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Studies from around the world show that engines using biofuel, LPG, and CNG emit fewer pollutants than those using
conventional fuels. Experimental research has focused on a rapid compression and expansion machine (RCEM) that resembles
a compression ignition (CI) engine. It uses dual direct injection fuel, diesel and propane (DP), with propane injection timing
varying from 0 to 40 before top dead center (BTDC) and diesel injection timing remaining at 10 BTDC. The compression ratio
was changed at points 17 and 19 by adjusting the RCEM connecting rod. A converge simulation program was used to run the
simulation model, which was used to examine how the fire and inflow inside the chamber developed. The ANN method was
used to predict pressure, temperature, power, TKE, and ITE data output based on propane energy fraction, compression ratio,
and SOI of propane as input data parameters. It was noticed that the ANN prediction on experimental data has a higher
accuracy compared to the simulation prediction. The R and MSE values were used to identify the accuracy of the prediction on
output parameter data. ANN generalization capability is comparatively high when trained with large enough databases. The
highest accuracy of prediction was produced on TKE, which had an MSE of 0.003715 and R value of 0.99981 from 287900
sample data. This shows that the ANN model is quite accurate in forecasting output experimental data.

1. Introduction

Researchers are focusing on finding substitutes for tradi-
tional petroleum fuels due to environmental concerns and
the depletion of petroleum resources. Reserves are depleted,
and air pollution rises as a result of excessive use of fossil
fuels. These problems prompt the need for efficient use of
current resources and gradual transition to environmentally
friendly alternative fuels [1, 2]. Utilizing gaseous fuels in a
compression ignition (CI) engine in addition to liquid diesel
is one way to achieve this. CI engines heat the air in the
engine cylinder more efficiently than a dual spark injection
(SI) engine because of its higher compression ratio. The fuel
is then introduced and spontaneously ignites. The fuel is
typically diesel, which is denser than propane. Diesel engines
outperform propane engines for two reasons: (i) higher cyl-

inder pressures and correspondingly higher temperatures
improve the thermal efficiency of the diesel engine and (ii)
diesel engines do not use the air throttling required to regu-
late the propane engine’s power output because it lowers
engine efficiency [3]. This makes the CI engine more popu-
lar in industry and as a study topic for the researchers.

LPG is a readily available, portable, clean, and efficient
energy source for consumers all over the world. Although
it is increasingly produced from renewable sources, LPG is
primarily obtained from natural gas and oil production.
Studies from around the world show that engines using bio-
fuel, LPG, and CNG emit fewer pollutants than those using
conventional fuels [4, 5]. When the ambient temperature is
normal, LPG is liquid at about 8 bar. Propane vapor pressure
is about 20 bar at 55°C, which is still a moderate pressure at
the higher end of typical ambient temperatures, making
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storage feasible [6, 7]. Moreover, LPG contains higher calo-
rific value compared to diesel fuel, which makes it have a
higher volumetric efficiency when stored into the storage
tank. LPG is made of a variable mixture of propane
(C3H8), propylene, and butane (C4H10), whose ratios are
changed throughout the year to produce the best combus-
tion properties at various ambient temperatures [8]. Propane
is unaffected by cold winter temperatures because it has a
higher calorific value than butane and a much lower boiling
point. For that reason, the usage of 100% propane is prefer-
able in vehicles to maintain the stability of the phase of the
fuel and better energy conversion.

The dual-fuel combustion strategy, as its name implies,
uses two different fuels, typically diesel and natural gas,
and is one of the most recent technologies to be developed.
Compared to conventional diesel engines or dual direct
injection-ignited engines, dual-fuel engines offer a variety
of benefits [9, 10]. Diesel fuel’s ability to self-ignite and nat-
ural gas’ low rate of pollution are combined to create an
intriguing power to pollution ratio. Numerous studies on
the creation, fabrication, and modelling of dual-fuel engines
have been published [10–12]. Different engine manufactur-
ers have incorporated dual-fuel technology into a variety of
products (cars, power plants) as a whole or as an added
feature.

Due to a driving system that was electrically controlled
and hydraulically actuated, the rapid compression-
expansion machine (RCEM) was able to mimic a compara-
ble combustion process in a single diesel cycle [13]. The abil-
ity to compress and expand in RCEMs results in closer in-
cylinder pressure characteristics with the real engine com-
pared to a rapid compression machine (RCM) and shock
tube. RCEM has the stability to be modified to fit the condi-
tion of an experiment, such as compression ratio, combus-
tion strategy (CI, SI, SPCCI, and dual injection),
temperature control, and ambient gas condition setting,
making it a preferable experimental engine for researchers
to explore wide range of topics.

LPG has been suggested as a potentially effective substi-
tute for diesel engines in reducing particle emissions and
eventually NOX emissions [14]. However, its low cetane
number causes problems [15]. The possibility of increasing
the LPG cetane number (CN) through the addition of cetane
number improvers was investigated by researchers [16].
According to Hashimoto et al., there are two ways to
increase the CN of LPG: either by adding 1% m/m cetane
number improvers or by combining LPG with 30% m/m
n-paraffins and 15% m/m cetane improvers [17]. On the
other hand, some writers recommended converting from
diesel to LPG fuel by using diesel dual-fuel (DDF) systems
[18, 19]. Because LPG has a very low cetane number, it
requires a pilot diesel injection to make sure the blend
ignites and the LPG burns afterwards.

LPG has a very low temperature when stored into an
LPG tank. Thus, it should be maintained in a liquid phase
to maximize the quantity of the fuel in storage. The intake
manifold injection strategy of LPG will reduce the intake
temperature significantly. This minimizes the volumetric
efficiency and degrades the autoignition characteristics of

the diesel. The intake manifold system is unable to achieve
high LPG substitution ratios due to the knock ability of mix-
tures with high percentages of LPG [20]. It is important to
find an efficient position of injection timing based on the
characteristics of the fuel. Early direct injection produces
an extended ignition delay that provides a better air-fuel
mixture before autoignition occurs. However, in the case of
liquid phase of LPG, early injection will reduce the temper-
ature significantly and disturb the ignition of the diesel.
For that reason, it is important to investigate suitable injec-
tion timings for direct injection of LPG.

Researchers have turned to techniques that can achieve
the same performance more quickly and inexpensively
because traditional methods are time-consuming and costly
[21]. ANN has been applied for a variety of automotive engi-
neering issues in the modern era as a result of advancements
in computer technology. Numerous studies utilizing only
ANN in diesel engines can be found in the literature. A sys-
tem that mimics how nerve conduction works in the human
brain is known as an ANN [22, 23]. Information flow in the
context of ANN is provided by three layers. Grosan et al. and
Srinidhi et al. [22, 24] used dual fuel to compare the perfor-
mance parameter results of the internal combustion engine
with ANN data. They developed an ANN model with high
accuracy values, demonstrating its applicability for the pre-
diction of experimental data. Srinidhi et al. [23] created an
ANN model for the spark timing of an internal combustion
engine. They discovered that the ANN model performed
well in controlling spark timing. Additionally, an increase
in the engine’s thermal and combustion efficiencies was
noted. Srinidhi et al. [24] compared experimental emission
and performance findings with findings from ANN model
predictions. High accuracy values in this study were
obtained as a result of the comparison.

Some researchers have studied LPG-diesel used in dual-
fuel engines with CI engines [20, 25, 26]. The majority of the
studies were restricted to LPG intake manifold injection
strategy, with a small range of energy fraction variation
and timing of LPG injection. There is thus an opportunity
to identify a more effective plan of action to raise the stan-
dard of diesel-LPG fuel combustion. This experimental
investigation was conducted in a single-cylinder RCEM
fueled with dual direct injection fuel (propane and diesel).
The focus of this work was on determining the operating
range for the energy substitution ratio and compression
ratio. Variations in the timing of propane injection and the
combustion properties of each range bound were also exam-
ined. Furthermore, the effect of propane direct injection
strategy on the in-flow phenomenon was analyzed using
CFD simulation.

2. Methodology

2.1. Engine Setup. The rapid compression-expansion
machine (RCEM) is a highly developed device that repli-
cated a similar combustion mechanism in a diesel cycle
using a hydraulically and electrically controlled driving sys-
tem [13]. A single cycle, rapid compression stage of a test
fuel can be analyzed in an RCM/RCEM under precisely
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defined and controlled conditions without complicated fluid
dynamics characteristics of an internal combustion engine
[27]. The ignition strategy can be modified by changing
the cylinder head to satisfy the requirement of compres-
sion ignition or dual direct injection ignition engine. In
the current study, the cylinder head was modified to fit
two direct injection strategies using diesel and LPG as
the fuel. The RCEM schematic is shown in Figure 1. With

a 100mm bore and 450mm stroke, it has a single-cylinder
engine coupled to a 22 kW electric motor. The electric
motor is able to run 1200 rpm at full power. The motor
is coupled to the gearbox to reduce the rotation of RCEM
to 240 rpm coupled with a magnetic clutch to transfer sud-
den energy to the crankshaft. The crankshaft base contains
a screw that can be turned to alter the compression ratio,
which is adjustable from 10 to 27.
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Figure 1: Schematic diagram of RCEM.
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Temperature sensors and controls were attached in the
body, TDC, and BDC to maintain the temperature’s consis-
tency, which could reach a maximum of 393K. A Kistler
5018 amplifier and a Kistler 6052CU20 pressure transducer
were used to monitor the engine’s pressure. Table 1 displays
engine specifications. The in-cylinder pressure was mea-
sured using an amplifier of Kistler type 5018 and a piezoelec-
tric pressure transducer of Kistler type 6052CU20 with a
reading accuracy of 0.005. To measure the crank angle posi-
tion, an Autonics rotary encoder with a 0.1 degree resolution
of crank angle was installed. The sensors were attached to a
Dewetron type DEWE800-CA acquisition device in order to
obtain the data.

2.2. Test Procedure. The RCEM was used for the experi-
ments, and the cylinder head was modified to allow for the
installation of dual injectors. Three heater bands were
installed in the cylinder body, and one heater band was
attached to the cylinder head. The in-cylinder temperature
was maintained at 353.15K, which implies that this is the
warm-up end point from the aspect of engine stabilization
[28]. This temperature was maintained for at least 30
minutes to ensure the homogeneity distribution of heat in
the cylinder. The compression ratio can be controlled by
adjusting the screw of the connecting road to compare the
moving stroke and in-cylinder volume. The compression
ratios used in this study were 17 and 19. To maximize the
sudden force of the RCEM mechanism, the rod shaft was
connected to the 22 kW electric motor at a maximum speed
of 1200 rpm. This speed was then reduced by the gearbox to
240 rpm. The piston was set to bottom dead center (BTDC)
at the beginning of the experiment. A magnetic clutch deliv-
ered the force from the electric motor to the connecting road
for 360° of rotation, and the in-cylinder pressure was
recorded.

The main fuel used in this investigation was an LPG con-
sisting of 99.99% propane and conventional diesel that were
obtained from a local fuel station in Korea. Information
related to fuel physical properties is provided in Table 2
[29]. The fuels are identified as “DP10 to P100” representing
propane and diesel energy composition. Here, “P” represents
propane, “D” represents diesel, and the number in the last
digit represents the percentage of propane energy. The injec-
tion rate test was performed on the fuel injection rate device
depicted in Figure 2 to verify the volume of fuel injected into
the chamber. A Bosch 7-hole injector 0445110 327 and a
Denso 0221 were connected to the fuel injection rate device,
and the rate of injection flow was calculated. A Zenobalti
multistage injection controller ZB-8035 in conjunction with
a common rail solenoid injector peak and hold driver of type
ZB-5100 were used to internally activate the injector sole-
noid to control the SOI timing. A PCV driver ZB-1100 for
a common rail and an electric motor controller both kept
the injection pressures at 30 bar by controlling them with
common rail controllers and high-pressure injection pumps,
respectively. 500 cycles of injection rate test were performed
beforehand to obtain the same amount of energy from fuel
with 0.5 of an equivalence ratio. Table 2 shows the physical
properties of the fuel.

There are two stages of pressurization required before
direct injection of LPG fuel can begin: the first is carried
out using a fuel tank-mounted electric low-pressure pump
and the second is carried out using a high-pressure plunger
pump. The fuel pressure is raised to 8 bar in the first stage
and 200 bar in the second stage. It is necessary to maintain
the LPG in its liquid phase in order for the fuel pump to
work properly. In this regard, the current study determined
that the fuel injection pressure should be 200 bar, taking
the durability and performance of the pump into consider-
ation. Meanwhile, the injection pressure for the diesel was
maintained at 500 bar. The diesel fuel is considered as the
ignitor of the combustion and maintained the injection tim-
ing at 10° BTDC. To find the best combustion characteristics
produced by the LPG, the injection timing varied from early
injection (40° BTDC) to late injection (0° BTDC). To deter-
mine the most efficient fuel composition, a wide range pro-
pane percentage from 10% up to 100% was applied based
on the low heating value comparison with the diesel. The
details of the current study can be seen in Table 3.

2.3. CFD Modelling and Simulation. CONVERGE CFD soft-
ware was used in this study to simulate internal combustion
engine processes. Advanced numerical methods and physi-
cal models of the spray, turbulence, and combustion pro-
cesses, as well as their nonlinear interactions, are included
in CONVERGE. To better understand the behavior of com-
bustion in dual-fuel engines, dual-fuel combustion was mod-
elled. Surfaces for the geometry were produced both before
and after simulation using a full mesh construction method.
Using the methods of fixed embedding, adaptive mesh

Table 1: Engine specifications.

Bore × stroke 100 × 450mm

Connecting road 900mm

Compression ratio 10 : 1–27 : 1

Number of nozzle holes 7

Injector diesel A Bosch 0445110327

Injector propane Denso 0221

Motor speed 1200 rpm

Crank shaft speed 240 rpm

Temperature control 323.15–413.15K

Fuel injection system Common rail direct injection (CRDI)

Table 2: Fuel physical properties.

Properties Propane Diesel

Molecule formula C3H8 CnH1.8n

Boiling point (°C) -42.1 180-370

Stoichiometric A/F 15.71 14.6

Autoignition temperature (°C) 481 250

Lower heating value (MJ/kg) 46.34 42.5

Research octane number 111 —

Cetane number — 40-55
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refinement subdivision (AMR), and basic grid size, we mod-
ified the grid size and the total number of grid cells.

CONVERGE CFD 3.0 was used for the computational
analyses. Closed cycle simulations were carried out using
the combustion chamber’s full sector geometry. A turbu-
lence model must be used to obtain accurate CFD simulation
results because turbulence has a significant impact on the
rate at which momentum, energy, and species mix. The
renormalization group (RNG) k-ε turbulence model [30]
performs better than the standard k-turbulence model for
describing anisotropic and nonequilibrium effects. To use
the discretized Navier-Stokes equation on the Cartesian grid,
a finite volume indirect discretization method was selected.
Table 4 shows the detail parameters input for the current
CFD modelling. To save time, the computer simulates all
three processes: combustion, compression, and expansion.
Utilizing information gleaned from experimental observa-

tions, the initial fuel, ambient temperature, and air condi-
tions were specified. The initial fields of temperature, flow
velocity, and pressure were generated until the motoring
pressure from the experiments was met. Figure 3 shows the
schematic diagram of RCEM in-cylinder chamber on CFD
modelling.

2.4. ANN Construction. An ANN-based model for the fac-
tors affecting combustion has been developed. The experi-
mental study’s degree of error was determined using the
ANN model. For the combustion parameters, the findings
of an ANN were compared with those of an experimental
investigation that used FEBRIS analysis.

A computing system called an artificial neural network
(ANN) was constructed to stimulate and process data in a
manner similar to how the human brain does it. It employs
artificial intelligence (AI) to find solutions to issues that are
intractable or challenging for people [36]. Neurons are
closely interconnected in a number of layers in an ANN sys-
tem with the number of layers depending on the difficulty of
the problems. Each neuron has a weight and bias that are
assigned to it. Multilayer perceptron (MLP), also known as
multilayer neural networks, is the most well-known example
of this type of neural network. The layers between the input
and output layers are referred to as hidden layers, and they
have a significant impact on how well the developed ANN
predicts outcomes. An artificial neural network (ANN) sys-
tem is a device that receives input, processes the data, and
outputs the results. The input is comprised of an array of
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Figure 2: Flow chart of the study.

Table 3: Experimental conditions.

Properties Diesel Propane

Injection pressure (bar) 500 200

Fuel injection timing (BTDC) 10° 0°–40°

Fuel percentage 0-90% 10-100%

Initial pressure 1 atm

Compression ratio 17 and 19

Initial temperature (K) 353.15

Engine speed (rpm) 240
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data. When an input is sent to a neural network and a
matching desired or target response is set to the output, an
error occurs when there is a discrepancy between the desired
response and the actual system output. The system uses the
error as input and modifies all of its parameters in accor-
dance with a learning rule (backpropagation). Until the
intended outcome is achieved satisfactorily, this process is
repeated (in iterations or epochs). By utilizing the gradient
descent method, the backpropagation algorithm refines the
model and increases the degree of agreement between the
predicted and actual values. A straightforward model of the
process element that was inspired by biological neurons is
shown in Figure 4. In this model, i, the output of the process
element is given in

y t + 1 = a 〠
m

j=1
wijxj t − ɵi , 1

where i is the processing element’s threshold value and is
the activation function. Input and output make up the two
components of the processing element information process-
ing. By combining the input data xj received from the out-

side over the wij weights to which they are connected, a
processing element produces a net value. The net value of
the processing element is calculated using

met = 〠
m

j=1
wijxj − ɵiɵ 2

In the current study, MATLAB/artificial neural network
module was used to train the feed-forward multilayer ANN
model. The input layer, output layer, and hidden layer are
the three layers that make up an ANN, which can have
any number of layers [24], as shown in Figure 5. All the
input parameters are contained in the input layer. The hid-
den layer computes the data from the input layer, and the
output layer computes the output vector that follows. The
estimation process using the ANN technique entails three
sequential steps: modelling, learning (or training) phase,
and testing phase [37]. The engine’s chosen input and out-
put factors were used to build an ANN model during the
modelling stage. The network was set up to produce a target
prediction based on input data during the training phase.
Test results were compared with the estimated data regard-
ing the test procedure. Once the test error reached the
desired level, the network’s training phase was termi-
nated [24].

The models’ estimation success was assessed using
regression coefficients and mean square error (MSE), which
were developed using the ANN model’s targets and outputs.
The evaluation was conducted using the following equations:

R2 = 1 − ∑n
i=1 ti − oi

2

∑n
i=1 oi

2 ,

MSE = 1
n
〠
n

i=1
yi − ti ,

3

where “t” is the actual output, “o” is the estimated output
value, and “n” is the number of dots in the data set. An
ANN model with a low error rate was developed using
experimental data as a basis. In this study, propane injection
timing, propane energy ratio, and engine compression ratio
were selected as input parameters for the input layer, and
mean pressure and smoke were chosen as output parameters
for the output layer.

In this study, a neural network was employed for esti-
mating the combustion characteristics of RCEM powered
by diesel and propane by a dual direct injection strategy.
Energy fraction ratio of propane, propane fuel injection tim-
ing, and the compression ratio were selected as input factors,
while mean pressure, in-cylinder temperature, power, TKE,
and indicated thermal efficiency were selected as output fac-
tors. The neural network methodology in this study also
applied the same data set, which included 20 test trials. In
particular, 70% of the data trials were utilized for neural net-
work training, 15% for verification, and 15% for testing. The
ANN was created using the following methods: feed-forward
backpropagation network type, mean square error (MSE)

Table 4: CFD parameter input.

Phenomenon Model

Turbulence flow RNG k-ε [30]

Drop drag Dynamic drop drag [31]

Break-up KH-RT [32]

Drop collision NTC [33]

Drop evaporation Frossling [34]

Drop turbulent dispersion TKE preserving [31]

Chemistry solver SAGE [35]

Propane Diesel

Figure 3: Schematic diagram of RCEM for CFD investigation.

6 International Journal of Energy Research



performance function, logsig transfer function, Levenberg-
Marquardt (trainlm) training function, and gradient descent
with momentum weight and bias learning function
(learngdm). This was done using the feed-forward backpro-
pagation network type, which is typically used to describe
challenging system modelling and identification issues.
MSE determined the network’s failure function using the
Levenberg-Marquardt (trainlm) training function, which is
typically used for precise estimates [37]. The majority of
researchers discovered that the logistic sigmoid activation
function (logsig) produces superior results to other functions
[38]. Table 5 provides specifics regarding the neural network
and the development of the ANN model [39].

3. Results and Discussion

3.1. Input Data Parameter. Figure 6 compares the measured
cylinder pressure traces and peak pressures of compression,

(a) 17 and (b) 19, and calculated cylinder pressure for five
propane injection cases and propane injection quantity cases
for 10, 50, and 90% propane energy fractions. Moreover, the
measured maximum in-cylinder pressures were compared
with their simulated values. The charge’s thermodynamic
state can be determined from the pressure inside the cylin-
der using the first law of thermodynamics and a few funda-
mental presumptions.

We expected to get proper combustion using LPG fuel as
it has a low evaporation temperature and higher LHV com-
pared to diesel fuel. Hence, it has better atomization charac-
teristics and produces a higher amount of heat released
during combustion. However, in the direct injection strat-
egy, propane was injected to the chamber in liquid phase,
which has very low temperature (-43°C). Furthermore, the
current common rail system requires much lower fuel injec-
tion pressures compared to diesel for safety purposes. Con-
sequently, lower atomization characteristics were produced
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for propane injection case. It will lower the reactivity of the
fuel based on low compression ratio and high quantity of
propane. As a result, it will improve the possibility of wall
impingement, which reduces cylinder wall temperature.
Decreasing the in-cylinder temperature reduced peak cylin-
der pressure and increasing ignition delay, which agree with
those in previous research by Varde [40]. Furthermore, it
affects the ambient temperature of diesel injection condition.
Low ambient temperature would alter the Sauter mean
diameter (SMD) distribution and spray tip penetration,

decelerate diesel fuel evaporation, and reduce diesel fuel acti-
vation [41].

Figure 7 shows experiment and simulation data in-
cylinder temperature under propane energy fraction 10-
100%, propane injection timing 0°-40° BTDC, and compres-
sion ratios of (a) 17 and (b) 19. Earlier propane injection
into the chamber results in lower ambient temperature pro-
duced, and it will affect the temperature required for the
autoignition event. At the condition of CR17, in the in-
cylinder temperature trace, the highest peak temperature

Table 5: Particulars of the neural network [39].

Network 3 inputs, 5 outputs, and one hidden layer

Data
Training: 75% randomly selected data from experimental data
Test: 25% randomly selected data from experimental data

Network type Feed-forward backpropagation

Training function trainlm

Adaptation learning function learngdm

Transfer function logsig

Performance function Mean square error

Stopping criteria Break the training of network when the confirmation error begins increasing
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was produced in the main combustion area. This indicates
the slow combustion of propane, even when it occurs after
diesel autoignition process. The significant development of
temperature mostly occurs after the diesel autoignition area.
This can be observed by comparing the 0° BTDC propane
injection timing with the other propane injection timing
case. At 0° BTDC propane injection timing, a significant
development of temperature occurred earlier compared to
the other propane injection timing parameter. This indicates
that the propane fuel does not provide autoignition behavior
for the CR17 condition, which delayed the autoignition
characteristics of the diesel. The propane was injected at
ambient temperature 673K at 40° BTDC, 721K at 30°

BTDC, 754K at 20° BTDC, 773K at 10° BTDC, and
1310K at 0° BTDC. Even though propane injection exceeds
the autoignition temperature of propane (481K), a misfire
was spotted for 100% energy fraction of propane. Better
spray quality could improve autoignition characteristics of
propane by increasing the injection pressure for future
studies.

The development of temperature and max in-cylinder
temperature of propane energy fraction and propane injec-
tion timing variation at CR19 is shown in Figure 8(b).
Observing the development of in-cylinder temperature trace,
we noticed that a significant development of temperature
occurred earlier than diesel autoignition area for propane

injection timing 40°-10° BTDC, which was much higher
compared to CR17. This indicates the autoignition behavior
of propane. Moreover, it occurs earlier than the autoignition
of the diesel. The addition of propane produces higher tem-
perature development in the early stage of combustion
(before 0° CA). The second temperature increase was
noticed at 28° CA for all propane injection timing cases. This
seems that propane fuel did not undergo perfect combustion
in the early stage of combustion. The low temperature of fuel
reduces the ambient temperature. Moreover, propane injec-
tion in the liquid phase makes the heat transfer process
harder. For that reason, LPG produces lower NOx emission
due to the lower temperature inside the engine [42], which
agrees with previous studies using an LPG direct injection
strategy [43]. An improvement of max in-cylinder tempera-
ture was noticed in CR19 for all SOI of propane and percent-
age propane energy fraction case. As mentioned before, the
highest peak temperature was produced at CR19 in the
early-stage reaction, which occurs in the BTDC area due to
the reactivity of propane. In the mixing-controlled combus-
tion area, there was not a significant difference in peak tem-
perature. For that reason, there is an insignificant maximum
temperature gradient in CR17 condition. Even so, there are
similar behaviors of maximum in-cylinder temperature trace
for both compression ratios. The steady improvement of
maximum in-cylinder temperature was noticed under 50%
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propane energy fraction by increasing the propane energy
fraction and by injecting propane earlier than 20° BTDC.
10° BTDC propane injection timing produces slightly higher

temperature compared to 0° BTDC and 20° BTDC propane
injection timing. This is unaffected by ambient temperature
degradation due to the early propane injection which improves
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the autoignition characteristics of the diesel. The maximum in-
cylinder temperature becomes lower as the propane energy
fraction is greater than 50%. In this condition, earlier propane
injection timing and lower maximum in-cylinder temperatures
were produced.

Figure 8 shows the TKE at PD 10 (a), PD 50 (b), and PD
90 (c) with the variation of the SOI of propane. It shows the
effect of propane fuel injection on the surrounding air flow
and its effect before diesel injection, the moment of diesel
injection, ignition, and a late propane injection event. The
unaffected air flow from propane injection is also shown in
the propane injection timing 10° and 0° BTDC. It can be

used to compare standard TKE and TKE affected by propane
injection. The TKE at 40° BTDC propane injection timing at
10° CA showed similar behavior compared to the TKE,
which was unaffected by the propane injection. Degradation
of TKE was observed after it reached the peak point, and it
calmed down at the moment it reached the diesel injection
timing. The 20° BTDC propane injection timing showed
the highest TKE for all events. Diesel was injected when
the TKE reached the highest point. A higher TKE contrib-
utes to a better air-fuel mixture and improved the autoigni-
tion characteristics of the fuels. This enhances the TKE at
the main combustion event.
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Furthermore, we analyzed the power from the experi-
ments using RCEM with dual direct injection applications
shown at CR17 (Figure 9(a)) and CR19 (Figure 9(b)) with
the variation of SOI of propane. A higher power output
was obtained at a higher compression ratio. This also can
be achieved by increasing the propane fraction up to 50%
and by injecting propane earlier for both CR17 and CR19.
A slight improvement in power was spotted at late propane
injection timing in the lean fraction of propane, and it

became stronger when a higher CR was applied. For rich
fractions of propane, consistent degradation of power was
observed for both CR17 and CR19. This behavior was also
observed when early propane injection timing was applied.

Figure 10 shows the indicated thermal efficiency of the
engine: Figure 10(a) compression ratio 17 and Figure 10(b)
compression ratio 19 with the variation of injection timing
from 0° to 40° BTDC and percentage of propane from 10
to 100%. The transition of compression ratio from 17 to 19
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Figure 12: Plot of regression value of ANN performance for testing data prediction in 5 representative parameters: (a) pressure, (b)
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improved the ITE significantly. The ITE shows similar
behavior for both compression ratios. The ITE for quantities
of propane under 50% showed improvement when the pro-
pane was injected earlier. Applying a lower quantity of pro-
pane at a constant fuel injection pressure reduced the
possibility of larger fuel spray droplets and an ambient tem-
perature reduction. In this condition, earlier injection tim-
ing, which has longer ignition delay, produces a better air-
fuel mixture and enhances the quality of combustion. In a
lean mixture of propane, the lowest ITE was observed when
the propane and diesel were injected at the same time (10°

BTDC). An improvement in ITE was observed when pro-
pane was injected after diesel injection timing (0° BTDC).

For conditions with more than 50% propane, the early
injection timing of propane produced a lower ITE. It
requires higher ambient temperature and pressure as the
proportion of propane increased due to the high-octane
characteristics of propane. In nonreactive conditions, the
liquid phase of the propane reduced the in-cylinder temper-
ature and disturbed the diesel autoignition process. In early
propane injection timing, the higher quantity of propane
enhanced the possibility of in-cylinder wall wetting, causing
a reduction in cylinder wall temperature, producing larger
fuel droplets around the cylinder wall. This shows an
improvement of ITE at propane injection timings of 20°-
30° BTDC. There is significant degradation of ITE when pro-
pane was injected closer to TDC. The lowest ITE was pro-

duced when 100% propane was applied. The best ITE for
CR17 and CR19 occurred at 40% propane and 40 propane
injection timing.

3.2. Evaluation of ANN Results. The number of neurons in
the hidden layer was changed to track changes in MSE with-
out using a random ANN configuration (Figure 11). The
MSE at 19 neurons in the hidden layer was lowest at
0.0000922 among neuron numbers of 10 to 30. As a result,
the best model was an ANN with a 3-19-5 topological con-
figuration that used the trainlm training algorithm and the
feed-forward with backpropagation learning algorithm with
a logsig transfer function. The learning rate is concerned
with the intensity of reducing the error after iterations,
which has an impact on the portion of the individual adjust-
ment to the previous weight. A rapid learning process is
achieved when the learning rate is set to a high number. The
networkmay not learnwell when there is a significant amount
of input set instability. Setting the learning rate to a high value
is actually improper and detrimental to learning [39].

The selected ANN model was trained to assess the accu-
racy of the cylinder pressure, rate of heat release, cumulative
heat release, velocity of heat transfer, mass fraction burned,
and average gas temperature combustion parameters. For
training, testing, and validation purposes, the engine’s experi-
mental data for CCM and the DFC mode of 1-hexanol with
diesel/biodiesel are divided into three sets of 70%, 15%, and
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15%, respectively [44]. Figure 12 makes it abundantly clear
that the chosen ANNmodel was used to carry out reliable esti-
mations for the previously mentioned combustion parame-
ters. The highest R2 of 0.99981 for TKE and the lowest R2 of
0.96846 for power were obtained for training and testing con-

ditions in the chosen ANN architecture, as shown in
Figure 12: pressure (a), temperature (b), power (c), TKE (d),
and ITE (e). The extremely close data points surrounding
the unity line in Figure 12 show that the ANN was successful
and robust. In the current study, we suggest a model based on
the excellent ANN prediction of the obtained combustion
values. The ANN model’s predicted values were 0.00038 of
MSE. The ANN model produced reliable predictions through
204 iterations.

3.3. Comparing Experimental Result and Discussion in ANN
Modelling. Information from the experimental work is pre-
sented in this section, along with average gas temperature,
mass fraction burned, rate of heat release, cumulative heat
release, velocity of heat transfer, and cylinder pressure. The
results for each parameter are displayed in two figures. The
other compares experimental results with ANN values, while
the first only contains experimental results. The experimental
and ANN results are quite similar when all the figures were
analyzed, and robust estimates were made tomake predictions.

3.3.1. In-Cylinder Pressure. In-cylinder pressures of RCEMs
employing dual direct injection fuel (diesel and propane)
strategies at various propane SOIs are contrasted in
Figure 13. The CFD modelling output of in-cylinder pres-
sure reveals the underprediction in the expansion area. This
demonstrates that CFD modelling cannot provide an exact
prediction of the uncertainty of the unburned fuel during
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ignition. The expansion phase’s pressure and temperature
were increased, and the combustion phase was prolonged.
When compared to CFD modelling, the ANN modelling
produced predictions that were more accurate. The predic-
tion based on training and validating the data can increase
the accuracy of the predicted data in addition to being pro-
duced faster and with fewer computer requirements. From
100 input data and 360000 total output sample data, the
MSE was 0.942935.

3.3.2. In-Cylinder Temperature. Figure 14 depicts the mean
temperature of RCEMs running on dual direct injection fuel
(diesel and propane) strategies at various propane SOIs. The
underprediction of data in the expansion state is more
clearly observed in the mean temperature graph. When the
fuel reaches the critical ignition point, the CFD modelling
creates a chain reaction of combustion. The ignition process
raises ambient temperature, which satisfies the requirement
for fuel to reach temperatures higher than those required for
autoignition. In the experimental process, some propane spray
came out as an iced phase due to the significant temperature
drop when the propane was maintained as the liquid phase.
This causes different ignition temperatures in the iced spray
region, which requires a higher ignition temperature. This
phenomenon is ignored by CFD modelling, which results in
underprediction in the expansion area. Hence, the developed
ANNmodels have great potential to predict the real-time out-
put values of the engine experiments. MSE was 0.837461 from
100 input data with 360000 total sample data.

Figure 15 shows the predicted values of power inside the
RCEM at CR19, DP50, and SOI of propane 0-40° BTDC on
an ANN model, based on 100 data input and 100 total sam-
ple data. The overall forecast trend is positive, and the ANN
model is quite precise in forecasting output power with MSE
0.024579.

Figure 16 shows the thermal efficiency of the RCEM at
CR19 and DP10-100 at SOI of propane 0°-40° BTDC. For
19 neurons in the hidden layer, the MSE was equal to

0.022405 for 100 data inputs and 100 total sample data.
Power predictions showed similar accuracy. The R and
MSE for experimental data reached the optimum accuracy
when the set of output sample data was at the minimum
number. The pressure and the temperature have 100 set
sample data in which each sample consists of 3600 data as
the trace of temperature and pressure data was recorded
from -180° BTDC CA to 180° ATDC. The trace data causes
uncertainty when the cycle of compression, combustion, and
expansion occurs such as friction, graph distortion due to
the electric disturbance, and the signal fluctuation of the sen-
sor based on the electric current conversion. The data fluctu-
ation from the pressure sensor is ±0.000002 bar during idle
data acquisition. Even if the value of the discrepancy is small,
the accumulation of the different fluctuations causes low
accuracy prediction in terms of MSE and R values.

Figure 17 shows a comparison of the simulation and
ANN prediction of TKE operated on RCEM on dual direct
injection fuel strategy at CR19, PD50, and a SOI of propane
at 0°-40° BTDC. The prediction of ANN shows a high accu-
racy compared to the TKE graph produced by the simula-
tion; i.e., it showed an MSE of 0.003715 from 287900
sample data. Predictions on simulation data produced the
highest accuracy compared to pressure and mean tempera-
ture prediction, which showed similarity in the number of
output sample data. It even exceeds the prediction of power
and ITE, which has the lowest output sample data. The min-
imum data set can improve the accuracy of the prediction
since it can minimize the prediction from the uncertainty
of experimental data. However, the data produced by the
simulation produced the minimum uncertainty in the fluc-
tuation pressure data due to the voltage conversion from
the pressure sensor. The pressure data acquired from simu-
lation has zero fluctuation when operated in idle conditions.
This indicated that the accuracy of the prediction will
improve as the number of output sample data increases. A
comparison of the values of the MSE and R of TKE indicates
its higher accuracy for ITE and power.
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4. Conclusion

Propane 10%–100% by energy fraction under a dual direct
injection fuel strategy was examined using experimentally
measured data of an engine combustion process for various
engine operating conditions. The propane SOI ranged from
0 to 40 BTDC, and the compression ratio was between 17
and 19. To forecast the combustion process parameters, an
engine combustion model was created using CONVERGE
software’s ANN and CFD. Experimental and predicted
results were compared to determine the prediction accuracy.
The best ANN structure was established prior to training
and validating the ANN with data from engine trials. We
reached the following conclusions:

(1) Five parameters—pressure, temperature, power,
TKE, and ITE—that were extracted from the engine
performance map could be predicted by ANN with R
values of 0.99027, 0.95392, 0.96846, 0.99981, and
0.98998 and MSE values of 0.942935, 0.837461,
0.024579, 0.022405, and 0.003715, respectively,
which shows accurate forecasting of output data

(2) The simulation data shows the underprediction on
the expansion process when compared to the exper-
imental data. Meanwhile, the ANN prediction shows
a better level of accuracy for the whole cycle trace

(3) The prediction data based on the in-cylinder trace
experimental phenomena such as in-cylinder pres-
sure and mean temperature produced a lower MSE
compared to the data based on calculations such as
power and ITE. The data acquired from the sensor
showed fluctuations in the data due to the electric
conversion which increases the errors of the
prediction

(4) According to the prediction of the TKE, the ANN
prediction of the in-cylinder trace phenomenon
using the simulation output data samples had the
highest accuracy

(5) ANN generalization capability is relatively high even
when operating in previously unexplored areas of
engine performance if trained with sufficiently large
databases. The dependability of the developed ANN
methodology was demonstrated even when tested
under real-world, dynamic performance conditions

Nomenclature

RCEM: Rapid compression-expansion machine
BTDC: Before top dead center
CI: Compression ignition
DP: Diesel-propane
SI: Spark ignition
EoC: End of combustion
LHV: Low heating value
CN: Cetane number
TDC: Top dead center
BDC: Bottom dead center

ANN: Artificial neural network
MSE: Mean square error
SOI: Start of injection
SoC: Start of combustion
TKE: Turbulence kinetic energy
CR: Compression ratio
ϕ: Equivalence ratio
ITE: Indicated thermal efficiency
rpm: Rotations per minute.
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