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Hydrogen is a promising clean energy carrier, but its storage is challenging. In this study, we investigate the potential of NaMTH3
(MT=Sc, Ti, V) hydride perovskite as solid-state hydrogen storage material. Using density functional theory (DFT), we
comprehensively analyze their structural, hydrogen storage, phonon, electronic, elastic, and thermodynamic properties.
Mechanical stability is assessed through calculation of lattice parameters, bulk and shear moduli, Poisson’s ratio, and Young’s
modulus based on elastic constants. All three hydrides were found to be stable mechanically. Furthermore, the anisotropy
factor was also investigated. Results show that the investigated hydrides are brittle and metallic. Their metallic character is due
to the significant interplay between phonons and electrons. We also investigated their enthalpy, entropy, free energy, Debye
temperatures, and specific heat capacities to investigate thermal stability.

1. Introduction

Hydrogen is considered one of the most promising sustain-
able energy sources compared to conventional fossil fuels like
oil, coal, and natural gas [1]. Using solid-state materials as a
hydrogen storage medium is one of the most desired solu-
tions [2]. There are two types of solid-state hydrogen storage:
physisorption and chemisorption. Using weak van der Waals
forces, hydrogen molecules are adsorbed onto the surface of
a material, a process known as physisorption. In chemisorp-
tion, hydrogen molecules are chemically attached to the

surface of a material. Compared to physisorption, chemi-
sorption has a larger theoretical storage capacity but has
higher activation energy needed for adsorption and desorp-
tion [3–5]. Hydrogen is a possible alternative fuel with its
high energy density and green attributes. Hydrogen storage
utilizing hydrides, such as magnesium hydride, has been
considered an alternate energy storage method. Due to the
high gravimetric capacity of such materials, this approach is
especially promising. The hydrogen storage capacities per
unit mass of perovskite hydrides are typically lower than
those of conventional metal hydrides. However, they also
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have other benefits that make them viable options in certain
scenarios like high volumetric density, tunability, improved
kinetics, and reversibility [6]. Hydrogen storage, however,
remains an important challenge due to higher desorption
temperature and slow kinetics [7, 8]. Due to distinct crystal
structures and adaptable characteristics, perovskite materials
have been recognized as promising candidates among
numerous materials. The general formula for perovskite
materials is ABX3 [9] where A denotes a large cation, B
denotes a smaller cation, and X denotes an anion. As A, B,
or X may be modified to accommodate additional elements,
the cubic crystal symmetry of the perovskite structure makes
it a flexible material for a wide range of applications.
Substituting hydrogen for X, a hydride perovskite with the
general formula ABH3 is formed. The possible formulas for
perovskite-type hydrides are A+1B+2H3 and A+2B+1H3

-1.
Since A and B belong to alkali or alkaline earth metals, the
possible hydride structures are limited [10–12]. Hydride
perovskites are gaining attention as a promising solution
for hydrogen storage. Materials used for hydrogen storage
usually have robust hydrogen bonding, wide interstitial
spaces for substantial hydrogen storage, catalytic nature for
improved hydrogen absorption, and adequate gravimetric
hydrogen storage capacities [10, 13]. Such hydride perovskite
has different gravimetric storage capacities with gravimetric
and volumetric capacities of up to 6wt% and 88 kg/m3

depending on the choice of A and B up to six weight percent;
therefore, single perovskite materials are the most investi-
gated compounds for hydrogen storage applications [14,
15]. Due to their special qualities, Na-based perovskite mate-
rials have recently received a lot of interest; in this series of
hydrides, NaMgH3 became the prime focus of research [10,
16]. Surucu et al. studied the formation energy, mechanical
stability, thermodynamics, and bulk modulus of NaMTH3
(MT=Co, Fe, Mn) and found the gravimetric storage capac-
ities 3.74wt%, 3.70wt%, and 3.57wt% for NaMnH3,
NaFeH3, and NaCoH3, respectively, using DFT [17, 18].
Gencer et al. calculated the electronic, elastic, thermal, and
hydrogen storage properties of NaNiH3 with a gravimetric
storage capacity of 3.5wt% [10, 19]. Inspired by these stud-
ies, NaMTH3 (MT=Sc, Ti, V) first-principle calculations were
carried out at atmospheric pressure and temperature.
According to the author’s knowledge, there have been no
previous reports, and this work is the first detailed investiga-
tion of the crystal structure, phonon dispersion curves,
gravimetric ratio, and electronic, mechanical, and thermal
properties of NaMTH3 (MT=Sc, Ti, V) lead-free hydride
perovskites using DFT for hydrogen storage applications.
The results of this study will be helpful for future works.
The manuscript introduces the study, describes methods
for calculations, discusses the results, and finally concludes
the study in separate sections.

2. Computational Methodology

Computational work was performed in the domain of den-
sity functional theory (DFT) using plane wave pseudopoten-
tial approach of CASTEP and Quantum ESPRESSO code to
investigate the properties of NaMTH3 (MT=Sc, Ti, V) [20].

The exchange-correlation approximation was done using
the Perdew-Burke-Ernzerhof (PBE) parameterization of the
generalized gradient approximation (GGA) algorithm [14,
21]. The 3D crystal structures and visualization job were
done using VESTA. Equilibrium lattice parameters were
determined by fitting the Birch-Murnaghan equation of
state-to-energy-volume (E-V) curves, calculated using
Quantum ESPRESSO. Unit cell optimization was carried
out using the BFGS algorithm integrated within CASTEP.
The interaction of valence electrons with the ion core was
addressed using the norm-conserving pseudopotential.
Pseudoatomic calculations were executed for Na2s2 2p6

3s1, Ti 3s23p6 3d2 4s2, V 3s2 3p6 3d3 4s2, 3s2 3p6 3d1 4s2,
and H 1s1. The finite displacement method explored
dynamic stability using phonon dispersion curves. Thermo-
dynamic properties were computed using the supercell
approach. For PDOS calculation on the supercell, an 8 × 8
× 8k-point mesh was employed, ensuring error reduction
below 0.01 eV [22, 23]. A separation of 0.015 1/Å between
k-points was used to construct the phonon dispersion curve.
The total energy convergence was assessed with plane wave
cutoff energy 990 eV and 4 × 4 × 4 grid for k-point sampling.
Energy calculations and geometry optimization utilized
parameters including (a) maximum displacement tolerance
5 × 10−4Å, (b) maximum stress of 0.02GPa, (c) maximum
tolerance for force 1 × 10−2 eV/Å, and (d) maximum energy
5 × 10−6 eV/atom [24–26].

3. Result and Discussion

3.1. Structural Analysis. Figure 1 shows the cubic crystal
structure of the NaMTH3 (MT=Sc, Ti, V) hydride perovskite
with the space group of (Pm-3m, 221). The crystal formation
was within a cubic unit cell such that the Na atoms were
positioned at the corners of the unit cell with coordinates
at the origin (0, 0, 0). At the same time, MT atoms were
accurately located at the body center of the unit cell at coor-
dinates (0.5, 0.5, 0.5). The center of each face of the unit cell
was clearly marked by the presence of H atoms, notably at
the coordinates (0.5, 0, 0), (0, 0.5, 0), and (0, 0, 0.5). To seek
the lattice parameters leading to the lowest energy of the
structure, we changed the lattice constant a for the NaMTH3
(MT=Sc, Ti, V) hydride perovskites. The unit’s volume
also changed with the modification of the lattice parame-
ter. To investigate how the unit cell’s total energy changes
with changes in volume, we used density functional theory
(DFT) to calculate forces. The Perdew-Burke-Ernzerhof
(GGA-PBE) functional from the generalized gradient
approximation was used to calculate the self-consistent field
(SCF) energy, and the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm was used for optimization. The system
relaxed until the forces exerting pressure on the atoms were
insignificant.

E-V curves, as shown in Figure 2, were drawn by plotting
volume against the total energies represented by scattered
points; curve fitting was done using the Birch-Murnaghan
equation of state defined by Eq. (1), and continuous lines
show how data fits using the B-M equation. The lowest
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energy value on these curves indicates an equilibrium state
that is the most stable.

Etotal V = Eo V +
BoV

B′ B′ − 1
Bo 1 −

Vo
V

+
Vo
V

B′
− 1

1

In the context of this research, the term E V refers to
the material’s energy at a particular volume V . Vo stands

for the equilibrium volume, B stands for the bulk modulus,
and Eo is the total energy of the unit cell’s ground state. B′
is the pressure derivative of the bulk modulus. We determine
the unit cell’s volume value for which the total energy con-
verges. These graphs show how the total energy varies for
the unit cell volume and provide information about the
material’s bulk modulus and equilibrium volume. The order
of relaxed unit cell volumes for NaVH3, NaTiH3, and
NaScH3 is as follows: NaScH3>NaTiH3>NaVH3, with cor-
responding volumes of 62.40Å3, 52.30Å3, and 46.79Å3,
respectively. This variation is primarily attributed to each
compound’s size of the MT atom. In NaScH3, the unit cell
volume is the largest, mainly due to the relatively large size
of the Sc atom. Conversely, in NaVH3, the unit cell volume
is smaller, primarily owing to the smaller size of the V atom.
These unit cells’ total energies follow a different order:
NaVH3>NaTiH3>NaScH3. It is concluded that these metal
hydride perovskite crystal structures are considered energet-
ically stable because the curve has been perfectly fitted using
the Birch-Murnaghan equation of state to the calculated data
points on the energy-volume curve [27–29].

3.2. Total Energies. Table 1 displays the computed lattice
constants a (Å), volume V (Å3), density (ρ), and total ener-
gies of the reactants and products of the reaction mentioned
in Eq. (2). The formula for hydride perovskite formation for
each compound is given below [30].

NaMT + 1 5H2 ⟶NaMtH3 2

The formation of NaMTH3 (MT=Sc, Ti, V) was con-
firmed using the total energies. The difference in the energies
of ENaMTH3

, ENaMT
, and 3/2E(H2) for MT=Sc, Ti, and V was

negative, which confirms the favorable hydride formation,
which is thermodynamically stable. For instance, NaScH3

has the lowest total energy −2 64 × 10+3 eV, indicating that
it is the most stable, whereas NaSc −2 58 × 10+3 eV has a less
negative value, which shows it is less stable than NaScH3.
Cwt% represents the gravimetric hydrogen storage capacity
in Table 1. The sole purpose of this parameter is to access
the compound for its potential use in hydrogen storage
applications. If the calculated values of gravimetric hydrogen
storage capacity are more than three, then the material is
feasible for hydrogen storage. As shown in Table 1, the
materials NaMTH3 (MT=Sc, Ti, V) have storage capacities
close to 4; hence, they are potential candidate for hydrogen
storage applications. From the physical properties men-
tioned in Table 1, it can be seen that NaScH3 has the largest
value of lattice constant and, hence, the resulting unit cell
volume, consequently, the lowest mass density.

3.3. Hydrogen Storage Properties. The volumetric hydrogen
storage capacity (ρ (g.H2/L)) is given by the following [31].

ρvol =
NH mH
V L NA

=
5021 58

Vol A
o 3 3

Na

Na Na

Na

Na

Na Na

Na

MT

c

ba

Figure 1: The crystal structure of NaMTH3 (MT=Sc, Ti, V).
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Figure 2: The calculated energy-volume (E-V) curves of NaMTH3
(MT=Sc, Ti, V).
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The study calculates the NaMTH3 (MT=Sc, Ti, V)
hydride perovskites for hydrogen storage applications. The
gravimetric storage capacity of perovskite structures was cal-
culated using Eq. (3) and represented by Cwt%. Gravimetric
capacity measures the quantity of stored hydrogen per unit
mass of the studied hydride perovskite [32, 33].

Cwt% =
H/M mH

mHost + H/M mH
× 100 % 4

In this expression, mH and mHost serve for the molar
mass of H2 and NaMT, whereas the H/M is the ratio of
hydrogen atoms to transition metal atoms; in this case, it is
three. The maximum storage capacity belongs to NaScH3
with a 4.26% value. Remaining hydrides also have good stor-
age capacities in the order Cwt%(NaScH3)>Cwt%(Na-
TiH3)>Cwt%(NaVH3), which follows the trend of unit cell
volume. Figures 3 and 4 illustrate the gravimetric hydrogen
storage capacity and volumetric hydrogen storage capacities
of NaMTH3 (MT=Sc, Ti, V) hydrides. Yet, it has the highest
storage capacity values due to enough space available (due to
the large lattice constant) within the unit cell for hydrogen to
adsorb and desorb easily.

3.4. Phonon Dispersion and Phonon Density of State. Figure 5
shows the phonon dispersion and vibrational density of state
graphs of studied hydrides along high symmetry lines in the
first Brillouin zone. The unit cell contains a total of 5 atoms;
therefore, 3N modes of vibrations are present, including
three acoustic modes and the remaining optical modes.
The branches seem to be less than the vibrational modes
due to the degeneration of phonons along high symmetry
directions X to G and R to G. The energy difference between
the low- and high-frequency phonon modes is 30.38, 34.45,
and 33.05THz for NaScH3, NaTiH3, and NaVH3, respec-
tively. NaTiH3 shows the highest energy gap. This huge dif-
ference in the energy of phonons is due to the different
masses of elements Na, Sc, Ti, V, and H. Overall, phonon
dispersion and DOS curve represent convergent behavior,
which depicts the dynamic stability of the studied hydride
perovskites [34].

Figure 6 shows the projected phonon DOS of the inves-
tigated materials. Additionally, we conducted computations
to determine the partial density of phonon states for
NaMTH3 (MT=Sc, Ti, V) hydride perovskites, where MT
represents Sc, Ti, or V. This analysis is aimed at explaining
the atomic contributions within the overall density of
phonon states of investigated material, as illustrated in

Figures 6(a)–6(c). The black lines represent the total den-
sity of phonon states of compounds, while the red line indi-
cates the density of phonon states for the element Na. The
green line illustrates the density of phonon states for transi-
tion elements MT, where MT can be Sc, Ti, or V, and the blue
lines represent the density of phonon states for hydrogen
atoms (H). In Figure 6(a), it is evident that the Na atom
exhibits the highest peak in the density of phonon states in
the low-frequency range, extending up to 4.35THz. Con-
versely, the H atoms display moderate peaks in the high-
frequency range spanning from 4.5 to 14.9THz. Addition-
ally, the transition atom Sc demonstrates minor peaks
between 2.1 and 9.7THz, but beyond this, its density of pho-
non states becomes negligible.

In Figure 6(b), in the low-frequency range, spanning up
to 6.7THz, the Na atom exhibits the most prominent peak
in phonon state density. Conversely, H atoms display

Table 1: The calculated lattice constant (a = b = c in Å), volume (V
in Å3), volumetric hydrogen storage capacity (ρvol in g.H2/L), molar
mass of transition metal, and gravimetric hydrogen storage capacity
(Cwt% in wt%)for NaMTH3 (MT=Sc, Ti, V).

Compounds ao V ρvol (g.H2/L) Cwt%

NaScH3 3.97 62.40 80.47 4.26%

NaTiH3 3.74 52.30 96.01 4.09%

NaVH3 3.60 46.79 107.32 3.93%
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Figure 3: Calculated volumetric H2 storage capacities of NaMTH3
(MT=Sc, Ti, V).
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moderate peaks in the high-frequency range from 6.7 to
14THz. Transition atoms Ti exhibit minor peaks below
6.8THz, but their phonon state density becomes negligible
beyond this frequency. A consistent pattern is observable in
Figure 6(c). In the low-frequency range, spanning up to
6.4THz, the Na atom exhibits the most prominent peak
in phonon state density. Conversely, H atoms display mod-
erate peaks in the high-frequency range from 6.4 to
15.9THz. Transition atoms V also show minor peaks below
6.5THz, but their phonon state density becomes negligible
beyond this frequency.

3.5. Electronic Properties. To analyze the electronic proper-
ties of a material, its band structure and density of states
were calculated. The band structures show charge carriers’
quantum mechanical behavior and their metallic or nonme-
tallic behavior. Figure 7 depicts the electronic band structure
of NaMTH3 (MT=Sc, Ti, V) in the first Brillouin zone along
the high symmetry directions. The band structure of all three
hydrides shows the overlapping valence and conduction
bands across the Fermi level, which is the characteristic of
metallic material. The red-dotted line shows the Fermi level;
energy levels above this line are called conduction bands,
and lower ones are called valence bands.

The DOS Nn E of n bands is defined as [35, 36]

Nn E =
dk
4π3 δ E − En k 5

En k indicates the band’s dispersion across the first Bril-
louin zone. By summarizing all the bands, the overall DOS is
determined, which is given as [35]

N E =〠Nn E =〠 dk
4π3 δ E − En k 6

The DOS and PDOS were calculated using the GGA-
PBE functional technique. Figure 8 shows the DOS (a, e,
and i) and PDOS (b–d, f–h, and j–l) of the studied materials
NaMTH3 (MT=Sc, Ti, V). In TDOS, the density of state at
the Fermi level is not zero, which shows the metallic nature
of all hydride materials under investigation. PDOS shows
the contribution of different atomic orbitals to the com-
pound orbitals. These results are calculated from -5 eV to
10 eV to evaluate the role of individual elemental states in
constructing TDOS of material. Sc, V, and Ti played the
most crucial role in the TDOS near the fermi level, and fur-
ther analysis revealed that they originate from d orbitals of
transition metals. The bands towards the left of EF are called
valence bands, whereas the bands towards the right are
called conduction bands [37].

In short, the metallic behavior and significant d orbital
contributions of NaMTH3 (MT=Sc, Ti, V) hydrides highlight
their potential for potential as solid-state hydrogen storage
materials.

3.5.1. Population Analysis and Electron Density Difference.
The molecular characteristics and bonding, both inside and
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Figure 5: (a) Phonon dispersion of NaScH3. (b) Phonon dispersion of NaTiH3. (c) Phonon dispersion of NaVH3. (d) Density of phonon
states of NaScH3. (e) Density of phonon states of NaTiH3. (f) Density of phonon states of NaVH3.
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between molecules, depend crucially on the distribution of
atomic charge. The distribution of electronic charge density
within atoms is better understood using population analysis.
The Mulliken population and charge analysis was executed
for the compounds NaScH3, NaTiH3, and NaVH3. The Mul-
liken atomic population analysis represents a computational
methodology employed for the examination of bonding
characteristics, bond lengths, and electronic structures
within both solids and molecules. The Mulliken analysis tells
us how electrons are spread out in a material and can help us
predict how it will react with hydrogen molecules.

Table 2 displays the atomic populations, charges, popu-
lation averages, and average bond lengths of NaMTH3
(MT=Sc, Ti, V). To evaluate the extent of covalent character
in the given bonds, ionicity of population (f n) was deter-
mined given by the following.

f n = 1 − e PC=P /P 7

A positive population value indicates the covalent bond-
ing nature, while a negative value signifies the ionic bond
formation. In our investigation, the bonds formed between
a hydrogen atom (H) and transition metal atoms repre-
sented by MT (where MT = V, Ti, and Sc) are characterized

by positive bond populations, indicative of covalent bond-
ing. In contrast, the negative populations observed in the
H-H and H-Na bonds imply an ionic nature for these bonds.
The computational results indicate a positive charge for
sodium (Na) and transition metals MT (where MT = V, Ti,
and Sc), while hydrogen (H) is consistently found to carry
a negative charge. The data demonstrates electron transfer
occurring within the unit cell of NaScH3, wherein both
sodium and the transition metal element Sc transfer elec-
trons to hydrogen. A similar trend is observed in the unit
cells of NaTiH3 and NaVH3, where electrons are also trans-
ferred from sodium and the respective transition metals (Ti
and V) to hydrogen, forming strong bonds [13]. Further-
more, in these compounds (NaScH3, NaTiH3, and NaVH3),
the bond length exhibits the following trend: H-Sc>H-
Ti>H-V, with corresponding values of 1.98 Å, 1.87Å, and
1.80Å, respectively. Although all of these transition metal
atoms (Sc, Ti, and V) make covalent bonds with hydrogen,
the H-Sc bond length is the largest. Therefore, in this study,
NaScH3 is found to be the best material for hydrogen storage
among NaMTH3 (MT=Sc, Ti, V) hydrides, due to its favor-
able properties. The population analysis and electron density
difference, along with charge density distribution, are vital in
exploring the hydrogen storage capacities of lead-free perov-
skite NaMTH3 as an efficient solid-state hydrogen storage
material [38, 39].

3.6. Charge Density Distribution. To better understand the
nature of bonds in our compounds and the distribution of
charge around the atoms, we examined electronic charge
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Table 2: The calculated values of the Mulliken population and charge analysis for NaMTH3 (MT=V, Ti, Sc) hydride perovskites.

Compound Species s p d f Total Charge Bond Population Bond length (Å)

NaScH3

Na 2.13 6.00 0 0 8.14 0.86 H-Na -0.10 2.80

Sc 2.34 6.76 1.63 0 10.73 0.27 H-Sc 0.70 1.98

H 1.38 0 0 0 1.38 -0.38 H-H -0.05 2.80

NaTiH3

Na 2.09 5.95 0 0 8.03 0.97 H-Na -0.22 2.64

Ti 2.39 6.82 2.71 0 11.92 0.08 H-Ti 0.79 1.87

H 1.35 0 0 0 1.35 -0.35 H-H -0.06 2.64

NaVH3

Na 2.08 5.93 0 0 8.02 0.98 H-Na -0.26 2.55

V 2.42 6.76 3.82 0 13 0 H-V 0.81 1.80

H 1.33 0 0 0 1.33 -0.33 H-H -0.05 2.55
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density mappings. Figure 9 illustrates the findings from the
investigation of the charge density distribution in NaMTH3
compounds, where MT represents V, Ti, and Sc, within the
(001) crystallographic plane. The graph’s right side features
a color scale indicating the charge density, with light grey
indicating high density and dark grey representing low den-
sity. This implies the formation of strong covalent bonds
between Na and elements such as V, Ti, and Sc, denoted as
Na-MT. Conversely, H-H and H-Na bonds exhibit ionic
interactions, affirming the findings indicated by population
analysis. The characterization of bond nature and bond
length between transition metals MT (V, Ti, Sc) and hydro-
gen atom H is of significant importance. Based on the infor-
mation presented in Figure 9, it can be affirmed that the
bonds between H and V, Ti, and Sc are covalent in nature,
exhibiting considerable distortion and significant electron
cloud overlap around these atoms. The bond lengths
between a hydrogen atom (H) and transition metals (X)
such as V, Ti, and Sc exhibit the following trend:
H—Sc>H—Ti>H–V, with corresponding values of 1.98,
1.87, and 1.80, respectively.

3.7. Mechanical Properties. The crystal energy, equilibrium
volume, and the strain-dependent matrix having second-
order elastic constants (Cij) are used to provide insight
into the elastic behavior of the NaMTH3 (MT=Sc, Ti, V)
hydride perovskite. Mechanical characteristics are inter-
linked with the elastic constants denoted as Cij. The elastic
constants of a material can define how it behaves under
applied stress from the outside and offer important infor-
mation about its bonding properties and structural stabil-
ity [40]. For the compounds NaVH3, NaTiH3, and
NaScH3, the computed values of the elastic constants C11,
C12, and C44 for cubic single-crystalline structures are pre-
sented in Table 3. These values can be utilized for the evalu-
ation of the mechanical stability of these compounds. The
Born-Huang lattice dynamical theory has the ability to
assess the mechanical stability of compounds. Given the
cubic arrangement exhibited by these compounds, it is
imperative to apply the Born stability criteria for the purpose

of evaluating their stability. The requisite conditions are as
follows [41]:

C11 – C12 > 0, 8

C11 + 2C12 > 0, 9

C44 > 0 10

Analyzing the data by Equations (3)–(5) presented in
Table 3, it is evident that all three compounds satisfy the
established criteria for mechanical stability. Consequently,
the structures of NaVH3, NaTiH3, and NaScH3 demonstrate
mechanical stability. The Cauchy pressure, Cp, can be com-
puted by deducting the C44 value from C12.

Cp = C12 – C44 11

The Cp sign of the compound can be used to identify
whether it would behave brittle or ductile. While a negative
Cp shows brittle behavior, a positive Cp indicates ductile
behavior. As in our case, all the studied compounds show
brittle behavior as the Cp for all compounds is negative.
Furthermore, the utilization of elastic constants extends to
the derivation of additional mechanical properties of a
material, including the shear modulus, Young’s modulus,
and Poisson’s ratio [42]. Consequently, extensive inquiries
have been conducted into the elastic constants of com-
pounds involving NaMTH3 (MT=Sc, Ti, V) hydride perov-
skites. The bulk modulus (B) Eq. (10), shear modulus (G)
Eq. (12), Young modulus (E) Eq. (13), and Poisson’s ratio
(v) Eq. (14) were assessed utilizing the Voigt-Reuss-Hill

Na H Na NaH

Na

H

Na

H

Na H Na NaH Na H Na Na
0.58

0.40

0.21

0.02

–0.16

H

(a) (b) (c)

Figure 9: Electronic charge density of (a) NaScH3, (b) NaTiH3, and (c) NaVH3.

Table 3: The calculated elastic constants (Cij) and Cp for NaMTH3

(MT=Sc, Ti, V).

Compound C11 C12 C44 Cp = C12 − C44

NaScH3 129.85 38.20 50.98 -12.77

NaTiH3 118.25 30.15 38.74 -8.60

NaVH3 91.66 22.07 25.07 -2.99
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(VRH) approximations. The Voigt approximation estab-
lishes an upper limit for the modulus, whereas the Reuss
approximation sets a lower limit. In comparison, the Hill
approximation offers enhanced accuracy. The data pre-
sented in Table 4 was derived employing the Hill approxi-
mation method.

B = BR = BV, 12

G =
1
2

Gv +GR , 13

E =
9GB

G + 3B
, 14

v =
3B − 2G
6B + 2G

15

Table 3 shows the values of elastic constants of investi-
gated hydrides. NaScH3 has the lowest value of Cp. NaScH3
expresses the strongest contraction under pressure with a
Cauchy’s pressure of -12.77, followed by NaTiH3 (-8.60)
and NaVH3 (-2.99), indicating their decreasing response
to contract under compression. The calculated values of
bulk modulus are also mentioned in Table 4, which repre-
sents the ratio of a small increase in pressure to the decrease
in volume (compression), or its resistance to compression;
the highest value corresponds to NaVH3. The shear modu-
lus (G) represents the ratio of shear stress to shear strain;
the highest value of G belongs to NaVH3. Young’s modulus
reflects the degree of the stiffness of a solid material, defined
as the ratio of stress to strain along the same axis. NaVH3
has the highest Young’s modulus of 118.49, followed by
NaTiH3 with 99.61 and NaScH3 with 70.86, making NaVH3
comparatively the stiffest material.

Another important parameter to determine the bonding
strength of the material is Poisson’s ratio. It is a measure of
compression or expansion of studied perovskite hydride in
the normal direction and is related to the bond type of the
material. The ionic and covalent bonding criterion is v
greater than 0.25 and v = 0 1, respectively. The respective
Poisson ratios were calculated for investigated materials
and can be found in Table 4. The results show that NaVH3
has more covalent character, NaTiH3 has a balanced cova-
lent and ionic character, and NaScH3 has more ionic charac-
ter based on their Poisson ratios. The B/G (Pugh’s ratio) was
measured to predict the ductile or brittleness of the material.
For ductile materials, the B/G ratio is greater than 1.75. The
calculated values in Table 4 confirm that the studied mate-
rials are brittle. The elastic anisotropy index (A) values were
calculated using the following [43].

Ai i=1,2,3 =
2C44

C11 − C12
16

If the material has isotropic elastic behavior, the aniso-
tropic factor value will not be 1 (one). Therefore, all com-
pounds exhibit elastic anisotropic behavior percentage
anisotropy factor known as Bk and Gk using Eq. (17) [43].
These parameters indicate the level of elastic anisotropy in

the bulk and shear modulus. For isotropic medium, the mea-
sured values of these parameters are zero; conversely, the
medium is anisotropic.

Bk =
BV − BR
BV + BR

andGk =
GV −GR
GV +GR

17

The result mentioned in Table 3 indicates that all three
hydrides are isotropic; only NaScH3 shows a small value of
1.2% of anisotropy in shear modulus. The Vickers hardness
of a material is given by

Hv = 2
G
B

2
G

0 585

− 3 18

Among the studied materials, NaVH3 exhibits the high-
est HV value, indicating that it is a relatively hard material.
Conversely, NaScH3 has the lowest hardness due to its min-
imal HV value. Based on the hardness test, these compounds
are soft materials because their calculated hardness values
fall below the hardness threshold of 40GPa.

The hydrogen adsorption and desorption processes are
governed by thermal energy; therefore, it is essential to
investigate the thermodynamic properties of the material.

The Debye temperature is used as an indicator to inves-
tigate the thermal conductivity and interatomic force. This
temperature is interrelated to the elastic vibrations of the
crystal and depends on the material’s average sound velocity
(Vm). The Debye temperature of crystals under investigation
is calculated by Voigt-Reuss approximation as [44]

θDeb =
h
kB

3n
4π

NAρ

M

1/3
vm 19

In this context, h, kB., NA, ρ, M, and n are, respectively,
Planck’s constant 1 381 × 10−23J/K , Boltzmann constant
6 626 × 10−34Js , Avogadro’s number 6 022 × 1023 , density
of crystal, molar mass, and number of atoms per unit cell,
and Vm represents the average sound velocity.

The average sound velocities for NaScH3, NaTiH3, and
NaVH3 cubic crystals were around 4302m/s, 4610m/s,
and 4673m/s, respectively. These sound velocities are
related to Debye temperature, reflecting the material’s stiff-
ness properties. For cubic crystals NaMTH3 (MT=Sc, Ti,
V), the respective Debye temperatures were calculated as
552.2K, 626.3K, and 660.1K. The results depict that the

Table 4: The calculated anisotropic factor (AU), bulk modulus (B
in GPa), shear modulus (G in GPa), Young modulus (E in GPa),
B/G, G/B, Poisson ratio (v), and Vickers hardness (Hv in GPa) for
NaMTH3 (MT=Sc, Ti, V) hydrides.

Compound AU B G E B/G G/B v Hv

NaVH3 0.01 68.76 48.85 118.49 1.41 0.71 0.21 9.79

NaTiH3 0.02 59.52 40.78 99.61 1.46 0.69 0.22 8.27

NaScH3 0.13 45.27 28.59 70.86 1.58 0.63 0.24 5.86
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stiffness of these materials follows the order NaScH3<Na-
TiH3<NaVH3. Notably, the highest value of Debye tem-
perature belongs to NaVH3, which indicates the highest
conductivity value.

Another important parameter is the melting temperature
of these cubic crystals calculated by using the formula given
as [44]

Tmel K = 5 911 × C12 + 553 GPa ± 300K 20

The computed melting temperatures for hydrides
NaMTH3 (MT=Sc, Ti, V) were found to be 683.479K,
731.214K, and 778.858K, respectively. Results show that
the melting temperature of these perovskites increases in
the order of NaScH3<NaTiH3<NaVH3. NaScH3 has the
lowest melting temperature, whereas NaVH3 has the highest
melting temperature. The Debye temperature, average
sound velocity, and other such quantities are mentioned in
Table 5.

The mechanical properties, including elastic behavior
and stability, of NaMTH3 (MT=Sc, Ti, V) hydrides, as
revealed by the analysis, underscore their potential as
solid-state hydrogen storage materials, aligning with the
study’s objective.

3.8. Thermodynamical Properties. To investigate the thermal
stability of the NaMTH3 (MT=Sc, Ti, V) materials, quasihar-
monic approximation was implemented using CASTEP
code [45]. This study was performed in the absence of any
external pressure. The collective effect of heat absorption,
elastic vibration (phonon), and electrons can be elaborated
using the specific heat capacity of materials [46]. The spe-
cific heat capacity at constant volume is equivalent to the
amount of heat absorbed by the material as a result of a
one-degree Kelvin change in temperature. Figure 10 shows
the enthalpy, free energy, entropy, and specific heat capaci-
ties at constant volume of hydride materials under investi-
gation. The specific heat capacities of hydride materials
follow the order NaTiH3>NaVH3>NaScH3. Notably, the
Cv curves are steepest at the start, but after 200K, the slope
decreases. This may be due to the harmonic effects and
coincides with the prediction of the Dulong-Petit law
(Cv = 3R for any solid material). Figures 10(a)–10(f) repre-
sents the thermodynamics of NaMTH3 (MT=Sc, Ti, V)
materials for the temperature range 0K to 1000K. In
Figures 10(a), 10(c), and 10(e), before 110K, the values of
enthalpy (H), temperature times entropy (T ∗ S), and
Helmholtz free energy (FHelm) were zero—afterward, the
free energy decreases, whereas the enthalpy and entropy
increase. Enthalpy itself is calculated by taking the sum of
internal energy and the product of pressure volume H =
E + PV . An enthalpy of 0.89 eV is noted for NaTiH3 and
NaVH3, which is greater than the corresponding values of
enthalpy for NaScH3 at 1000K. To evaluate the thermal sta-
bility of these hydrides, free energies were noted. It is well
established that negative values of free energies ensure the
thermodynamic stability of a material. The maximum
values of free energies of hydrides NaMTH3 (MT=Sc, Ti,
V) are -1.28 eV, -1.39 eV, and -131 eV, respectively, at

1000K; these negative values show the thermodynamic sta-
bility of hydride under investigation. The entropy of the
system represents the thermal energy of a system. From
the graphs, the entropy or thermal energy of the system
was zero at zero Kelvin. Still, after 110K, the value started
to increase due to an increase in thermal agitation of crystal
atoms with the rise of temperature.

In Figures 10(b), 10(d), and 10(f), the heat capacity of
NaMTH3 (MT=Sc, Ti, V) and constituent elements are
shown; graphs show that hydrogen has the minimum value
of heat capacity at Dulong-Petit limit, followed by transition
metal and sodium, and the highest value of heat capacity is
achieved by perovskite hydrides.

For perovskite hydride material under investigation, ZPE
represents the minimum energy at absolute zero tempera-
ture, E represents the system’s internal energy, F shows the
material’s thermodynamic stability, and S reflects the degree
of disorder.

From calculation of these thermodynamic properties, it
can be inferred that the material properties of NaScH3,
NaVH3, and NaTiH3 are unique at a temperature of 298K.
NaScH3 has the minimum value of internal energy
(0.61 eV), Helmholtz free energy (0.30 eV), and heat capacity
at constant volume (81.15 J/mol/K), but the maximum value
of entropy (100.19 J/mol/K), whereas NaVH3 has the highest
zero-point energy (0.54 eV) and internal energy (0.69 eV),
but the lowest entropy (91.38 J/mol/K) and average value
of heat capacity at constant volume (83.37 J/mol/K). Addi-
tionally, NaTiH3 has an average value for all properties
except the heat capacity (87.47 J/mol/K) which is highest
among the three materials. To assess thermodynamic stabil-
ity, we identified the lowest Helmholtz free energy (0.3 eV)
value, which corresponds to NaScH3. Hence, NaScH3 has
the highest thermodynamic stability among the three mate-
rials at a temperature of 298K.

Figure 11 shows the plots of variation of Debye temper-
ature along with temperature for the respective hydrides.
The highest values belong to NaScH3, which represents its
comparatively high conductivity. The results show that
NaScH3 is thermodynamically stable and suitable for hydro-
gen storage. Out of all three hydrides, the heat capacity of
NaScH3 is the lowest, but the conductivity (Debye tempera-
ture) is high; therefore, it can conduct heat supplied for
desorption. From Figure 11, it is obvious that the Debye
temperature of NaScH3 is the highest, and NaVH3 is the
lowest.

The mechanical and thermodynamic property analysis
confirms the potential of lead-free perovskite NaMTH3

Table 5: The calculated values of density (ρ in kg/m3), molar mass
(M in kg/mol), average sound velocity (Vm in m/s), Debye
temperature (θD in K), and melting temperature (Tm in K) for
NaMTH3 (MT=Sc, Ti, V) hydride perovskites.

Compound ρ M Vm θD Tm

NaVH3 1888.556 0.0709695 4302.441 552.217 683.479

NaTiH3 2331.878 0.0738806 4609.879 626.311 731.214

NaScH3 2731.089 0.0769551 4672.759 660.158 778.858
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(MT=Sc, Ti, V) as a solid-state hydrogen storage material,
aligning with the focus on hydrogen storage capacity.

4. Conclusion

NaMTH3 (MT=Sc, Ti, V) hydride perovskites were investi-
gated using DFT. Our results showed that the gravimetric
hydrogen storage capacities of these hydrides NaScH3,
NaVH3, and NaTiH3 are 4.26wt%, 4.09wt%, and 3.83wt%,
respectively. As per Born’s criterion, the studied perovskites
express mechanical stability. The anisotropy index revealed
the isotropic behavior for shear and bulk moduli. The Vick-
ers hardness results showed that these perovskites are soft
materials. The Poisson ratios revealed NaVH3 being more
covalent, NaTiH3 being balanced, and NaScH3 being more
ionic. Electronic band structure and DOS analysis revealed
the metallic nature, further supporting their potential for
hydrogen storage. Population analysis revealed appropriate
bond lengths, boosting the stable perovskite structure role
as hydrogen storage medium. The dynamic stability of these
hydrides was obvious from the absence of imaginary fre-
quencies in phonon dispersion curves. As temperature rises,
specific heat, entropy, and Debye temperature increase,
while free energy turns negative. NaScH3 shows exceptional
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properties among studied hydrides, indicating its capability
as a hydrogen storage material.
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