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In recent years, the proportion of wind power in new energy generation has gradually increased. The natural wind in wind farms is
subject to velocity attenuation by the wake effect, so improving the efficiency of wind farm power generation has become a
problem that must be solved for wind power generation. Considering the uncertainty of wind farms, we regard wind farm
layout optimization (WFLO) as a strongly nonlinear problem. In this paper, we improve the sparrow search algorithm (SSA)
using dynamic opposite learning (DOL) strategy. Twenty-eight benchmark test results prove that compared with other
algorithms, the improved algorithm DOLSSA has excellent robustness and the ability of searching for a better solution when
solving a strongly nonlinear optimization problem, and the DOL strategy effectively improves the shortcomings of the original
algorithm which is prone to local optimization and space limitation. In this paper, the authors establish the dynamic rotational
coordinates of wind farms and set six different physical scenarios by considering the wind direction and wind speed variables,
and the results prove that the performance of DOLSSA is optimal.

1. Introduction

With the continuous advance and innovation of science, the
dominant position of energy as a necessary consumable for
the progress and development of human society is more dif-
ficult to shake than at any other time [1]. In the development
process, with the continuous depletion of traditional fuel
resources and environmental degradation, emerging clean
and renewable energy as a substitute for traditional energy
is gradually entering the stage [2]. Among the emerging
renewable energy sources, wind power is more widely used
than other clean energy due to its more mature technology,
low cost, and environmentally friendly characteristics [3].
The vigorous construction of wind farms is beneficial to
reduce the demand for fossil fuels [4], promoting the gradual
replacement of nonrenewable energy by renewable energy in
the electricity market [5] and establishing a new type of elec-
tricity system dominated by clean energy.

One of the existing problems in the construction of wind
farms is the wake effect of the upstream wind turbine on the

downstream wind turbine [6]. The wake effect of the wind
turbine will seriously weaken the natural wind speed passing
through the wind turbine [7], thus affecting the power gen-
eration of the downstream wind turbine, resulting in the
loss of the wind farm economy and a significant increase
in the cost of power generation [8]. In recent years, for
the WFLO problem, many scholars have made improve-
ments in the physical model to meet practical needs. In
2020, Reddy proposed a new framework with six wake
models and four wake superposition scenarios, which pro-
vided new ideas for the experiments [9]. In 2021, Moreno
et al. introduced a new objective function that considers
the minimum cost of electricity, the total area of the wind
farm, and the power loss in the wake effect [10]. In the same
year, Guo et al. improved the effectiveness of the model by
considering the influence of environmental factors based on
the original wake model [11]. In 2022, Chen et al. developed
a new two-stage WFLO model for offshore wind farms [12].
To improve the convergence accuracy of the computation,
many excellent algorithms have been proposed [13]. In

Hindawi
International Journal of Energy Research
Volume 2024, Article ID 4322211, 25 pages
https://doi.org/10.1155/2024/4322211

https://orcid.org/0009-0002-1204-3000
https://orcid.org/0000-0003-1717-1810
https://orcid.org/0000-0001-9976-1253
https://orcid.org/0000-0003-2975-460X
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2024/4322211


2020, Long et al. improved the evolutionary success rate of
the generalized regression neural algorithm by introducing
an adaptive mechanism and reduced the computational cost
of wind farm layout optimization through a learning process
with a large amount of data [14]. In 2021, Yeghikian et al.
used a particle swarm algorithm to optimize the treatment
of multiple scenarios for the variation of the wind turbine
heights as well as the number of wind turbines [15]. In
2022, Bai et al. used a Monte Carlo tree search to improve
the adaptive algorithm, and the improved algorithm con-
firmed its optimality in the design of a certain wind farm in
New Zealand [16]. In literature [17], the authors proposed
the normal approximation method to determine the proba-
bility of future wind speed occurrence using historical data
to balance the relationship between the maximum annual
power production of a wind farm and the expectation of his-
torical wind speed in the case of uncertain or unmeasured
real-time wind speed. Lei et al. [18] solved the WFLO prob-
lem using PSO algorithm with a GA and achieved an average
of 92.24 percent energy conversion under different scenarios.
In 2023, Rizk-Allah and Hassanien proposed an algorithm
combining balanced optimizer and pattern search, which
improved the optimization algorithm’s handling of irregular
wind farm terrain capabilities [19]. Lei et al. [20] proposed a
new variant of PSO (CGPSO) to improve the program qual-
ity of WFLO. Yu et al. [21] proposed the CLSHADE algo-
rithm for profile optimization of wind energy conversion to
reduce carbon emissions. Yang et al. used the improved
SE algorithm (ISE) [22] to optimize the total power gener-
ation from wind farms. Although the above studies pro-
vide diversified solutions to the WFLO problem, the lack
of introducing novel algorithms to solve the problem tends
to cause researchers to easily fall into traditional thinking,
which is not innovative enough, and the traditional opti-
mization algorithms are prone to make the results fall into
the dilemma of local optimums during the computation
process. Therefore, the aim of this paper is to propose a
new variant of the sparrow search algorithm (SSA) for
application to WFLO.

At this stage, AI has been widely used in the energy
field [23], and the heuristic optimization algorithm as a
kind of AI has also played a great role [24]. WFLO prob-
lem as a typical single-objective optimization problem,
SSA algorithm has good processing potential for this type
of problem, so in this paper, SSA algorithm is introduced
to solve this type of problem. SSA was first proposed by
Xue and Shen [25] in 2020 and has been widely used in
many areas of power system [26] due to its high accuracy
and fast convergence speed. He et al. proposed a new opti-
mization method for distribution network protection based
on SSA, which improves the overall performance of the
relay protection device [27]. Fathy et al. used it to achieve
optimal energy management in microgrids from different
perspectives [28]. In addition, applications of the SSA include
research on transformer fault diagnosis [29], maximizing the
energy efficiency of battery charging and discharging in mod-
ern communication networks [30], localization of voltage
temporary sources in large-scale distribution networks with
high penetration of distributed power sources [31], optimal

configuration of the capacity of electric vehicle charging sta-
tions in a new type of power system [32], and cluster head
selection in wireless sensor networks [33]. However, since
the change of individual position in the iterative process
of SSA is deeply affected by the previous foraging strategy,
it will easily fall into the local optimal solution. To improve
its shortcomings, in recent years, many scholars have intro-
duced an improvement strategy based on SSA and put for-
ward a variety of variations of the sparrow search algorithm
for different physical scenarios [34]. Yuan et al. proposed an
improved SSA (ISSA) to solve the distributed maximum
power point tracking problem [35]. Wang et al. developed
a chaotic SSA (CSSA), which demonstrated its advantages
in solving cluster optimization problems compared to vari-
ous other optimization algorithms [36]. Li et al. proposed
an adaptive SSA to analyze the impact of the number of cars
on microgrid scheduling for a particular islanded microgrid
[37]. Hou et al. developed a chaotic quantum SSA (CQSSA)
to solve the problem of identifying the parameters of a
physical model of a lithium battery [38]. Li et al. proposed
a multiobjective SSA (MOSSA) and proved its effectiveness
by comparing it with four multiobjective optimization algo-
rithms such as MOPSO and MOGWO [39]. Gao et al. used
an extreme learning machine with SSA optimization to
solve the medium-term load-side electricity demand fore-
casting problem [40]. Wang et al. developed a new variant
of the SSA algorithm, PESSA, which proved its superiority
in algorithmic improvement through several function tests
and was successfully applied to the optimal path search
problem in three-dimensional space [41]. SSA as a novel
algorithm has appeared many variants in a short time, but
many new variants are still unable to achieve real-time
updates of iteration range. Therefore, in this paper, the
DOL strategy is used to improve the original algorithm to
achieve the improvement of population initialization adap-
tation and real-time change of population range to avoid
local optimization, and the improved algorithm has signifi-
cantly improved robustness and convergence accuracy com-
pared with the original algorithm and other comparative
algorithms. The idea of DOLSSA to solve the WFLO prob-
lem is analyzed in Figure 1.

The main research of this paper is to propose a novel
variant of the SSA algorithm (DOLSSA) for solving the
WFLO problem within a given wind farm. The main contri-
butions of this paper are as follows: (1) A wind farm layout
model combining the Jensen wake model, wind farm con-
straints, and rotation coordinates is introduced. (2) The
new algorithm DOLSSA is proposed by introducing the
DOL strategy to improve the shortcomings of the SSA algo-
rithm. (3) Experiments are conducted for all benchmark
functions in CEC2014 and WFLO problems in six different
physical scenarios. The comparative analysis of the results
proves that the new algorithm combines the advantages of
SSA and DOL strategies and outperforms the existing algo-
rithms in many aspects.

The rest of the paper is organized as follows: Section 2
describes the wake impact calculation method based on the
Jensen wake model, the two-dimensional wind farm rotating
coordinate model, the objective function, and the wind farm
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constraints. Section 3 presents the principle and steps of
DOLSSA. In Section 4, the results of the DOLSSA are com-
pared with the other seven optimization algorithms both
numerically and statistically in a benchmark function test
environment and a real physical application environment.
Finally, Section 5 summarizes the entire paper.

2. Physical Modeling in WFLO

2.1. Jensen Wake Model. Wind turbine power generation
[42], which extracts energy from the wind, creates a wake
downstream of the wind turbine, and wind speeds within
the wake are attenuated. The area affected by the wake effect
from the upstream wind turbine increases during the down-
stream propagation phase, and the wind speed gradually
returns to the natural wind speed [43]. The wake effect is
the macroscopic effect on wind power generation caused
by the change in wind speed due to the interaction between
WTGs. It is important to take into account the wake effects
of neighboring wind turbines as well as the possible wake
effects of the way the wind turbines are arranged in new
wind farms. At this stage, the Jensen wake model has been
widely used compared to other wake models because it can
be applied to onshore and offshore wind farms with different
turbine types and layouts with minimal computational
resources [44]. By considering the effect of the upstream
wind turbine wake on the downstream wind turbine, three
scenarios can be considered in the Jensen wake model [45].
In the first scenario, the downstream wind turbine is
completely outside the range of the upstream wake effect
and can be considered unaffected by the upstream wake
effect.

ui = u, 1

where u is the initial wind speed of the incoming wind, unaf-
fected by the wake effect, and ui is the wind speed at the
location of the downstream wind turbine i under the influ-
ence of the wake effect of the upstream wind turbine.

In the second case, the downstream wind turbine is
completely within the range of the upstream wind turbine
wake effect.

ui = u 1 −
2a

1 + E DT /Rp
2 ,

a = 0 5 1 − 1 − Ct ,

E =
1

2 ln H/Z0
,

2

where a is the axis induction coefficient of the wind turbine;
E is the entrainment coefficient; DT is the distance between
the upstream and downstream wind turbines relative to the
x-axis on the two-dimensional map surface; Rp is the radius
of the wake formed by the upstream wind turbine at the
location of the downstream wind turbine due to the wake
effect; Ct is the thrust coefficient of the wind turbine, which
determines its efficiency in converting wind energy into elec-
tricity; H is the hub height of the wind turbine; and Z0 is the
length of the surface roughness and refers to the height of
the downstream wind turbine at the location where the wind
speed is zero.

In the third case, the downstream turbine is partially
within the wake of the upstream turbine.

ui = u 1 −
2a

E DT /Rp
2

Sw
St

, 3

where St and Sw in the above equation are the downstream
wind turbine rotor’s rotating area and the area of the down-
stream wind turbine rotor’s rotating area affected by the
upstream wind turbine, respectively, and E is the entrain-
ment coefficient. The Jensen wake model is shown in
Figure 2.

Since the downstream wind turbine may be affected by
the wake effect of multiple upstream wind turbines during
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the generation process, the introduction of a wake super-
position equation is considered, where mj is the number
of upstream wind turbines acting on the downstream wind
turbine.

ui = u 1 − 〠
mj

j=1
1 −

2a
1 + E DT /Rp

2
j

4

2.2. Definition of Two-Dimensional Coordinate Rotation for
Wind Farms. A wind farm can be considered as a certain
defined area on a two-dimensional plane, and we can define
the location of the wind turbines in this area using square
parcellations and using two-dimensional coordinates [46].

L =
x1 x2 ⋯ xn

y1 y2 ⋯ yn
5

Considering that the wind direction is not constant, the
definition of rotation is added to the original 2D model.
When the wind direction changes along angle ε, we can
assume that the two-dimensional model in which the wind
farm is located also changes with the angle, so that the
wind direction is always consistent with the direction of
the nacelle of the wind turbine, and the two-dimensional

coordinates of the wind turbine can be expressed as follows
in the new rotation space:

L =
cos ε −sin ε

sin ε cos ε

x1 x2 ⋯ xn

y1 y2 ⋯ yn
6

2.3. Objective Function. The overall objective of this paper is
to achieve the maximum annual power generation at a cer-
tain installation and maintenance cost, which can also be
interpreted as achieving the minimum cost of electricity
per unit, where the main decision variable is the location
of the wind turbines in the wind farm. Under the condition
of determination of the number of generators, the objective
function of this study is as follows:

Ob =min
CT +Ma

Pt
, 7

whereMa is the annual maintenance cost of the wind turbine,
Pt is the annual electricity production of the whole wind farm,
and CT is the construction cost of the wind turbine, whereMa
and CT mainly depend on the number of wind turbines, which
is calculated by the following formulas:
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CT =N
2
3
+
1
3
e−0 00174N

2 ,

Ma = CmN ,
8

where N is the number of wind turbines and Cm is the one-
year maintenance cost of a single wind turbine.

In this paper, all the wind turbines in the wind farm are
divided into two categories according to their location wind
speeds, where the location wind speeds are equal to the nat-
ural wind speeds, and we consider them as the upstream
wind turbines, totaling v, and the remaining w wind turbines
are located in locations where the wind speeds are lower
than the natural winds due to wind speed attenuation:

N = v +w,

Pt = Pwt + Pwa

9

According to the classification of wind turbines, in this
paper, the annual power generation Pt of wind farms is
divided into two components, Pwt and Pwa, where Pwt
refers to the total power generation of v wind turbines that
are not affected by the wake effect and Pwa is the total
power generation of w wind turbines that are affected by
the wake effect.

Pw =
1
2
ηρπr2u3,

η = Cpηmηe,
10

where ρ is the air density and η is the power efficiency of
the wind turbine, which can also be interpreted as the
ratio of the electrical energy output of the wind turbine
to the wind energy input. The size of the value of η
depends on the three factors of Cp, ηm, and ηe, which rep-
resent the power coefficient of the wind turbine, the effi-
ciency of the mechanical transmission, and the efficiency
of the conversion of electrical energy, respectively, which
are set to Cp = 0 4, ηm = 0 75, and ηe = 0 3, and the values
can be introduced to obtain the following equations:

Pwt = 24 × 365 × 〠
v

j=1

1
2
ηρπr2u3j ,

Pwa = 24 × 365 × 〠
w

i=1

1
2
ηρπr2u3i

11

2.4. Restrictions. Considering the uncertainty of the wind
farm layout, several related constraints are introduced here.
The first is the wind turbine distance constraint, where the
spacing between wind turbines is a factor in the design of a
wind farm, and the smaller the spacing between wind tur-
bines, the greater the impact of the interaction between wind
turbines (the wake effect). Conversely, arbitrarily increasing
the spacing between wind turbines can increase the cost of

laying roads and extending cables, as well as increasing the
amount of land required to install a given capacity of wind
turbine units. The minimum spacing between wind turbines
is generally greater than or equal to 3 times the rotor diame-
ter of the wind turbine [47], which is chosen as 5 times in this
paper. The second constraint is the wind farm boundary con-
straint [48], which does not allow the coordinates of the
selected wind turbine locations to extend beyond the length
of the boundary, ensuring that each wind turbine location
is within the wind farm. The third constraint is the wind
turbine overlap constraint [49], which prevents two wind
turbine locations from overlapping in the wind farm. The
fourth constraint ensures that each wind turbine in the wind
farm is of the same model to prevent variability in hub
height, rotor diameter, energy conversion efficiency, and
other factors between wind turbines.

Wind turbine distance constraint:

xi − xj
2 + yi − yj

2
≥ 5Rr , 12

where i = 1, 2,⋯, v and j = 1, 2,⋯,w.
Wind farm boundary constraint:

0 ≤ xk ≤W,

0 ≤ yk ≤ L,
13

where k = 1, 2,⋯,N .
Wind turbine overlap constraint:

xi ≠ xj ; yi ≠ yj, 14

where Rr is the rotor diameter of the wind turbine; xk and yk
are the horizontal and vertical coordinates of the kth wind
turbine in the two-dimensional wind farm, respectively;
and W and L are the boundaries of the wind farm.

3. Algorithm Preparation

3.1. Sparrow Search Algorithm. SSA is an optimization algo-
rithm summarized by Xue and Shen in 2020 [25] to summa-
rize the predation of sparrow populations in nature as well
as the escape from predation. In this optimization algorithm,
all members of the sparrow population can be divided into
three roles: discoverer, companion, and vigilant. The discov-
erer, as the pioneer of the whole population of sparrows in
the food search, is only a small part of the whole popula-
tion, and its main function is to spread out in all directions
to determine the optimal direction for the population to
search for food in the process of foraging; in addition to
the discoverer, all the other sparrows in the population
can be regarded as companions, and the companions will
listen to the discoverer’s guidance to obtain food for the
population; in addition, each individual in the population
can be vigilant, and when they encounter danger, they will
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find danger signals to nearby individuals, and through the
continuous transmission of the signals, the whole popula-
tion will perform a wide range of migration to avoid being
captured by the natural enemies.

Assuming that there are n sparrows in the whole popu-
lation and the dimension of the problem variable to be opti-

mized is d, the positions of all individual sparrows in the
population during foraging can be expressed as follows:

X =

X1,1 X1,2 ⋯ X1,d

X2,1 X2,2 ⋯ X2,d

⋮ ⋮ ⋱ ⋮

Xn,1 Xn,2 ⋯ Xn,d

15

The formula for discoverer position change in each iter-
ation is as follows:

Xt
i,j =

Xt−1
i,j · exp

−i
wGmax

, if R2 > ST,

Xt−1
i,j +QL, otherwise,

16

where Xt
i,j is the position of the ith individual in the popula-

tion in the jth dimension during the tth iteration, i = 1, 2,
⋯, n; Gmax is the maximum number of iterations set by

Table 1: Parameter comparison table.

Mean
AR

F1 F3 F4 F7 HF4

w = 12, Jr = 0 2 2.996E+07 7.020E+03 1.161E+02 2.709E-02 8.058E+02 12.2

w = 13, Jr = 0 2 7.651E+06 1.430E+04 1.114E+02 1.232E-02 3.908E+03 12.0

w = 14, Jr = 0 2 7.117E+06 1.381E+04 1.170E+02 2.702E-02 1.792E+03 12.0

w = 15, Jr = 0 2 7.438E+06 1.562E+04 7.166E+01 1.723E-02 9.451E+02 7.8

w = 16, Jr = 0 2 1.265E+07 1.054E+04 7.718E+01 2.704E-02 1.718E+03 11.2

w = 17, Jr = 0 2 5.933E+06 2.238E+04 1.319E+02 3.447E-02 2.420E+03 13.8

w = 12, Jr = 0 3 5.751E+06 2.640E+04 1.403E+02 1.477E-02 1.096E+04 13.6

w = 13, Jr = 0 3 7.557E+06 1.285E+04 7.934E+01 1.234E-02 7.672E+02 7.6

w = 14, Jr = 0 3 7.119E+06 2.881E+04 7.976E+01 1.232E-02 2.181E+03 11.8

w = 15, Jr = 0 3 5.862E+06 1.002E+04 6.954E+01 1.232E-02 2.113E+02 1.8

w = 16, Jr = 0 3 6.980E+06 1.020E+04 1.441E+02 1.478E-02 4.309E+02 9.2

w = 17, Jr = 0 3 5.928E+06 2.622E+04 7.716E+01 1.233E-02 1.408E+03 6.8

w = 12, Jr = 0 4 6.984E+06 2.702E+04 1.351E+02 7.396E-02 1.422E+03 15.2

w = 13, Jr = 0 4 1.285E+07 2.499E+04 8.031E+01 2.713E-02 1.899E+03 15.0

w = 14, Jr = 0 4 8.202E+06 2.802E+04 7.672E+01 1.477E-02 1.670E+03 11.6

w = 15, Jr = 0 4 2.161E+07 2.728E+04 7.799E+01 7.396E-02 1.914E+03 16.4

w = 16, Jr = 0 4 7.140E+06 7.601E+04 8.150E+01 9.857E-02 1.506E+03 15.8

w = 17, Jr = 0 4 8.057E+06 2.514E+04 7.614E+01 7.396E-02 1.172E+04 14.8

w = 12, Jr = 0 5 8.759E+06 2.486E+04 1.014E+02 7.393E-02 3.183E+03 16.0

w = 13, Jr = 0 5 6.071E+06 4.723E+04 1.051E+02 9.865E-02 2.520E+03 17.0

w = 14, Jr = 0 5 8.767E+06 4.368E+04 1.145E+02 1.232E-02 2.689E+04 17.0

w = 15, Jr = 0 5 5.996E+06 2.065E+04 7.877E+01 2.216E-02 1.977E+03 10.0

w = 16, Jr = 0 5 8.903E+06 2.761E+04 1.322E+02 1.969E-02 1.678E+03 16.2

w = 17, Jr = 0 5 6.493E+06 1.098E+04 1.205E+02 9.765E-02 1.508E+04 15.2

Table 2: Basic parameters of other algorithms.

Algorithm Basic parameters

PSO c1 = c2 = 2 05; w = 0 729
Jaya —

cfwPSO c1 = c2 = 2 05; w = 0 729

cfPSO c1 = c2 = 2 05; w = 0 729
NTLBO —

ETLBO —

DE F = 0 7; CR = 0 5
SSA —
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the SSA in solving the problem to be optimized; w and R2
are random numbers arbitrarily selected within [0, 1]; Q is
a normally distributed random number; L is the row matrix
with d columns, and all elements in the matrix are 1; ST
∈ 0 5, 1 ; R2 and ST represent the safety range and warning
range of the discoverer in the process of foraging; if the
safety range is smaller than the warning range, it means that
there is no natural enemy within the foraging environment
and the discoverer can forage with ease; on the contrary, the
population must migrate to change the location to avoid
predation by the natural enemy.

The formula for companion position change in each iter-
ation is as follows:

Xt
i,j =

Q · exp
Xt−1
worst − Xt−1

i,j

i2
, if i >

n
2
,

Xt
best + Xt−1

i,j − Xt
best A

+L, otherwise,

A+ = AT AAT −1,

17
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Table 3: Comparison of unimodal and multimodal function test results.

(a)

Algorithm
F1 F2 F3 F4

Mean Std Mean Std Mean Std Mean Std

PSO 3.569E+08 4.396E+08 1.949E+10 1.681E+10 4.898E+04 1.428E+04 3.663E+03 6.132E+03

Jaya 4.258E+07 2.930E+08 6.762E+09 1.371E+10 2.270E+04 3.308E+04 3.787E+02 4.994E+03

cfwPSO 1.207E+09 7.593E+08 4.549E+10 1.116E+10 5.763E+04 1.606E+04 9.464E+03 7.650E+03

cfPSO 1.261E+08 8.990E+08 2.042E+10 1.425E+10 2.770E+04 3.584E+04 2.834E+03 2.335E+03

NTLBO 6.757E+08 1.766E+09 6.676E+10 2.402E+10 5.849E+04 2.532E+04 1.066E+04 1.402E+04

DE 2.523E+05 8.103E+07 7.923E+08 3.761E+09 1.085E+04 1.834E+04 1.632E+02 6.992E+02

ETLBO 1.161E+09 7.492E+08 3.718E+10 2.679E+10 1.085E+04 3.115E+04 4.899E+03 1.102E+04

SSA 6.265E+06 3.513E+07 1.901E+04 8.386E+03 1.579E+04 7.594E+03 1.638E+02 6.179E+01

DOLSSA 5.862E+06 2.282E+07 4.013E+03 1.073E+04 1.002E+04 2.363E+04 6.954E+01 3.678E+01

Algorithm F5 F6 F7 F8

PSO 2.068E+01 9.489E-02 4.330E+01 8.368E+00 1.280E+02 1.108E+02 2.015E+02 6.221E+01

Jaya 2.093E+01 1.291E-02 2.721E+01 5.687E+00 9.230E+01 1.580E+02 2.206E+02 9.992E+01

cfwPSO 2.096E+01 1.864E-02 3.662E+01 5.693E+00 5.621E+02 2.095E+02 3.438E+02 7.286E+01

cfPSO 2.029E+01 4.295E-02 2.555E+01 2.196E+00 1.363E+02 1.479E+02 2.048E+02 4.275E+01

NTLBO 2.085E+01 3.452E-02 3.445E+01 2.536E+00 7.820E+02 1.887E+02 2.321E+02 4.177E+01

DE 2.087E+01 5.308E-02 4.529E+00 5.728E+00 2.027E+00 2.808E+01 9.307E+00 2.405E+01

ETLBO 2.127E+01 6.118E-02 3.942E+01 3.863E+00 4.049E+02 1.243E+02 2.296E+02 1.396E+01

SSA 2.031E+01 9.318E-02 1.303E+01 1.143E+01 2.215E-02 2.956E-03 8.358E+01 5.991E+01

DOLSSA 2.023E+01 6.536E-02 3.123E+00 4.501E+00 1.232E-02 2.025E-02 9.850E+01 4.728E+01

Algorithm F9 F10 F11 F12

PSO 2.103E+02 4.673E+01 3.700E+03 1.671E+03 7.313E+03 1.631E+03 1.629E+00 3.697E-01

Jaya 2.371E+02 1.048E+02 5.947E+03 2.223E+03 5.669E+03 3.527E+02 3.400E+00 2.794E-01

cfwPSO 4.294E+02 9.916E+01 7.091E+03 9.259E+02 7.182E+03 2.043E+03 2.828E+00 1.640E-01

cfPSO 1.723E+02 9.160E+01 2.972E+03 8.508E+02 4.240E+03 1.249E+03 6.248E-01 2.965E-01

NTLBO 2.426E+02 3.527E+01 6.096E+03 3.324E+02 6.223E+03 7.986E+02 1.689E+00 5.560E-01

DE 1.328E+02 5.162E+01 8.473E+02 8.454E+02 7.285E+03 6.953E+02 2.725E+00 4.062E-01

ETLBO 2.808E+02 4.188E+01 7.847E+03 2.376E+02 6.940E+03 1.477E+03 2.853E+00 5.735E-01

SSA 1.224E+02 8.539E+01 4.611E+03 8.057E+03 3.633E+03 4.021E+02 5.227E-01 3.618E-01

DOLSSA 6.368E+01 6.095E+01 2.414E+03 8.920E+03 2.128E+03 8.999E+02 4.817E-02 1.393E-01

Algorithm F13 F14 F15 F16

PSO 3.542E+00 2.512E-01 6.841E+01 2.879E+01 7.475E+02 2.396E+05 1.385E+01 1.871E-01

Jaya 2.249E+00 2.594E-01 1.660E+01 3.165E+01 2.248E+02 2.566E+05 1.289E+01 2.480E-01

cfwPSO 6.285E+00 4.005E-01 1.994E+02 6.370E+01 9.961E+05 5.946E+05 1.277E+01 4.721E-01

cfPSO 3.842E+00 5.193E-01 1.053E+02 9.696E+01 3.456E+04 1.546E+06 1.221E+01 4.298E-01

NTLBO 6.240E+00 3.224E-01 2.191E+02 5.332E+01 1.086E+05 5.407E+06 1.260E+01 5.113E-01

DE 3.650E-01 3.445E-01 2.860E-01 1.048E+01 1.034E+01 5.398E+05 1.290E+01 6.986E-01

ETLBO 6.760E+00 2.829E-01 1.387E+02 5.835E+01 1.779E+05 6.232E+06 1.330E+01 2.920E-01

SSA 5.626E-01 7.084E-02 2.476E-01 1.671E-02 1.058E+01 1.244E+01 1.161E+01 7.425E-01

DOLSSA 2.881E-01 6.054E-02 2.263E-01 3.188E-02 3.703E+00 1.437E+01 1.136E+01 5.498E-01
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where Xbest and Xworst are the locations of the best- and
worst-adapted individuals, respectively, during the iteration
process, to allow the other companions to move closer to
the location of the best-adapted individual, while the poorly
adapted companions leave their original positions to con-
tinue foraging. Like L, A is also a d column row matrix,
but A contains both 1 and -1 elements.

The formula for vigilant position change in each itera-
tion is as follows:

Xt
i,j =

Xt−1
best + β · Xt−1

i,j − Xt−1
best , if f i > f best,

Xt−1
i,j + K ·

Xt−1
i,j − Xt−1

worst

f i − f worst + ε
, if f i = f best,

18

where β is a normally distributed random number, K is a
random number arbitrarily chosen in the interval (-1, 1) to
represent the direction of movement of individuals in the
population, ε is a constant that tends infinitely to 0 to avoid
the error of dividing by 0, and f is the value of the fitness of
the individuals. If f i > f best, the vigilant is at the edge of the
population; if f i = f best, the vigilant is in a foraging-optimal
position and needs to move closer to the edge of the
population.

3.2. Dynamic Opposite Learning. Oppositional-based lear-
ning(OBL) [50] involves generating inverted particles for
random particle positions in the initialization phase of the
population, treating all random and inverted individuals as
an initialized cluster, and collecting the top half of high-
fitness clusters as the initial population.

x = a + b − x 19

The above formula is a confirmation formula for the
position of an inverse particle in a one-dimensional space,
where x is a random particle, x is an inverse particle, and a
and b are the boundaries of the space. The formula can be
generalized to higher dimensions:

xj = aj + bj − xj ; j = 1 d 20

When the dimension of the space in which the random
particle is located is d, x = x1, x2,⋯,xd , aj and bj are the
boundaries of the d-dimensional space, respectively.

Although OBL can perform population initialization
optimization, the search area does not change due to the
fixed area of the environment in which the population is
located, and it is impossible to narrow or move the search
area, which easily makes the algorithm’s calculation results
fall into the local optimum. To solve this problem, Xu
et al. introduced a weighting factor in OBL in 2020 and pro-
posed dynamic opposite learning (DOL) [51], which can
continuously change the population environment and
improve the diversity of population changes in the iterative
process. Compared with OBL, it effectively avoids the local
optimization problem and improves the performance of
the algorithm. The DOL strategy improvement means can
be divided into two steps, DOL population initialization
and DOL generation jumping [52], and its principle is
described as follows.

3.2.1. DOL Population Initialization.

oPDO
i,j = oPi,j + r1i ∗ r2i ∗ aj + bj − oPi,j − oPi,j , 21

where oPi,j is a random initial population, oPDO
i,j is a DOL-

based initial population, r1i and r2i are both random num-
bers in the range [0, 1], and the population size is set to P.
Consistent with OBL, aj and bj still denote the boundaries
of the space.

oPDO
i,j = rand aj, bj , if oPDO

i,j < aj oPDO
i,j > bj 22

With this step, the initial population with the highest fit-
ness can be formed by selecting the P best individuals from
the two populations.

3.2.2. DOL Generation Jumping. DOL provides an imple-
mentation strategy for population diversification, but the
DOL strategy is not implemented in every population itera-
tion [53]. The decision of whether a DOL strategy is
required or not is made regarding the jump rate, and during
the jth iteration, if the random number selected is less than

(b)

Algorithm ON AR

PSO 0 5.75

Jaya 0 5.12

cfwPSO 0 7.88

cfPSO 0 4.56

NTLBO 0 7.06

DE 3 3.25

ETLBO 0 7.44

SSA 0 2.69

DOLSSA 13 1.25
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Figure 5: Continued.
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Figure 5: Comparison of hybrid function convergence curves.

Table 4: Comparison of hybrid function test results.

Algorithm
HF1 HF2 HF3 HF4

Mean Std Mean Std Mean Std Mean Std

PSO 1.967E+06 4.507E+07 2.265E+06 2.709E+09 6.138E+01 4.276E+02 1.096E+04 6.712E+04

Jaya 1.687E+05 4.752E+07 5.810E+04 3.677E+09 1.791E+01 8.289E+01 2.471E+02 2.720E+04

cfwPSO 2.068E+07 1.093E+08 3.848E+08 3.752E+09 2.838E+02 4.295E+02 8.962E+04 9.819E+04

cfPSO 1.449E+06 1.120E+08 1.735E+08 4.199E+09 1.264E+02 7.041E+02 1.549E+04 5.098E+04

NTLBO 2.550E+06 3.326E+08 1.277E+09 6.234E+09 3.418E+02 1.227E+03 3.612E+04 2.256E+05

DE 3.655E+05 1.169E+07 2.823E+02 1.036E+08 5.510E+01 2.135E+01 5.653E+03 1.208E+05

ETLBO 8.117E+06 2.907E+08 9.350E+08 6.076E+09 3.130E+02 1.734E+03 6.165E+04 2.340E+05

SSA 7.432E+04 1.830E+06 6.768E+03 1.773E+03 1.125E+01 2.679E+01 2.324E+02 7.350E+03

DOLSSA 4.025E+04 1.408E+06 1.077E+03 4.106E+02 8.893E+00 3.502E+01 2.113E+02 2.172E+04

Algorithm HF5 HF6 ON AR

PSO 4.092E+04 3.047E+07 8.838E+02 1.597E+03 0 5.17

Jaya 9.749E+03 4.165E+06 3.119E+02 9.115E+02 0 3.00

cfwPSO 3.717E+06 4.300E+07 1.227E+03 2.105E+03 0 8.00

cfPSO 5.527E+05 5.610E+07 8.106E+02 1.400E+03 0 5.67

NTLBO 5.499E+06 5.814E+07 8.600E+02 1.968E+04 0 7.67

DE 2.777E+05 1.795E+06 2.640E+02 2.972E+02 1 3.33

ETLBO 2.077E+07 1.676E+08 1.117E+03 6.197E+04 0 8.17

SSA 5.346E+04 5.068E+05 3.424E+02 1.026E+03 0 2.83

DOLSSA 6.813E+03 5.182E+05 3.735E+01 8.039E+02 5 1.17
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the jump rate, then the iteration is required to follow the
DOL strategy:

oPDO
i,j = oPi,j + ωr3i ∗ r4i ∗ aj + bj − oPi,j − oPi,j ,

aj =min oPi,j ,

bj =max oPi,j

23

During the iterative process, the population search area
is constantly changing and its spatial boundaries are updated
in real time.

3.3. DOL-Based SSA. Compared with other algorithms, the
SSA algorithm takes into account the randomness of the
position of individuals in the population during the search
process in the optimization of the problem and has a
strong global search ability, and its search strategy is more

flexible and has fast convergence speed and high accuracy
that can be better adapted to different types of problems.
However, the change of individual position in the iterative
process of sparrow search algorithm is deeply affected by
the previous foraging strategy, which will lead to its easy
to fall into the local optimal solution, so the DOL strategy
is introduced, forming a new variant of sparrow search
algorithm—DOLSSA.

The improved algorithm DOLSSA has several new steps
compared to the original algorithm and its overall flow is
shown in Figure 3.

4. Example Analysis

To comprehensively verify the performance of DOLSSA in
solving optimization problems, DOLSSA is compared and
analyzed with PSO [54], Jaya [55], SSA [25], DE [56], and
some improved optimization algorithms (cfwPSO [57],

Table 5: Wilcoxon rank sum test results.

Algorithm
DOLSSA

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

PSO > > > > > > > > > > > >
Jaya > > = > > > > > > > > >
cfwPSO > > > > > > > > > > > >
cfPSO > > > > > > > > > > > >
NTLBO > > > > > > > > > > > >
ETLBO > > > > > > > > > > > >
DE < > > > > > > < > = > >
SSA = > > > = > > > > > > >

Algorithm F13 F14 F15 F16 HF1 HF2 HF3 HF4 HF5 HF6 >/=/<
PSO > > > > > > > > > > 22/0/0

Jaya > > > > > > > > > > 21/1/0

cfwPSO > > > > > > > > > > 22/0/0

cfPSO > > > = > > > > > > 21/1/0

NTLBO > > > > > > > > > > 22/0/0

ETLBO > > > > > > > > > > 22/0/0

DE > > > > > < > > > > 18/1/3

SSA > > > > > > > = > > 21/3/0

Table 6: WFLO solution results.

Algorithm Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 ON AR

PSO 3.004E-05 1.098E-06 9.747E-06 5.822E-07 1.004E-05 9.502E-06 0 7.33

Jaya 4.244E-06 5.292E-07 2.196E-06 2.088E-07 6.300E-06 1.807E-06 0 4.00

cfwPSO 2.762E-05 1.037E-06 5.294E-06 5.600E-07 1.047E-05 3.775E-06 0 6.33

cfPSO 3.259E-05 5.451E-07 9.907E-06 1.398E-07 1.181E-05 4.461E-06 0 6.50

NTLBO 3.037E-06 3.938E-07 2.194E-06 1.314E-07 3.585E-06 3.075E-07 0 2.50

DE 4.492E-06 1.141E-06 5.035E-06 5.856E-07 5.414E-07 4.497E-06 0 6.00

ETLBO 1.190E-05 2.599E-06 5.169E-03 1.542E-07 3.585E-06 5.403E-05 0 6.83

SSA 3.034E-06 5.312E-07 2.196E-06 2.274E-07 5.334E-07 3.570E-02 0 4.50

DOLSSA 2.945E-06 3.449E-07 2.180E-06 1.228E-07 5.334E-07 1.616E-07 6 1.00
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Figure 6: Continued.
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cfPSO [57], NTLBO [58], and ETLBO [59]) for PSO and
TLBO against the experimental results, and the whole exper-
iment is divided into three parts:

(i) For all unimodal functions, multimodal functions,
and hybrid functions in the CEC2014 [60] test suite,
multiple sets of repeated experiments are performed
using DOLSSA and other optimization algorithms,
respectively, and the data from multiple sets of
experiments are averaged for comparison

(ii) Significant differences were analyzed by the Wil-
coxon rank sum test [61] for the results obtained
in experiment 1

(iii) The wind farm layout optimization problem is
divided into three cases: directional fixed speed,
nondirectional fixed speed, and nondirectional var-
iable speed. In the three different cases, the problem
is solved to derive the answer and compare the opti-
mal solution

The computer configuration used in this paper is Inter
i7-10700F CPU and AMD Radeon R5 430 GPU, and the
programming language is MATLAB.

4.1. Benchmark Test. During the experiment, the parameters
of DOLSSA algorithm are set as follow: according to the rec-
ommendations in [50, 53], the values of w and Jr are 15 and
0.3, respectively. To ensure the rationality of the parameter
selection, the authors set the value range of w to 12-17 and
the value range of Jr to 0.2-0.5 in this paper. In the evalua-
tion of 24 parameter combinations by five benchmark func-
tions F1, F3, F4, F7, and HF4, select the best combination by
comparing the mean of the five calculations of the DOLSSA

algorithm. Average ranking is the average rank of the algo-
rithm among all algorithms. The results, exhibited in
Table 1, indicate that the algorithm obtains the best perfor-
mance at w = 15 and Jr = 0 3. The parameters of each algo-
rithm are set as shown in Table 2. To ensure the fairness
of the experiment, set the number of populations for all algo-
rithms to 50.

In this experiment, all unimodal functions, multimodal
functions, and hybrid functions in CEC2014 are selected, a
total of 22 functions. For all algorithms, the population size
is set to 50, and the problem dimension is set to 30. The
maximum number of iterations is set to 5000 for unimodal
and multimodal functions, and the maximum number of
iterations is set to 10000 for hybrid functions. For each algo-
rithm, the mean (Mean) and standard deviation (Std) were
calculated for five randomly selected results. According to
the experimental results, the optimal number and average
ranking of each algorithm in the overall experiment are
counted. In all tables of this paper, AR denotes the average
ranking and ON denotes the optimal number of times.

The convergence curves of the average computation
results of several optimization algorithms for the 16 non-
mixed functions are shown in Figure 4, and their optimal
solutions are recorded in Table 3. DOLSSA achieves the
optimal number of times among the 16 single functions 10
times, which is 9 more than all the other optimization algo-
rithms, and its average ranking is 1.25. Figure 5 and Table 4
show the convergence curves and convergence results of the
various optimization algorithms in the six hybrid function
tests, with DOLSSA performing best in five of the six tests,
with an average rank of 1.17. The average ranking of
DOLSSA is ranked first in both sets of benchmark tests,
which indicates that DOLSSA performs optimally and has
the best performance in this experimental part.
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Figure 6: Comparison of WFLO convergence curves.
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Observing each of the subfigures in Figures 4 and 5, we
can clearly see that in all the pictures, the downward trend
of the convergence curve of DOLSSA is earlier than that of
SSA, which can prove that the DOL strategy expands the ini-
tial search range of the population and improves the conver-
gence of the algorithm in the process of early iteration by
establishing a reverse population to select the better-
adapted individuals to generate the initial population. In
the meantime, the convergence accuracy of DOLSSA is
higher than the other eight algorithms compared in the vast
majority of cases (Figures 4(b)–4(g), 4(i), and 4(k)–4(p) and
5(a) and 5(c)–5(f)). In some benchmark tests (Figures 4(c)–
4(f), 4(j), 4(m), and 4(o) and 5(e) and 5(f)), the SSA algo-
rithm is inferior to other algorithms, and the phenomenon
that the improved algorithm DOLSSA outperforms other
compared algorithms proves that the DOL strategy effec-
tively improves the convergence accuracy of the algorithm
through the jump rate.

In summary, the DOLSSA algorithm has better process-
ing potential and computational power in dealing with
single-objective optimization problems.

4.2. Wilcoxon Rank Sum Test. To further validate the perfor-
mance of DOLSSA, statistical analyses were performed using
the Wilcoxon rank sum test. In Table 5, > and < indicate
that DOLSSA outperforms and underperforms the compar-
ison algorithm on the problem, respectively, and = indicates
that there is no significant difference between DOLSSA and
the comparison algorithm. The last column of statistics in
Tables 5 clearly shows that DOLSSA outperforms the com-
parison algorithm in the vast majority of function tests,
which is due to the assistance of the DOL strategy for select-
ing the initial population of SSA and dynamically changing
the population range.

4.3. WFLO Problem Application. In this section, several opti-
mization algorithms will be used to solve the WFLO prob-
lem. In Section 2, this paper describes in detail the physical
model of WLFO, the objective function of the solution,
and the optimization constraints of the turbine location.
Two physical scenarios are set up: locating 10 wind turbines
in a 1 km ∗ 1 km footprint and locating 25 wind turbines in a
2 km ∗ 2 km footprint. Natural wind is divided into three

Table 7: Comparison of running rates of different algorithms.

Running time (s) PSO Jaya cfwPSO cfPSO NTLBO DE ETLBO SSA DOLSSA

wt1 24.04 23.714 139.02 46.43 45.32 20.42 45.35 1.61 10.61

wt2 24.92 21.57 162.53 46.17 44.49 18.84 45.76 1.50 11.99

wt3 22.60 21.40 102.92 43.46 44.66 18.59 45.78 2.88 10.58

wt4 22.81 22.98 73.99 45.54 44.29 20.86 48.70 1.47 10.48

wt5 23.88 21.89 57.86 44.47 46.30 19.06 43.17 4.35 11.29

wt6 46.57 41.65 172.57 93.95 87.16 51.84 85.42 7.66 17.96

wt7 22.35 23.41 162.55 45.80 45.03 18.82 44.70 1.62 11.05

wt8 20.93 25.85 143.09 43.66 44.65 18.70 43.13 3.77 10.61

wt9 25.04 22.81 154.29 45.28 47.64 18.67 44.59 1.52 10.59

wt10 22.79 22.27 106.62 46.28 44.73 18.76 45.80 1.72 11.11

wt11 23.21 23.53 90.42 46.48 45.75 19.40 45.32 1.83 11.08

wt12 25.81 25.05 66.07 54.03 51.89 24.21 53.54 2.67 12.17

wt13 25.99 25.01 69.81 55.05 51.52 24.20 51.49 2.61 11.86

wt14 21.88 22.35 142.04 44.75 45.15 17.34 46.38 1.56 10.39

wt15 22.13 21.75 149.16 44.47 44.38 17.76 43.67 1.57 11.01

wt16 21.94 22.18 54.13 46.95 43.86 17.98 44.16 1.60 10.36

HF1 52.41 52.53 287.19 101.99 100.53 40.02 100.25 3.61 24.87

HF2 49.66 49.13 208.75 103.70 101.17 40.96 102.29 4.23 23.81

HF3 60.15 56.73 236.39 120.81 116.65 53.04 115.99 5.83 27.69

HF4 50.47 49.78 167.00 104.30 98.69 38.57 100.45 4.27 23.09

HF5 51.32 49.89 216.66 103.07 100.64 40.71 101.74 3.52 25.67

HF6 52.42 53.72 175.70 110.14 103.65 41.97 104.40 3.50 23.46

Case 1 17359.33 9088.36 17632.02 27698.24 18927.36 23917.22 21054.65 3584.46 2894.15

Case 2 22280.72 12236.27 16910.49 33490.52 25678.75 24227.29 20365.82 4355.44 2799.29

Case 3 10907.01 8077.98 12479.35 20951.03 15711.32 15522.33 18307.37 2657.81 2562.42

Case 4 23422.66 18635.63 48127.99 48025.36 32596.33 40159.25 49128.37 8913.25 7639.36

Case 5 19104.84 18741.12 49839.66 49589.83 36847.64 37018.04 44042.77 6374.57 6201.06

Case 6 26273.12 19359.76 49359.91 50526.07 37786.63 39279.50 46214.07 8175.30 6507.15

Average time 4287.89 3100.52 7053.15 8275.64 6033.79 6454.44 7161.25 1218.78 1033.40
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categories: directional fixed speed, nondirectional fixed
speed, and nondirectional variable speed. The power of the
wind turbine is set to be 1MW, the hub height to be 60
meters, the blade length to be 40 meters, the thrust coeffi-

cient to be 0.88, and the surface roughness to be 0.3. Layout
optimization is performed for two physical scenarios under
three natural wind conditions: directional fixed speed, non-
directional fixed speed, and nondirectional variable speed.
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Figure 7: Wind turbine drop point map.
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Table 6 and Figure 6 show that DOLSSA solves optimally
in all six physical scenarios. Observing Figures 6(b)–6(d) and
6(f), it can be found that the average ranking of optimization
effectiveness of SSA is 5.6, and its optimization-seeking
performance is poor. However, the optimization-seeking
ability of DOLSSA is optimal in all working conditions by
introducing DOL strategy. In six different scenarios, the
DOLSSA solution results are improved by an average of
30.73% compared to SSA, respectively. The time comparison
data in Table 7 proves that the computational efficiency of
the SSA algorithm itself is much higher than that of the other
compared algorithms, while the DOLSSA algorithm perfectly
combines the advantages of the SSA algorithm and the DOL
strategy. The innovative algorithm improves the shortcom-
ings of the original algorithm, which is easy to fall into the
local optimum, and retains the original computational effi-
ciency and improves the accuracy of the algorithm, and the
computational results also show that DOLSSA has a greater
potential in practical engineering applications. The wind tur-
bines in the wind farms in all cases are shown in Figure 7.

Based on this chapter, DOLSSA has excellent perfor-
mance in function testing and practical physical applications,
which is due to the impact of DOL strategy on population
diversity and the balance between excellent optimization
ability of SSA and dynamic search range changes.

5. Conclusion

In this paper, a new variant of SSA is proposed for solving
the WFLO problem. DOLSSA combines the advantages of
the DOL strategy and SSA and improves its robustness and
convergence compared to the original algorithm. The paper
first defines the physical model of the wind farm, the model
cost includes the wind turbine construction cost and the
annual maintenance cost, the wake effect between the wind
turbines is evaluated according to the Jensen wake model,
and the physical scenarios are categorized into three cases
according to the speed and direction of the natural winds.
For the case of variable wind direction, the study utilizes
rotated two-dimensional plane coordinates to locate the spa-
tial coordinates of the wind farm. The second part intro-
duces the DOL strategy combined with SSA to improve the
population diversity with the help of two steps, DOL popu-
lation initialization and DOL generation jumping, which
helps the original algorithm to better avoid the problem of
easy to fall into the local optimization in the computation
process as well as to improve the overall convergence of
the algorithm. Finally, DOLSSA is compared and analyzed
with various other comparative algorithms containing SSA
in terms of data and statistics from multiple perspectives
through three comparative experiments, and the results
demonstrate the sensitivity and robustness of DOLSSA to
optimal solutions.

In this paper, we demonstrate that DOLSSA can be an
effective tool for solving strongly nonlinear complexity prob-
lems. Especially in the field of WFLO, DOLSSA is applicable
to different power generation scenarios and effectively
improves the power generation efficiency of wind farms. In
the future, we will apply the new algorithms proposed in this

paper to more practical applications, and the research in this
paper can be applied to the study of scheduling strategies for
emerging high-percentage new energy microgrid power
systems to improve the overall power generation efficiency
of microgrid clusters.

Nomenclature

u: Initial wind speed of the incoming wind (m/s)
ui: Wind speed of wind turbine i (m/s)
a: Axis induction coefficient
EDT : Distance to the x-axis (m)
Rp: Wake radius (m)
Ct : Thrust coefficient
H: Hub height (m)
Z0: Surface roughness (μm)
Sω: Rotating area of rotor affected (m2)
St : Rotating area of the rotor (m2)
ε: Wind angle degree
Ob: Minimum cost of one kilowatt hour ($/kWh)
CT : Construction costs of wind farm ($)
Ma: Annual maintenance costs of wind farm ($)
Pt : Annual electricity production of wind farm (kWh)
N : Number of wind turbines
Cm: Annual maintenance costs of single wind turbine ($)
v: Number of upstream wind turbines
w: Number of downstream wind turbines
Pwt : Annual electricity production of upstream wind farm

(kWh)
Pwa: Annual electricity production of downstream wind

farm (kWh)
η: Density (kg/m3)
ρ: Wind energy conversion efficiency
Cp: Power coefficient
ηm: Mechanical transmission efficiency
ηe: Electrical energy conversion efficiency.
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