in the GO-S-0.1 sample.
These results indicate that the excessive number of functional
groups and increased layer thickness fromGOon the PEmem-
brane can decrease the overall electrochemical ion diffusivity.
Finally, Figure 2(e) shows the calculated ionic conductivity
values for PE-S, GO-S-0.1, and GO-S-0.5. The highest ionic
conductivity of GO-S-0.1 would be electrochemically favorable
when used as a separator in Li-ion battery cells. Furthermore,
consistent with the results of the ionic conductivity results,
GO-S-0.1 (0.89) demonstrated a higher Li-ion transference
number compared to PE-S (0.84), indicating improved Li
diffusion kinetics (Figure S2).

3.2. Electrochemical Performances of GO-S. Symmetric Li/Li
cells were used to evaluate the electrochemical performance
of Li anode batteries using GO-S-0.1. These cells were used
to investigate the galvanostatic Li plating/stripping behavior,
overpotential, and corresponding electrochemical behavior
at a current density of 1mAcm−2 and capacity of 1mAh
cm−2 (Figure 3 and S3). As shown in Figures 3(a)–3(c), the
overpotential windows for all cells, including those with
PE-S, GO-S-0.1, and GO-S-0.5, exhibited similar fluctua-
tions during the initial cycles. These fluctuations are attrib-
uted to the side reactions on the Li foil, SEI formation, and
inconsistent Li plating/striping behavior during the initial
cycles. However, after reaching the stabilization point, the
Li plating/striping curves of the Li/Li cells demonstrate rela-
tively small and stable overpotential ranges compared with
those observed at the beginning of the charge/discharge
cycles. However, for cells with PE-S, the overpotential begins
to fluctuate again, ranging from −1.0V to 1.0V, after 400 h
(Figure 3(a)). By contrast, cells with GO-S-0.1 or GO-S-0.5
continued to display a relatively small overpotential window
even after cycling for 600 h (Figures 3(b) and 3(c)). This high
overpotential fluctuation in cells with PE-S indicates that the
use of PE-S is ineffective at suppressing dendrite growth,
modulating morphology, and managing dead Li during Li
plating/striping cycling compared with cells with GO-S.
Therefore, the use of GO coating layers on the PE membrane
provides great mechanical stability and ensures high ion dif-
fusivity from GO, effectively alleviating problems related to
dendrites and dead Li. Figures 3(d)–3(g) display the Li plat-
ing/striping curves of cells with PE-S, GO-S-0.1, and GO-S-
0.5 after 440 h of cycling at a current density of 1mAcm−2.
Moreover, for cells with PE-S, the overpotential of Li plat-
ing/striping behavior continuously increases after each cycle.
By contrast, cells with GO-S-0.1 or GO-S-0.5 maintained
relatively constant overpotential windows, indicating stable
Li plating/striping behavior. Figure 3(g) demonstrates that
cells with GO-S-0.1 exhibit the smallest overpotential win-
dow compared with those with PE-S and GO-S-0.5. The esti-
mated overall overpotential for cells with GO-S-0.1 is 0.34V,
which is smaller than that of cells with PE-S or GO-S-0.5,
accounting for 0.5 and 0.43V, respectively (Figure 3(h)).
The stable overpotential operation and values exhibited by
cells with GO-S-0.1 are consistent with the physical and
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Figure 2: (a) Contact angles of liquid electrolyte on the surface of PE, GO-S-0.1, and GO-S-0.5. (b) Thermal stability tests of PE and GO-S.
(c) Electrolyte uptake tests of PE, GO-S-0.1, and GO-S-0.5. (d) Electrochemical impedance spectra of PE, GO-S-0.1, and GO-S-0.5. (e) The
ionic conductivity of PE, GO-S-0.1, and GO-S-0.5.
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electrochemical features indicated in Figure 2, indicating supe-
rior electrochemical and mechanical stability for GO-S-0.1.

In addition, to demonstrate the ultralong cyclability and
stability of Li anode batteries based on GO-S, we evaluated
the Li plating/striping behavior of cells with PE-S and GO-
S-0.1 during 7,000 h of cycling, which is equivalent to
3,500 cycles, 300 days, and 10 months, at a current density
of 0.1mAcm−2 and a capacity of 1mAh cm−2. Similar to
the electrochemical results measured at a current density of
0.1mAcm−2, the excellent cycling stability of cells with
GO-S-0.1 is evidenced by the small and stable overpotential
windows observed after 7,000 h of cycling. After cycling, the
surface of the Li anode was examined to assess the morphol-
ogy of the Li dendrites. On the Li anode treated with PE-S,
protruding and mossy Li dendrites were observed
(Figure 4(b)). By contrast, when using GO-S-0.1, relatively
uniform and flat Li dendrites were found to have grown on
the Li anode (Figure 4). Furthermore, after the GO-S-0.1
separator encountered the Li metal and Li salt electrolyte
in the coin cell configuration, the cell was disassembled,
and the GO-S-0.1 after the contact was analyzed using XPS
as shown in Figure S4. After contact, the surface of the
GO-S-0.1 was partially reduced, and the majority of C-O
and C=O functional groups were identified, confirming the
preservation of GO surface properties. Additionally, the
increased area of O-C=O is attributed to the solid electrolyte
interface (SEI) layer formed with the electrolyte ions
(Figure S4). The overall electrochemical behavior observed
when applying GO-S-0.1 is schematically presented in
Figure 4(d). The application of GO layers on PE-S can
improve the ionic conductivity and provide high mechanical
stability, ensuring that smooth and uniform Li dendrites are
deposited onto the surface of the electrodes. However, when
only PE-S is used, protruding and randomly distributed Li
dendrites exist in the electrodes.

For practical application in Li-ion batteries, we further
carried out an electrochemical test of GO-S-0.1 using asym-
metric cells with lithium titanate (LTO) as the cathode and
Li metal as the anode. Figure 5(a) displays the GCD curves
of GO-S-0.1 at a current density of 100mAg−1. Based on
the GCD results, cells with GO-S-0.1 exhibit relatively
higher charge- and discharge-specific capacities than cells
with PE-S. Figures 5(b) and 5(c) illustrate the rate capability
test of GO-S-0.1 and PE at current densities ranging from
100 to 1000mAg−1. At a current density of 1000mAg−1,
the retention of the charge storage capacities of GO-S-1
(69.7%) can reach a higher value than that of PE (66.4%).
Moreover, we observed capacity degradation before and
after thermal aging treatment in a conventional oven at
100°C for 1 h to confirm the thermal properties of GO-S-
0.1. As shown in Figure 5(d), before undergoing thermal
aging treatment, cells with GO-S-0.1 or PE-S exhibit a stable
capacity retention rate at a current density of 100mAg−1.
However, after aging treatment at 100°C for 1 h, a significant
difference in cell performance was observed between GO-S-
0.1 and PE-S. During the harsh thermal treatment process,
cells with GO-S-0.1 can maintain their capacity up to 87%,
whereas cells with PE-S retain only 13% of their initial
capacity. These results can be attributed to the physical

damage and shrinkage of PE-S compared with GO-S-0.1,
thereby demonstrating the unique stability performance of the
GO coating layer on the PE membrane. Figures 5(e) and 5(f)
also present the stability results from cells treated with GO-S-
0.1 and PE-S. At a current density of 100mAg−1, cells with
GO-S-0.1 exhibit a specific capacity value of 170mAh g−1, sur-
passing that of cells with PE-S. Furthermore, based on the
GCD performance of GO-S-0.1, from the 1st to the 50th cycle,
GO-S-0.1 maintains a stable voltage plateau region, which is
consistent with the electrochemical stability results. Addition-
ally, the cell configured as Li//LiFePO4 (LFP) with the GO-S-
0.1 separator was tested to demonstrate the applicability of
GO-S-0.1. Figure S5a presents the galvanostatic charge-
discharge (GCD) curve of Li//LFP at a current density of
100mAg-1. The cells incorporating the GO-S-0.1 and PE
separators achieved initial capacitances of 140mAh g-1 and
131mAh g-1, respectively. Moreover, regarding cycling
stability, the cells containing GO-S-0.1 and PE demonstrate
similar capacity retention for the first 50 cycles (Figure S5b).
Additionally, the results of the thermal stability tests after 10
cycles are presented in Figure S5c. After undergoing thermal
aging treatment at 100°C for 1 hour, the cell equipped with
GO-S-0.1 retains 80% of its initial capacitance, whereas the
cell with PE loses 80% of its initial capacitance. These test
results, employing the LFP cathode, represent the superior
separator properties of GO-S-0.1 in LIBs. The application of
GO layers on the PE membrane enhances the overall
mechanical and thermal stability, thereby ensuring high
ionic conductivity and diffusion. These improvements
contribute to the enhanced overall performance of the
electrochemical cells.

4. Conclusions

The application of GO coating layers on a PE membrane in
Li anode batteries provides numerous benefits. Fabrication
allows for precise control over the thickness of the GO
layers, leading to enhanced electrochemical and mechanical
properties. The characterization results indicate that GO-S
significantly improves the surface properties, thermal stabil-
ity, wettability, and ionic conductivity of the separator mate-
rial. The electrochemical performance of Li anode batteries
using GO-S demonstrates exceptional stability and effi-
ciency. In particular, GO-S-0.1 has superior cycling stability
and the ability to maintain high charge- and discharge-
specific capacities, even after extended cycling and harsh
thermal aging. This remarkable performance is attributed
to the reduction in dendrite growth and enhanced Li-ion dif-
fusion facilitated by the GO layers. This study highlights the
potential application of GO-coated PE separators in Li
anode battery technology, providing improved safety, stabil-
ity, and performance, which are crucial for the development
of next-generation energy storage systems.
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