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The high level of integration of distributed generation systems (DGSs), especially distributed wind and solar, significantly affects
the flexibility and controllability of the power system. Aggregating local DGSs and shared energy storage systems (ESSs) within an
energy community offers an economically and environmentally viable solution. However, the coupling of shared ESSs with the
energy community, while considering subjectivity, is often overlooked. Therefore, this study introduces a two-layer
optimization framework that enables DGSs to trade energy freely, voluntarily, and independently and to share ESSs within the
energy community, considering participants’ subjectivity. The upper layer optimizes the size of shared ESSs, while the lower
layer, structured as a two-layer model, simulates participant interactions. The numerical case shows that, compared to DGSs
operating individually, the shared ESS case indicates that community self-sufficiency and self-consumption rates increase by
16.22% and 21.98%, respectively. Additionally, the annual operating cost is reduced by approximately 27.10%, and CO2
emissions are decreased by about 33.24%. Considering DGS’ subjectivity, the self-sufficiency and self-consumption rates are
3.04% lower, and the total operating costs and CO2 emissions are 3.26% and 6.86% higher, respectively.

1. Introduction

As the pressure to reduce CO2 emissions intensifies, distrib-
uted generation systems (DGSs) capable of effectively inte-
grating and utilizing local renewable resources have
garnered widespread attention [1]. However, the high level
of integration of uncertain and variable DGS will lead to fre-
quent load-generation imbalances in the power system due to
a lack of flexibility [2]. Energy storage systems (ESSs) provide
an effective source of flexibility. Therefore, ESSs have become
a standard requirement for new energy projects in China to
be connected to the public grid. According to research data
from the China Electricity Council, by the end of 2022, nearly
30 provinces had issued the “14th Five-Year Plan” for new
ESS planning or new energy allocation ESS documents. How-
ever, the equivalent utilization coefficient for new energy
allocation ESSs is only 6.1%, and the equivalent utilization
coefficient for user ESSs is only 28.3% [3]. This indicates lim-

ited flexibility in the current deployment of ESSs for renew-
able energy sources. Therefore, there is a need to explore
more effective ways to enhance the flexibility of DGSs.

Integrating the energy community in addition to instal-
ling ESSs is another way to increase system flexibility. How-
ever, due to their inherent characteristics and economic
challenges, neither method can fully maintain the supply
and demand balance of DGSs [4–7]. ESSs can bridge the
time imbalance between renewable energy generation and
demand by transferring power across different periods, thus
enhancing the system’s flexibility in the temporal dimension.
However, the high upfront investment for ESSs is difficult to
recover, becoming an obstacle to improving DGS flexibility
using ESSs [8–10].

Furthermore, an energy community consisting of multi-
ple geographically adjacent DGSs connected by electrical
and communication networks can share resources, thereby
improving system flexibility in the spatial dimensions [11].
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It provides DGSs with a market platform for local power
generation trading according to the energy trading rules
within the energy community, promoting energy exchange
between DGSs [12] to balance supply and demand within
the energy community in the spatial dimension. However,
the energy community cannot balance the supply and
demand in the temporal dimension. The combination of
an ESS and energy community, that is, sharing of the ESS
and energy within the energy community, not only compen-
sates for the flexibility of DGS in both temporal and spatial
dimensions but also reduces the investment pressure of the
ESS by distributing its cost and increases the revenue of
ESS through community transactions. Therefore, combining
an ESS and an energy community is a strategy worth explor-
ing to improve flexibility.

Although several studies have explored the integration of
ESS with energy communities, most overlook the crucial
interplay between ESS sizing and energy community opera-
tions, along with the subjectivity of community participants
[13–15]. On the one hand, the size of the shared ESS influ-
ences the community operation strategy, while the complex-
ity of community operation impacts the sizing planning of
the shared ESS. On the other hand, as an independent entity,
the DGS participating in the energy community should have
the freedom to choose trading partners, voluntarily join the
energy community, independently agree on the trading right,
and maintain privacy; that is, there should be a limited infor-
mation exchange. Thus, the subjectivity of DGSs as indepen-
dent entities is reflected in four aspects: (1) freely selecting
trading partners, energy community, or public grid; (2) inde-
pendently determining the trading volume with trading part-
ners; (3) voluntary, rather than mandatorily participating in
community transactions; and (4) providing limited informa-
tion at the time of the transaction. A comprehensive theoret-
ical framework is required, and this has never been realized.
Therefore, it is necessary to develop a two-layer optimization
framework for shared ESS capacity and community opera-
tion that considers the subjectivity of participants [16–19].

Establishing the two-layer optimization framework
required addressing three key questions: how to couple ESS
sizing with community operation optimization, guarantee
participant autonomy in community transactions, and pro-
tect participant privacy during these transactions. The con-
tributions of this study are as follows:

(i) Establishing a two-layer framework for ESS sizing
and community operation optimization

(ii) Designing an energy community structure that
enables free choice of trading partners

(iii) Decomposing the optimization model to ensure
transaction rights and privacy protection

(iv) Assessing technical, economic, and environmental
performance to guide ESS sharing within energy
communities

The remainder of this paper is organized as follows.
Section 2 summarizes the literature review related to intra-

community interactions and ESS planning. Section 3 intro-
duces the proposed two-layer nested model and presents
the solution. Section 4 presents the case study and discusses
the results. Section 5 concludes the paper and provides rec-
ommendations for future research.

2. Literature Review

The flexibility of distributed generation systems has gar-
nered extensive attention due to the increasing popularity
of renewable energy generation. ESSs and energy communi-
ties are typical means of balancing system supply and
demand to improve system flexibility and have been exten-
sively studied [4–7]. Research on ESSs is focused on both
private and shared ESSs. Studies related to private ESSs
often concentrate on their application [20–22], frequently
overlooking the initial investment that is difficult to recover
[8–10]. Most research on shared ESSs is devoted to demon-
strating their various performance advantages, with little
attention being paid to optimizing their size. Research on
the energy community focuses on modelling the commu-
nity structure, yet the challenge of ensuring the overall
economy while accommodating participants’ subjectivity
as an individual has not been fully addressed [16–19].
Additionally, few researchers have explored the coupling
between ESSs and the energy community and a coupling
model that considers participants’ subjectivity has never been
implemented [13–15].

Research related to ESSs focuses on size optimization
and economic scheduling but often neglects strategies to
mitigate ESS costs. He et al. [20] analyzed the impact of
ESS capacity on levelized energy cost and renewable energy
penetration. Nguyen et al. [21] proposed a multiobjective
optimization model for a system that includes an ESS, aim-
ing to find a reasonable balance between capital investment
and system reliability to meet dynamic energy demand.
Wang et al. [22] optimized the size of typical independent
energy systems, including ESSs, with the goals of minimizing
annual system costs, reducing power supply probability
losses, and cutting greenhouse gas emissions. Li et al. [23]
introduced a model predictive control-based energy man-
agement strategy that combines self-trending prediction
with the subset-searching algorithm to enhance battery effi-
ciency and reduce operating costs. These studies primarily
focus on the overall optimization of single DGSs, employing
single-objective or multiobjective methods to optimize the
capacity and scheduling of various devices with ESSs accord-
ing to specific scenarios’ needs. However, many researchers
have acknowledged that the initial costs of ESSs are chal-
lenging to recover due to their high price, which limits the
adoption of ESSs [8–10].

Recent studies have highlighted the effectiveness of
shared ESSs in reducing electricity bills, peak power, and
CO2 emissions and increasing renewable energy consump-
tion. Consequently, shared ESSs have emerged as a viable
alternative for reducing costs and enhancing local energy
consumption [24]. Most research optimizes community
operations assuming a predetermined shared ESS capacity.
The typical approach involves optimizing the capacity of
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each DGS’s private ESSs and then assuming that the shared
ESS capacity equals the total capacity of all private ESSs.
Walker and Kwon [7] assumed that the total capacity of
shared and private ESSs was identical and analyzed the
actual benefits of residential shared ESS compared to private
ESSs can lower costs and improve ESS utilization. Dhund-
hara et al. [24] evaluated the technical, economic, and
environmental benefits of a shared ESS based on these
assumptions, showing increased benefits for the energy com-
munity and DGSs with a shared ESS. Pimm et al. [25] intro-
duced an ESS dispatch optimization framework using linear
programming and model predictive control to examine the
effects of community-shared ESSs on economic and envi-
ronmental performance, as well as utility grids. Walker and
Kwon [26] developed an efficient shared ESS control strategy
that enables a single user to make operational decisions for
economically viable energy sharing. Dong et al. [27] studied
the impact of geographic location on shared ESS benefits by
considering the scale of private and shared ESSs. Dong et al.
[28] investigated the influence of electricity pricing models
and ESS scheduling strategies on system performance under
a fixed shared ESS scale. Li et al. [29] proposed an ESS-
sharing framework with a defined capacity, considering
hydrogen trading. Terlouw et al. [30] examined two scenar-
ios of shared ESS ownership and analyzed the impact of dif-
ferent ESS types on the economic and environmental
performance of the system. These studies, all based on a pre-
determined shared ESS capacity, highlight that empirical
methods for configuring shared ESSs often result in capaci-
ties that are either too large or too small, leading to unreli-
able performance evaluation results.

Limited information interaction necessitates communi-
cation. Communication modes include decentralized and
centralized communication. Common forms of decentra-
lized communication are peer-to-peer (P2P) networks and
multiagent systems (MASs). Decentralized communication
lacks a central control system, is not prone to total collapse
due to a single system failure, and can be flexibly extended.
However, the absence of centralized control may lead to data
inconsistency and synchronization problems, making it
more challenging to achieve a global consistency policy.
Additionally, to reach a consensus or synchronize informa-
tion, a large number of communication exchanges between
systems may be required, increasing the communication
overhead [31]. Samuel and Javaid [32] proposed a block-
chain system to address the issue of consumer anonymity
during smart grid energy transactions. Touma et al. [33] dis-
cussed the advantages of MAS control solutions. Liu [34]
introduced blockchain technology into the energy system
to create an energy blockchain network, which helps solve
problems such as information security. Zhang et al. [35] pro-
posed a user payment privacy protection scheme based on
linkable ring signatures for P2P uniform-price dual auction
transactions in the microgrid day-ahead market, ensuring
the untraceability of transaction payments with producer
and consumer anonymity. Hussain et al. [36] introduced
an effective communication method that optimizes power
transactions while maximizing collective welfare without
relying on a central hub or authority. Although decentra-

lized communication can support the subjectivity of DGS,
it significantly increases communication costs and is eco-
nomically inefficient [37].

In centralized communications, the central system han-
dles all information exchanges, data aggregation, and coor-
dination. Centralized processing aids in achieving efficient
resource allocation and optimized decision-making and
ensures the consistency of the system state, which facilitates
the implementation of global policies and monitoring. The
DGSs in an energy community operate independently and
simultaneously, interacting with the upper-level energy
community within the same hierarchical framework, which
then coordinates transactions between DGSs. A two-layer
model has been used to represent the energy transactions
between the energy community and the DGSs. Köbrich
et al. [38] proposed a collaborative robust distributed hierar-
chical energy management system for multiple microgrids
based on robust distributed model predictive control. Karimi
et al. [16] proposed a leader-multifollower optimization
method for energy trading in a multi-DGS system. The
upper layer was modelled as a multiobjective optimization
model, with objectives such as the profits of the distribution
grid operator, independence, and energy not provided by the
system. At the lower level, DGSs were considered followers
aiming to minimize their costs. However, a DGS can only
trade with the distribution network and cannot freely choose
the trading partner. The transaction price determined by the
distribution network can easily cause trust problems. Tomin
et al. [17] established an internal local market for the energy
community based on two-layer planning and reinforcement
learning to exchange energy and services. Lower-level issues
clear the market, while upper-layer issues serve the role of
energy community operators (ECOs). The model focuses
on the mutual independence and influence of planning and
operation. Wu et al. [19] proposed a two-layer transaction
model that included DGSs and shared ESSs. The lower layer
determined the power configurations, and the upper layer
calibrated the sharing scheme. Yuan et al. [39] proposed a
two-tier planning model to coordinate the master-slave hier-
archy in the electricity market. At the upper level, the master
grid determines tariffs and generation for the maximum
profit of suppliers, while multiple microgrids operating in
islanded or grid-connected mode are considered at the lower
level. However, the platform calculates and distributes the
player’s revenue, which can also lead to trust issues. The
above research acknowledges that only limited information
is exchanged during the transaction process but overlooks
the subjectivity of DGSs, that is, DGSs freely, voluntarily,
and independently participating in community interaction.

A few researchers have explored the coupling method
between the ESS size and community operation. Hafiz
et al. [13] proposed a multistage stochastic programming
approach for sizing ESSs and provided an energy manage-
ment framework for an energy community comprising
multiple dwellings and distributed solar generation. The
proposed model ensures the independence of the shared
ESS and the energy community. Liu et al. [14] introduced
a shared ESS planning method based on cost-benefit analy-
sis to minimize the electricity purchase cost for retailers. Li
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et al. [15] developed a genetic algorithm to determine the
optimal size and number of shared ESSs and discussed
the benefits of shared ESSs. These studies have utilized
optimization methods to determine the capacity of shared
ESSs and offered optimal strategies for community opera-
tions. However, they overlooked the subjectivity of commu-
nity participants.

In summary, a framework for optimally coupling shared
ESS capacity with community operations, which considers
both overall economics and participant subjectivity, has
never been implemented. To address this gap, this study
established a two-layer optimization framework that takes
into account the subjectivity of community participants,
aiming to collaboratively optimize the size of shared ESS
and the operation of the energy community.

3. Methodology

This study proposes a framework for sharing ESS and energy
in an energy community, considering the subjectivity of par-
ticipants. Initially, a two-layer nested model was developed
to plan the shared ESS capacity and simulate interactions
within the energy community. Then, the entities in the
energy community were decoupled in the interaction model.
Third, indicators were provided for evaluating the technical,
economic, and environmental performance of the energy
system. A model solution scheme was subsequently pro-
posed, based on a nested algorithm that combines the Non-
dominated Sorting Genetic Algorithm II (NSGA-II) with
Gurobi, to obtain the Pareto front. Finally, the Technique
of Order Preference by Similarity to an Ideal Solution
(TOSIS) method was used to select the optimal solution
from the Pareto frontier design solutions, and the entropy
weight method was applied to weigh the indicators and
obtain the optimal design solution.

3.1. Energy Community Architecture. An energy community
comprises DGSs that exchange energy and services accord-
ing to community rules. Each DGS includes generating
equipment, load demands, distribution lines, and communi-
cation links and is assumed to be directly connected to the
public grid via a local bus, as illustrated in Figure 1.

Typically, a distributed generation system operator
(DGSO) owns a DGS. An energy community aggregates
adjacent DGSs, providing an energy-trading platform and
a shared ESS. The ECO is responsible for the cooperative
operation of the shared ESS and all DGSs, thereby offering
additional flexibility to participants. The DGSO informs
the ECO of any power surplus or shortage. After collecting
data from the DGSOs, the ECO coordinates electricity trans-
actions between internal systems through optimized sched-
uling and internal market transaction mechanisms, aiming
to reduce electricity traded with the public grid and enhance
the community’s profits. Additionally, the ECO must estab-
lish contracts with DGSOs, with clearly defined perimeter
and intracommunity trading rules. The latter compensates
the ECO for their participation in the energy community.

This study concentrated on shared ESS planning and
community dispatching to realize the hierarchical manage-

ment of the energy community, including shared ESSs.
Simulations were conducted at 1-hour intervals, consider-
ing public grid and community energy prices, forecasted
generation, and DGS loads. It is important to note that
each DGS was regarded as an independent entity of inter-
est, and this study did not consider the interest relationship
within the DGS.

3.2. Two-Layer Nested Optimization Method. The hierarchi-
cal structure of the optimization model is illustrated in
Figure 2. During the optimization process, the economic dis-
patch within an energy community is influenced by the
installed capacity of the shared ESS, which, in turn, impacts
the economic dispatch of the energy community. This study
addresses two optimization problems: optimizing the shared
ESS capacity and economic dispatch of the energy com-
munity. Consequently, a two-layer optimization model is
constructed.

Furthermore, subjectivity issues are addressed in the
lower-layer optimization problem. The energy community
and DGSs are distinct entities, each lacking the right to
access information about the other， and each entity is
profit-driven, pursuing its interests. This means that each
entity has its objective function and constraints. It presents
a mathematical modelling challenge where the energy com-
munity operates at the parent layer, and the DGSs are at the
child layer.

3.2.1. Upper-Layer Problem. The upper-layer optimization
model employs a multiobjective method to optimize the
installed capacity of the shared ESS (Ecap). The first objective
function (F1) of the upper-layer optimization problem aims
to minimize the total cost of the shared ESS, which includes
investment, replacement, and operation costs, along with
profits. It is important to highlight that the cost of using
shared ESS is amortized through each transaction between
DGSs and the energy community. The total cost of the
shared ESS is defined as

min F1 TCESS = TCcap + TCrep + TCom‐TIESS, 1

TCcap = CRF ⋅ Ccap ⋅ Ecap ⋅
T

8760
,

TCrep = CRF ⋅ Crep ⋅
1

1 + r y ⋅
T

8760
,

TCom = Com ⋅〠
t∈τ

pcht + pdisct ⋅ ΔT ,

TIESS = πESS ⋅ 〠
t∈τ,m∈Μ

qccmt,m + qcmc
t,m ,

2

where Ccap, Crep, and Com represent the installation, replace-
ment, and operating costs of the shared ESS, respectively; pcht
and pdisct are the charging and discharging powers of the
shared ESS at t, respectively; πESS is the shared ESS usage
cost; qccmt,m and qcmc

t,m are the quantities of electricity recom-
mended for purchasing from and selling to the energy com-
munity, respectively; y is the life span of the shared ESS; ΔT
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is the optimized time interval; T is the optimization dura-
tion; and CRF is the capital recovery factor [24].

CRF =
r ⋅ 1 + r Y

1 + r Y − 1
, 3

where Y represents the project life and r is the actual dis-
count rate, expressed as

r =
r′ − f
1 + f

, 4
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Figure 1: Operation and communication structure of an energy community.
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where r′ is the nominal discount rate and f is the inflation
rate.

The second objective function (F2) aims to maximize the
self-sufficiency rate (SSR), which is the proportion of
demand met by the DGS, other community participants, or
the shared ESS [24], excluding electricity imports from the
public grid as a percentage of total electricity demand. It is
expressed as

max F2 SSR = 1 −
∑t∈τ∑m∈Mq

gm
t,m

∑t∈τ∑m∈M loadt,m
, 5

where qgmt,m is the electricity imported by DGS m from the
public grid at t and loadt,m is the electricity demand of
DGS m at t.

The feasible solution to the upper-layer optimization
problem is limited by the maximum available installable
capacity of the shared ESS. The constraint is expressed in
constraint (6) as the investment restriction of the shared
ESS.

0 ≤ Ecap ≤ Ecap,max, 6

where Ecap and Ecap,max denote the shared ESS’s installed
capacity and maximum available installable capacity,
respectively.

3.2.2. Lower-Layer Problem. The lower-layer problem
encompasses two optimization challenges: community eco-
nomic scheduling (parent layer, f1) and DGS optimal sched-
uling (child layer, f2).

(1) Parent Layer. The energy community coordinates elec-
tricity transactions between the DGSs and dispatches
shared ESSs in community economic scheduling. Decision
variables include the recommended transaction volume
between DGSs and the energy community (qccmt,m and qcmc

t,m
), the charging/discharging power of shared ESS (pcht and
pdisct ), and the available capacity (EESS

t ) in each time inter-
val. As compensation for balancing electricity between
DGSs, the energy community receives management fees
(TIman) from the DGSs. Additionally, the energy commu-
nity charges the DGSs for using the shared ESS (TIESS)
and incurs the operating costs of the shared ESS (TCom).
The community operating costs are defined as follows:

max f1 TIcom = TIman + TIESS‐TCom, 7

TIman = πman ⋅ 〠
t∈τ,m∈Μ

qccmt,m + qcmc
t,m ,

TIESS = πESS ⋅ 〠
t∈τ,m∈Μ

qccmt,m + qcmc
t,m ,

TCom = Com ⋅〠
t∈τ

pcht + pdisct ⋅ ΔT ,

8

where πman and Com represent the community unit manage-
ment fee and the shared ESS operating cost, respectively.

Constraints (9)–(11) limit the interaction between the
energy community and DGSs. Constraint (9) ensures the
power balance within the community at time t. Power trans-
mission between the DGSs and the energy community is
limited by the line capacity, as represented by constraint
(10). The DGSs are prohibited from purchasing electricity
and selling electricity to the energy community at the same
time. Constraint (11) guarantees the uniqueness of the trans-
action direction for each DGS within the energy community
at time t.

〠
m∈Μ

qccmt,m − qcmc
t,m + pcht − pdisct ⋅ ΔT = 0, 9

0 ≤ qccmt,m ≤ qcm,max,

0 ≤ qcmc
t,m ≤ qmc,max, 10

qccmt,m ⋅ qcmc
t,m = 0, 11

where qcm,max and qmc,max are the maximum allowable pow-
ers of the tie lines between the DGS and the energy commu-
nity, respectively.

Constraints (12)–(15) govern the operation of the shared
ESS. The real-time charge storage (EESS

t ) reflects the charge
level of the ESS, which is constrained by constraint (12).
Constraint (13) limits the charging and discharging power
of the shared ESS at time t. Constraint (14) ensures that
the shared ESS cannot charge and discharge simultaneously.
Constraint (15) restricts the amount of electricity stored in
the shared ESS.

EESS
t = EESS

t−1 + ηchpcht −
pdisct

ηdisc
⋅ ηinv, 12

0 ≤ pcht ≤ pch,max,

0 ≤ pdisct ≤ pdisc,max,
13

pcht ⋅ pdisct = 0, 14

EESS,min ≤ EESS
t ≤ EESS,max 15

(2) Child Layer. DGSs can spontaneously interact with the
energy community and public grid to fulfil the power
demands of the end-users they serve. The goal of each
DGS is to minimize the total operating cost, which includes
the transaction cost with the energy community (TCcom

m ), the
transaction cost with the public grid (TCgrid

m ), management
fees paid to the energy community (TCman

m ), and the cost
of CO2 emissions from purchasing electricity from the pub-
lic grid (TCCO2

m ). Decision variables encompass the transac-
tion volume between DGSs and the energy community
(qcmt,m and qmc

t,m) and the transaction volume between DGSs

6 International Journal of Energy Research



and the public grid (qgmt,m and qmg
t,m) at time t. The total cost of

a DGS (TCDGS
m ) is expressed as

min f2 TCDGS
m = TCcom

m + TCgrid
m + TCman

m + TCCO2
m , 16

TCcom
m =〠

t∈τ
πpri
t ⋅ qcmt,m − qmc

t,m ,

TCgrid
m =〠

t∈τ
πgm
t ⋅ qgmt,m − πmg ⋅ qmg

t,m ,

TCman
m = πman ⋅〠

t∈τ
qcmt,m + qmc

t,m ,

TCCO2
m = πCO2 ⋅ β ⋅〠

t∈τ
qgmt,m,

17

where πpri
t , πgm

t , πmg, and πCO2 represent the energy commu-
nity transaction price, time-of-use tariffs for electricity pur-
chased from the public grid, fixed tariffs for electricity sold
to the public grid, and the unit CO2 emission cost, respec-
tively; β is the CO2 emission factor; and qgmt,m and qmg

t,m repre-
sent the electricity purchased from the public grid and the
electricity sold to the public grid, respectively.

Constraints (18)–(21) govern the operation of each DGS.
Constraint (18) ensures the power balance within each DGS.
The line capacity limits the transaction power between the
DGS and the energy community, as well as the interaction
between the DGS and the public grid, as stated in constraint
(19). Constraint (20) mandates the uniqueness of the trans-
action direction between the DGSs and the energy commu-
nity and between the DGSs and the public grid, respectively.
A DGS cannot purchase electricity from the energy commu-
nity and sell electricity to the public grid at the same time,
and vice versa. Constraint (21) ensures that the DGS aligns
with the direction of transactions with the energy commu-
nity and public grid.

pWT
t,m + pPVt,m ⋅ ΔT + qgmt,m − qmg

t,m + qcmt,m − qmc
t,m = loadt,m, 18

0 ≤ qcmt,m ≤ qcm,max,

0 ≤ qmc
t,m ≤ qmc,max,

0 ≤ qgmt,m ≤ qgm,max,

0 ≤ qmg
t,m ≤ qmg,max,

19

qcmt,m ⋅ qmc
t,m = 0,

qgmt,m ⋅ qmg
t,m = 0, 20

qcmt,m ⋅ qmg
t,m = 0,

qmc
t,m ⋅ qgmt,m = 0,

21

where pWT
t,m and pPVt,m represent the available power from

wind turbine (WT) and photovoltaics (PV) at time t,
respectively, and qgm,max and qmg,max are the maximum
allowable powers of the tie lines between the DGS and the
energy community, respectively.

Appendix A (or references [40, 41]) provides the mathe-
matical model of the DGS components, includingWT and PV.

3.2.3. Decoupling of the Lower-Layer Optimization Problem.
The ECO must coordinate the DGSO’s community transac-
tions, with coordination deemed complete only when the
volume of recommended transactions matches the actual
transactions. There is a clear coupling between the objectives
of the parent layer (as seen in formula (7)) and the child
layer (as seen in formula (16)), with the coupling variables
being qccmt,m and qcmt,m and qcmc

t,m and qmc
t,m. The energy commu-

nity and DGSs, as separate entities with distinct interests,
aim solely to optimize their objectives. They do not have
the right to access the equipment information of the other
parties and do not participate in the decision-making pro-
cess of the other party during the scheduling process. There-
fore, the coupling between the parent and the child layers
must be decoupled.

The Analytic Target Cascading (ATC) method is applied
to address the problem of coordinated operation between
parent and child layers. Initially, the system is divided into
subsystems by creating shared variables to replace the
coupled ones. Subsequently, to guide and coordinate the
decision-making process of both parties, the augmented
Lagrangian form is utilized to design consistency constraints
and penalty functions within each subsystem model. Finally,
the optimization problem of each subsystem is solved inde-
pendently, and the shared variable is optimized concurrently
until convergence conditions are satisfied.

Following the steps of the ATC method, new shared
variables (qct,m and qt,m) are created as target and response
variables, respectively. Let qct,m = qccmt,m − qcmc

t m and qt,m =
qcmt,m − qmc

t m. The target variable qct,m and the response vari-
able qt,m are introduced to the parent layer optimization
model (as seen in formula (7)) and the child layer optimiza-
tion model (as seen in formula (16)), respectively, with con-
sistency constraints and quadratic penalty items added.
Thus, the original model is converted to the following:

max f
n′

1 + 〠
t∈τ,m∈M

φ
n′

t,m ⋅ qc
n′

t,m − q
n′

t,m

+ 〠
t∈τ,m∈M

λ
n′

t,m ⋅ qc
n′

t,m − q
n′

t,m

2
,

22

min f
n′

2 + 〠
t∈τ,m∈M

φ
n′

t,m ⋅ qc
n′

t,m − q
n′

t,m

+ 〠
t∈τ,m∈M

λ
n′

t,m ⋅ qc
n′

t,m − q
n′

t,m

2
,

23

where φt,m and λt,m represent the Lagrange multipliers and
the weights of the penalty function, respectively. λt,m
enhances the model’s convergence speed and local convex-
ity to counteract the influence of discrete variables [42].

After decoupling, the ECO and DGSOs can optimize
separately and then achieve coordination by continuously
exchanging optimization results. The structure of the

7International Journal of Energy Research



decoupled model is illustrated in Figure 3. The DGSOs in the
child layer report the transaction volume with the energy
community (qt,m) to the ECO in the parent layer. Following
coordination, the ECO will communicate the recommended
transaction volume (qct,m) back to the DGSOs. This process
involves repeated information exchanges until the difference
in information (qct,m − qt,m) between the parent layer and
the child layer falls within an acceptable error range.

3.2.4. The Final Expression of the Optimization Problem.
The two-layer nested optimization problem is ultimately
expressed as follows:

Upper layer

min F1 Formula 1

max F2 Formula 5

s t Constraint 6

Lower layer

Parent layer

max f1 Formula 22

s t qct,m = qccmt,m − qcmc
t,m

qt,m = qcmt,m − qmc
t,m

qct,m ⋅ qt,m ≥ 0

Constraints 9 ‐ 15

Child layer

min f2 Formula 23

s t qct,m = qccmt,m − qcmc
t,m

qt,m = qcmt,m − qmc
t,m

qct,m ⋅ qt,m ≥ 0

Constraints 18 − 21
24

It should be noted that, after the system is decoupled,
the community optimization model introduces new direc-
tional constraints. The energy community is required to
enforce consistency in the direction of the target and
response variables when coordinating electricity transac-
tions between DGSs.

3.3. Evaluation Indicators. To comprehensively evaluate the
performance of the energy system, five indicators were
employed in this study, considering technology, economy,
and environment aspects: SSR, self-consumption rate
(SCR), the total cost of the shared ESS, the operating costs
of community participants, and CO2 emissions.

3.3.1. Technical Indicators. The independence of the energy
system can be represented by the SCR and SSR as defined
in formula (5).

The SCR is defined as the ratio of the self-consumed
DGS electricity, excluding exported electricity, to the total
electricity generated by DGSs; that is, the proportion of elec-
tricity that DGSs consume themselves [24].

SCR = 1 −
∑t∈τ∑m∈Mq

mg
t,m

∑t∈τ∑m∈M pWT
t,m + pPVt,m ⋅ ΔT

25

3.3.2. Economic Indicators. The total cost of sharing the ESS,
as defined in formula (1), and the operating costs of commu-
nity participants, as outlined in formulas (7) and (16), were
selected as indicators to evaluate the economic performance
of the energy system.

3.3.3. Environmental Indicators. The total emission (TE) was
considered as the environmental indicator for the energy

ECO scheduling optimization

DGSO1 DGSO2 ... ... DGSOm

Shared ESS capacity optimization

Parent layer

Child layer

Upper layer

Iteration

Trading volume

Recommended
trading volume

Shared ESS size (Ecap)

qccm

Lower layer Lower layer

Shared ESS scheduling
(pt

ch , pt
disc)

t,m = 1

qct,m – qt,m

qcmc
t,m = 1 qccmt,m = 2 qcmc

t,m = 2 qccmt,m qcmc
t,m

qcmt,m = 1 qmc
t,m = 1 qcmt,m = 2 qmc

t,m = 2 qcmt,m qmc
t,m

Figure 3: Structure of the decoupled model.
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Randomly generate 0th
population (Ecap) .

Solve parent-layer
problem (see formula

(22)) with Gurobi

Child layer

Solve child-layer
problem (see formula

(23)) with Gurobi

Solve child-layer
problem (see formula

(23)) with Gurobi

Solve child-layer
problem (see formula

(23)) with Gurobi

Update the Lagrange
multipliers using

formulas (28)-(29)

Is the convergence condition
(see formula (27) met?

Output optimal solution

Y

Update the solution with
a step size using

formula (30)

N

Parent layer q (t,m,n′)
m∈ {1,2,3}

Solve upper-layer with
NSGA-II Upper layer

Start

Initialize basic
information, upper-level

parameter, and n = 0

Generate (n+1) th
population (Ecap)

N

Output optimal solution

Y

End

Is the maximum generation met?

n = n+1

Initialize lower-level
parameter, and n′ = 0.

qc (t,1,n′) qc (t,2,n′) qc (t,3,n′)

qc (t,m,n′ + 1)
m∈ {1,2,3} q (t,1,n′ +1) q (t,2,n′ +1) q (t,3,n′ +1)

n′ = n′ + 1

Figure 4: The optimization algorithm flowchart.
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system, which depended on the purchase of electricity from
the public grid. The CO2 emission factor used in this study
was associated with energy imported from the public grid.

TE = β ⋅〠
t∈τ

〠
m∈M

qgmt,m 26

3.4. Model Solution. This section introduces a nested algo-
rithm to solve the nonlinear, two-layer nested optimization
problem and determine the Pareto frontier. Additionally, a
method to obtain a compromise solution within the Pareto
feasible set is provided.

3.4.1. Nested Optimization Algorithm. A nested algorithm
was developed to solve the two-layer nested optimization
model. To ensure that high-quality solutions are not lost
during the evolution process, this study utilized the NSGA-
II to address the upper-layer multiobjective problem. The
NSGA-II, proposed by Deb et al. [43] in 2002, is known
for its fast optimization speed, good convergence of solution
sets, and robust optimization results [44], making it exten-
sively applied in multiobjective problems [45]. The lower-
layer optimization problem was solved using Gurobi 9.0.3.
All models were implemented in Python 3.6.

Figure 4 illustrates the flowchart of the nested optimiza-
tion algorithm. The algorithmic process can also refer to
Algorithm 1.

The NSGA-II parameters are presented in Table 1.

Step 1: Load basic information and initialize parameters of the upper-level optimization.
Initialize n=0.
Initialize the NSGA-II parameters according to Table 1.
Step 2: Randomly generate the 0th population.
Stochastically generate Ecap.
Step 3:Initialize parameters of the lower level optimization.
Initialize n′ = 0.
Initialize qc n′′=0

t,m =0, q n ′
t,m′=0 =max qt,m (If qt,m≥0) or q

n′′=0
t,m =min qt,m (If qt,m<0).

Initialize φt,m and λt,m.
Step 4: Optimize the lower-level model.

Solve optimization models (22) and (23) to obtain qc n′′+1
t,m and q n′′+1

t,m by using solvers of Gurobi 9.0.3. The target vector (qct,m) is
constant in the child layer, and the result vector (qt,m) is constant in the parent layer
Step 5: Check the stop criterion of the lower optimization.
If formula (27) is met, go to Step 7; otherwise go to Step 6.
Step 6: Update parameters of the lower optimization.
Update the Lagrange multipliers with formulas (28) and (29).
Update the step size γ with formulas (30).
Update n′ = n′ + 1.
Go to Step 4.
Step 7: Output the optimal solution of the lower-level optimization.
Step 8: Passing the optimal solution of the lower optimization to the upper optimization.
Step 9: Optimize the upper-level model.
Solve optimization models (1) and (5) to generate the (n+1)th population (Ecap) by using NSGA-II.
Step 10: Check the stop criterion of the upper optimization.
If the maximum generation in Table 1 is met, go to Step 12; otherwise, go to Step 11.
Step 11: Update the parameters of the upper optimization.
Update population by using NSGA-II.
Update n=n+1.
Go to Step 3.
Step 12: Output the optimal solution of the upper-level optimization.

Algorithm 1: The Process of the Nested Algorithm.

Table 1: Genetic-algorithm parameters.

Parameter Value

Number of individuals 50

Maximum generation 50

Precision of variables 8

Crossover probability 0.7

Mutation probability 0.01

Table 2: Positive and negative ideal solutions based on TOSIS and
entropy weight methods.

Solution
The total cost of shared

ESS (K$)
Community SSR

(%)

Positive ideal
solution

0 81.09

Negative ideal
solution

130.06 67.20
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Figure 5: Pareto frontier and compromise solutions.

Table 3: Plan selection.

Solution
The total cost of
shared ESS (K$)

Community operating
costs (K$)

Self-sufficiency
rate (%)

Self-consumption
rate (%)

CO2
emissions (t)

Shared ESS installation
capacity (MW)

Optimal
solution

46.70 −11.24 78.10 74.71 483.82 112

TC driven 0 −2.05 67.20 61.25 724.69 0

SSR driven 130.06 −13.96 81.09 82.63 530.77 300
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Figure 6: Community energy savings in non-ESS and shared ESS cases: (a) annual savings and (b) quarterly savings.
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Figure 7: Continued.
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The upper-level optimization process terminates only
when convergence conditions are met. The ATC has the
advantages of parallel optimization, unconstrained series,
and strict convergence proofs. The proof of the convergence
of ATC and its application in multilevel optimization is pre-
sented in reference [46]. For iteration n, the convergence
condition can be expressed as

qc
n′

t,m − qc
n′−1

t,m
∞
≤ ε,

q
n′

t,m − q
n′−1

t,m
∞
≤ ε

27

The Lagrangian multiplier (φt,m) and the coefficient of
the quadratic penalty term (λt,m) serve as coordination sig-
nals in the iterative solution process of the two-layer
model. The updated rules for these parameters can be
based on the augmented Lagrange multiplier method [47].
Constraint (28) outlines the updated rules for the Lagrang-

ian multipliers of the parent and child layers, respectively.
Constraint (29) specifies the updated rules for the penalty
term coefficient.

φ
n′

t,m = φ
n′−1

t,m + 2 ⋅ λ
n′−1

t,m

2
⋅ qc

n′−1
t,m − q

n′−1
t,m

2
,

28

λ
n′

t,m = σ ⋅ λ
n′−1

t,m , σ ≥ 1 29

The initial values of φt,m and λt,m are usually set as
small constants, with λt,m having a more significant impact
on iterative convergence compared to φt,m. Here, σ ≥ 1 is
strictly necessary for convex objective functions, while a
range of 2 < σ < 3 is generally recommended for faster con-
vergence. For nonconvex targets and large values of λt,m,
the quadratic penalty term also acted as a local “convexi-
zer” [47].
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Figure 7: Performance of energy community and DGSs in non-ESS and shared ESS cases: (a) technical performance, (b) economic
performance, and (c) environmental performance.

Table 4: Performance of energy community and DGSs in non-ESS and shared ESS cases.

Self-sufficiency rate (%) Self-consumption rate (%) Total operating cost (K$) CO2 emission (t)

Non-ESS case 67.20 61.25 63.96 724.69

Shared ESS case (relative change) 78.10 (16.22%) 74.71 (21.98%) 46.63 (−27.10%) 483.82 (−33.24%)

Table 5: Cost and profit breakdown of shared ESS in a shared ESS case.

Capital cost (K$) Replacement cost (K$) Operating cost (K$) Profit (K$) Total profit (K$)

Shared ESS case 29.65 20.18 10.39 −13.52 −46.70
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Furthermore, to accelerate the convergence speed of the
algorithm, a step size (γ) was introduced to update the opti-
mal solution [48] as

qc
n′

t,m = qc
n′

t,m + γ ⋅ qc
n′

t,m − qc
n′−1

t,m ,

q
n′

t,m = q
n′

t,m − γ ⋅ q
n′

t,m − q
n′−1

t,m

30

3.4.2. Compromise Solution for Multiobjective Optimization.
After optimizing the upper and lower layers, a Pareto front
is obtained, with each solution being feasible. The TOSIS
method in [49] is used to identify the compromise solution
within the feasible solution set. The TOSIS method ranks a
limited number of assessments based on their proximity to
the desired goal, distinguishing between two idealized objec-
tives: a positive ideal solution and a negative ideal solution.
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Figure 8: Energy flow of energy community and DGSs in two cases: (a) energy community in case 1, (b) energy community in case 2, (c)
DGS1 in case 1, (d) DGS1 in case 2, (e) DGS2 in case 1, (f) DGS2 in case 2, (g) DGS3 in case 1, and (h) DGS3 in case 2.
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Figure 9: Performance of energy community and DGSs in the centralized and hierarchical cases: (a) technical performance and (b)
economic and environmental performance.

Table 6: Performance of energy community and DGSs in centralized and hierarchical cases.

Self-sufficiency rate (%) Self-consumption rate (%) Total operating cost (K$) CO2 emission (t)

Centralized case 69.31 63.17 61.94 678.19

Distributed case (relative variation) 67.20 (−3.04%) 61.25 (−3.04%) 63.96 (3.26%) 724.69 (6.86%)
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The most favourable solution is closest to the positive ideal
objective and farthest from the negative ideal solution.
Etghani et al. [50] and Boyaghchi and Sohbatloo [51] suc-
cessfully integrated the genetic algorithm with the TOSIS
method, yielding convincing results.

4. Case Study and Discussion

This section presents numerical cases designed to simulate
interactions among community members. A multiobjective
approach was utilized to optimize the size of the shared
ESSs. The data sources involved in the optimization are
listed in Appendix B (or references [40, 41]), including tech-
nical and economic parameters of system components, local
meteorological conditions, required electrical loads, and an
introduction to the electricity market. Subsequently, the
trade-off between the objective functions was analyzed, and
a compromise solution was obtained. Finally, the cases were
designed to demonstrate the impact of adding shared ESSs
and considering subjectivity on the technical, economic,
and environmental performance of the energy community.

4.1. Simulation Results. The results of the NSGA-II method
were analyzed. The Pareto frontier contains 50 feasible solu-
tions for the shared ESS design. From the optimization
results, it is evident that there is a correlation between the
two indicators of the objective function. An increase in the
total cost corresponds to a rise in the SSR. This is because
an increase in the shared ESS capacity can reduce the
amount of electricity purchased from the public grid,
thereby enhancing the energy community’s SSR. However,
this also leads to an increase in the total cost of the shared
ESS.

To select the optimal solution from the Pareto feasible
set in a multiobjective optimization problem, it is necessary
to consider different indicators. The two indicators in the
proposed optimization model are the total cost of shared
ESS and SSR. Given that every solution in the Pareto feasible
set is viable, a solution selection process is required to iden-
tify the optimal solution. The TOPSIS method, which is
widely used for this purpose, selects the optimal solution
based on the distance to the positive and negative ideal solu-
tions, calculated using indicator preference. In this study, the
entropy-weighing method was employed to determine the
weight of each evaluation indicator. The entropy-weighing
method, an objective weighting method, utilizes information
entropy to calculate the weight of each indicator based on
the dispersion degree of each indicator’s data. The positive
and negative ideal solutions are listed in Table 2. The opti-

mal solution is represented by the red five-pointed star in
Figure 5.

4.2. Plan Selection. To assess the advantages of the optimal
scheme, two comparison schemes were devised: the two
objectives of the multiobjective function were treated as
objectives of two separate single-objective functions. Specif-
ically, the weight of the total cost of shared ESS was set to
1, and the weight of SSR was set to 0 for one scheme. For
the other scheme, the weight of the total cost of shared
ESS was set to 0, and the weight of the SSR was set to 1.
The results obtained by applying these two settings to a
multiobjective optimization framework are equivalent to
the outcomes of two single-objective optimizations. The
optimal results for different design schemes are summa-
rized in Table 3.

The total cost-driven solution exhibited the lowest total
cost of shared ESS within the Pareto solution set. However,
this scheme resulted in the poorest performance in terms
of the system’s SSR, SCR, and environmental performance
were the worst. Furthermore, the SSR-driven scheme had
the best SSR, SCR, and environmental performance, but
the total cost of shared ESS was 178.50% higher than that
of the optimal scheme. This analysis indicates that the opti-
mal solution represents a balance and compromises among
various indicators, showcasing good performance in techno-
logical, economic, and environmental terms. Notably, in the
total cost-driven scheme, the shared ESS was not installed,
highlighting the shared ESS’s limited economic benefits.
Hence, the profits from intracommunity exchange were
not sufficient to offset the shared ESS cost. In the optimal
solution, the installed capacity of the shared ESS was
112MW, which is substantial for the high investment cost;
this is also evident in the total cost-driven solution. The
adoption of renewable energy sources necessitates a large-
capacity ESS.

4.3. Performance Analysis. This section examines the effects
of incorporating a shared ESS and accounting for subjectiv-
ity on the technical, economic, and environmental perfor-
mance of the energy community and DGSs.

4.3.1. Impact of Adding Shared ESS on the Performance of
the Energy Community and DGSs. The impact of incorporat-
ing a shared ESS on the energy community and DGSs was
first investigated. A case without a shared ESS served as a
comparative baseline to quantify this impact. Energy
imports serve as the basis for calculating indicators such as
SSR, total community costs, and carbon CO2 emissions.
Therefore, before analyzing these indicators, the annual
and quarterly energy imports were presented and analyzed.
Figures 6(a) and 6(b) depict the annual and quarterly energy
import savings for the energy community and DGSs in both
cases, respectively. The introduction of a shared ESS led to
additional energy savings for the energy community and
each DGS, especially during the hot summers and cold win-
ters (as shown in Figure 6(b)). Throughout the year, the
energy savings from the shared ESS case were significantly
higher than those from the case without a shared ESS

Table 7: The installed capacity of DGS’s power generation facilities
in the energy community.

WT′ installed capacity
(MW)

PV′ installed capacity
(MW)

DGS1 70 40

DGS2 55 0

DGS3 0 40
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(approximately 49.78%). This aligns with the findings of
Dhundhara et al. [24] regarding the positive impact of shar-
ing ESS on community annual energy savings.

The technical, economic, and environmental perfor-
mances of the energy community and DGSs in the non-
ESS and shared ESS cases were evaluated. The outcomes
are depicted in Figures 7(a)–7(c), respectively. Incorporating
a shared ESS markedly enhanced these three performances
compared to the non-ESS case. The SSR and SCR increased
by 16.22% and 21.98%, respectively, while the total operating
cost and CO2 emissions decreased by 27.10% and 33.24%,
respectively, as detailed in Table 4. The concurrent improve-
ment in SSR and reduction in CO2 emissions can be attrib-
uted to the SSR being the proportion of electricity demand
met without resorting to energy imports, which are sources

of CO2 emissions. As illustrated in Figure 7(b), the shared
ESS effectively reduced both the electricity bill of the DGS
and their CO2 emission costs. This is because the shared
ESS bolsters the community’s capacity for power supply
and consumption, enabling more electricity transactions
within the community rather than trading with the public
grid.

Table 5 summarizes the annual costs and profits associ-
ated with the investments and operations of the shared
ESS. The investment cost constitutes the largest share of
the total cost, accounting for approximately 49.23%. The
total annual operating profit of the shared ESS was negative,
at −46.70K$, indicating that the shared ESS is not econom-
ically viable under current conditions. Despite significant
energy savings and potential reductions in electricity bills
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Figure 10: Electrical loads and meteorological data: (a) typical daily electricity demand, (b) wind speed, and (c) temperature and solar
irradiation.
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facilitated by a shared ESS, the savings are insufficient to
cover the investment cost of the shared ESS. This observa-
tion aligns with the findings of previous studies [8–10].
The recovery of the investment cost for the shared ESS was
beyond the scope of this study. However, with suitable regu-
lations and policies to support investors in shared ESS, the
energy community and its members could realize greater
benefits.

Figure 8 illustrates the power flow to and from the
energy community and DGSs in the non-ESS and shared
ESS cases. Figures 8(a), 8(c), 8(e), and 8(g) display the opti-
mal results for the non-ESS case. Similarly, Figures 8(b),
8(d), 8(f), and 8(h) show the optimal results for the shared
ESS case. The direction of power flow is indicated by the
sign, with power imported from the public grid shown as
positive and power exported to the public grid shown as
negative.

In the shared ESS case, most of the community’s electric-
ity demand could be satisfied by the renewable energy gener-
ation of the DGSs within the energy community, especially
when DGS power generation was substantial. Conversely,
during periods of insufficient DGS generation, the shared
ESS could fulfil part of the energy community electricity
demand by utilizing the surplus renewable electricity
injected into the public grid in the non-ESS case. As illus-
trated in Figures 8(d), 8(f), and 8(g), the interaction with
the public grid was significantly reduced compared to the
non-ESS case. This indicates that incorporating a shared
ESS is advantageous for the energy community, as it dimin-
ishes both peak power demands and the community’s
dependency on the public grid.

4.3.2. Impact of Subjectivity on the Performance of the Energy
Community and DGSs. The energy community and DGSs
are distinct stakeholders, regarded as rational entities capa-
ble of freely, voluntarily, and independently participating
in the community’s internal market to maximize their inter-
ests. This study implemented a hierarchical approach to
coordinate transactions among community members, aim-
ing to maintain independence, protect privacy, and ensure
data security. A centralized management scheme was
designed to assess the impact of subjectivity on the energy
community and DGSs.

The comparative case adopted the conceptual architec-
ture of an energy community introduced by reference [12],
wherein the internal market enables the sharing of commu-
nity profits among participants to ensure each member
profits more than if acting alone. The internal market setup
was consistent with the hierarchical framework proposed in
this study. The social welfare maximization method was
employed to determine the electricity transaction volume
among community members, thereby ensuring the efficient
allocation of resources. Benefits accrued to the community
were then shared among participants through the imple-
mentation of a nondiscriminatory sharing policy and the
Sharply value approach [52].

Furthermore, the introduction of subjectivity into the
energy community was investigated, and its effect was
quantified through the reference case. Figure 9 illustrates

the community’s technical, economic, and environmental
performance in both centralized and hierarchical cases.
Internal resources were coordinated effectively from the
perspective of maximizing social welfare due to strong
cooperation, resulting in the centralized approach perform-
ing well technically, economically, and environmentally.

Table 8: Technical and financial parameters of DGS components.

Parameter Unit Value

Wind turbine [54]

Hub height m 37

Cut-in wind speed m/s 3

Cut-out wind speed m/s 25

Rated wind speed m/s 15

Extreme wind speed m/s 59.5

Lifetime yrs 20

Photovoltaic panels [24, 55]

Derating factor [24] — 0.88

Lifetime yrs 20

Lithium-ion battery ESS

Round trip efficiency [56] % 90

Depth of discharge [57] % 90

Lifetime [24] yrs 10

Capital cost US $/kWh 330

O&M cost US $/kWh 0.015

Public grid

The CO2 emission factor of the power g/kWh 800

Feed-in tariff US $/kWh 0.04

Energy community

Management fee US $/kWh 0.006

Transmission cost [58] US $/kWh 0.003
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Figure 11: Time-of-use, community, and feed-in tariffs.
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However, adopting a centralized framework necessitates the
ECO acting as a benevolent planner, with the DGSO
sacrificing subjectivity for absolute trust in the ECO. This
requirement makes dispatch plans challenging to imple-
ment in an energy community with multiple stakeholders
and diminishes the dynamism of the electricity market.
Compared to the centralized method, the performance of
the hierarchical approach experienced a slight reduction in
all aspects, aligning with trends reported in other studies
[52]. In the hierarchical case, the SSR and SCR decreased
by 3.04% and the total operating costs and CO2 emissions
increased by 3.26% and 6.86%, respectively, as presented
in Table 6. The modest decline in performance highlights
the difference between the local optima achieved through
the hierarchical scheme that emerges as a viable choice
and an alternative to existing models.

Considering subjectivity, benefits gap, power-market
construction, network scale, computing performance, and
other factors, the hierarchical scheme is a good choice and
an alternative to existing schemes.

5. Conclusions

This study introduces a scheme for sharing energy and ESS
within the energy community. A two-layer optimization
framework is proposed enabling DGSs to engage in commu-
nity energy transactions freely, voluntarily, and indepen-
dently, while also considering participants’ privacy, thereby
ensuring participant subjectivity. The framework is charac-
terized by three main characteristics. First, DGSs can partic-
ipate in community interactions freely, voluntarily, and
independently. Second, only limited information is needed
for interactions between community participants, fully
addressing privacy protection and data security issues.
Third, the optimization of shared ESS sizes and community
energy interactions is integrated. Additionally, a technoen-
vironmental economic assessment of the proposed system
was conducted. Finally, a case study was conducted to
numerically evaluate the proposed model, and the effective-
ness, applicability, and benefits of the proposed framework
were discussed and validated. The following conclusions
were drawn from this study:

(1) Numerical simulation results indicate that shared
ESSs effectively enhance community participants’
performance, leading to higher SSR and SCR. The
SSR and SCR increased by 16.22% and 21.98%,
respectively. An increase in SSR and SCR within a
community significantly supports the public grid by
reducing peak demand and renewable energy
exports, especially in public grids with limited line
capacity

(2) The integration of shared ESSs enables the energy
community and DGSs to efficiently use local genera-
tion and avoid unnecessary curtailments

(3) The economic advantages are notable in the shared
ESS case, which can lower the total operating cost
of the community by 27.10%. However, the current

high investment cost represents the main barrier to
the financial viability of shared ESS

(4) Shared ESSs have also been demonstrated to reduce
carbon emissions. The energy community can
reduce carbon dioxide emissions by 33.24% annually

(5) With subjectivity considered, the SSR and SCR
decreased by 3.04%, while the total operating cost
and CO2 emissions increased by 3.26% and 6.86%,
respectively. Nonetheless, a model that incorporates
subjectivity enables DGSs to participate freely, vol-
untarily, and independently, enhancing market
dynamics

(6) Considering data security, performance, power mar-
ket construction, and network scale, a hierarchical
framework that considers subjectivity is a good
choice

The method utilized in this study becomes computa-
tionally intensive when applied to an energy community
that includes more than three DGSs, resulting in slower
processing. Future efforts will be dedicated to enhancing
the algorithm to improve computation speed. Moreover,
while the framework proposed in this study is specific, it
possesses the flexibility to be extended and applied to vari-
ous scenarios, depending on factors such as weather condi-
tions, available technologies, electricity market dynamics,
and dispatch strategies. This study can act as a valuable ref-
erence for planning and operational purposes, aiding the
decision-making process within the energy community
and the shared ESS design process. Although this study pre-
sents a planning approach for shared ESSs within energy
community settings, it does not address the ownership
and capital recovery aspects of shared ESSs. Hence, future
research will explore the capital recovery of shared ESSs
under varying market conditions and investigate the profit
model for shared ESSs.

Appendix

A. Supplementary Model

This section details the energy system components, includ-
ing WT and PV.

The instantaneous WT output power concerning the
wind speed at any time is defined as

PWT
t,m =

0 vt,m ≤ vcim, vt,m ≥ vcom ,

PWT,cap
m ⋅

vt,m − vcim
vratedm − vcim

vcim < vt,m < vratedm ,

PWT,cap
m vratedm ≤ vt,m < vcom ,

A 1

where vt,m is the wind speed at the WT hub of DGS m at
time t and vratedm , vcim, and vcom are the WT’s rated, cut-in,
and cut-out wind speeds for DGS m, respectively.
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The wind speed in the meteorological data needs to be
converted to the wind speed at the hub height of the WT

vt,m = vreft,m
Zm

Zref

α

, A 2

where vreft,m is the wind speed per meteorological data at time

t, Zm and Zref are the WT hub height of DGS m and wind
speed measurement altitude, respectively, and α = 1/7 is the
wind shear coefficient [53].

Instantaneous PV output power at any time can be mod-
elled as

PPV
t,m = PPV,cap

m ⋅DPV
m ⋅

It,m
ISTC

⋅ 1 + k Tc
t,m − TSTC ⋅ ηinv,

A 3

where DPV
m = 0 88 is the PV derating factor, It,m is the solar

irradiance of DGS m at time t, ISTC = 1000W/m2 is the inci-
dent standard radiation, k = −0 0045 is the temperature loss
coefficient, TSTC = 25°C is the PV-panel-cell temperature
under normal conditions, and ηinv = 90% is the converter
efficiency.

The ambient temperature (Ta
t,m) needs to be converted to

the hourly average cell temperature (Tc
t,m) of the PV module,

expressed as

Tc
t,m = Ta

t,m +
NOCT‐TNOCT

INOCT
, A 4

where NOCT = 45 ± 2°C is the standard operating cell tem-
perature, TNOCT = 20°C is the air temperature in the nominal
terrestrial environment (NTE), and INOCT = 800W/m2 is the
global solar flux.

B. Data Source

We considered three DGSs to cooperate to form an energy
community. The power generation equipment and installed
capacity of each DGS are shown in Table 7, and the corre-
sponding power demand is shown in Figure 10(a). Meteoro-
logical data, including wind speed, temperature, and solar
irradiance, for typical days of the four seasons at the location
depicted in Figures 10(b) and 10(c), were used to calculate
the output power of WTs and PVs.

The technical and financial parameters of DGS compo-
nents are shown in Table 8. The technical and economic
parameters of the same components of all DGSs are assumed
to be the same. Still, their installed capacities are considered
different. Time-of-use and fixed tariffs are used to purchase
and sell electricity from the public grid, respectively, applica-
ble in most cities in China. The tariff types described above
can be changed to expand the model according to local mar-
ket conditions. The community electricity price must be
between the time-of-use and feed-in electricity prices. The
community electricity price is determined by multiplying
the time-of-use electricity price by a coefficient, and the coef-

ficient is 0.8. The types of electricity tariffs used in this study
are shown in Figure 11.

Nomenclature

Abbreviations

ATC: Analytic Target Cascading
DGS: Distributed generation system
DGSO: Distributed generation system operator
EC: Energy community
ECO: Energy community operator
ESS: Energy storage system
MAS: Multiagent system
NSGA-II: Nondominated Sorting Genetic Algorithm II
P2P: Peer-to-peer
PV: Photovoltaic
SCR: Self-consumption rate
SSR: Self-sufficiency rate
TOSIS: Technique of Order Preference by Similarity to

an Ideal Solution
WT: Wind turbine.

Indexes and Sets

m, M: DGS index and set
n: NSGA-II iteration index
n′: ATC iteration index
t, τ: Time index and set.

Parameters

Cman: Unit management costs of the EC ($/kWh)
Com: Unit operational and maintenance costs of the

shared ESS ($/kWh)
TCcap: Investment costs of the shared ESS ($)
TCcom

m : Costs of the DGS m transactions with EC ($)
TCCO2

m : Cost of CO2 emissions of the DGS m ($)

TCDGS
m : Total operating costs of the DGS m ($)

TCESS: Total cost of the shared ESS ($)
TCgrid

m : Costs of DGS m transactions with public grid ($)
TCman

m : Management fees paid by DGS m to EC ($)
TCom: Operation costs of the shared ESS ($)
TCrep: Replacement costs of the shared ESS ($)
TE: Total emissions (t)
TIESS: Income of the shared ESS ($)
TIman: Management fees of the EC (K$)
TRcom: Profits of the EC (K$)

Constants

α: Wind shear coefficient
ηch, ηdisc: Charge/discharge efficiency of the shared

ESS (%)
ηinv : Electricity converter efficiency (%)
β: CO2 emission factor (t/kWh)
σ: Quadratic penalty term update coefficient
γ: Update factor for step length
ε: Algorithmic precision

23International Journal of Energy Research



φt,m: Lagrange multipliers
λt,m: Quadratic penalty function coefficients
πCO2 : Unit CO2 emission cost ($/t)
πESS: Unit usage fee of the shared ESS ($/kWh)
πgm
t : Time-of-use tariffs for public grid

($/kWh)
π man: Unit management fee of the EC ($/kWh)
π mg: Feed-in tariff ($/kWh)
πpri
t : Intracommunity traded tariffs ($/kWh)

ΔT : Time interval in optimization (h).
Ccap: Unit investment costs of the shared ESS

($/kWh)
Crep: Unit replacement costs of the shared ESS

($/kWh)
CRF: Capital recovery factor
Ecap,max: The maximum available installable

capacity of the shared ESS (kWh)
EESS,min, EESS,max: Minimum/maximum available capacity of

the shared ESS (kWh)
f : Inflation rate (%)
loadt,m: Electricity load of the DGSm at time t (kW)
pch,max, pdisc,max: Maximum charge/discharge power of the

shared ESS at time t (kW)
pPVt,m: Photovoltaic power generation of the DGS

m at time t (kW)
pWT
t,m : Wind power generation of the DGS m at

time t (kW)
qcm,max, qmc,max: Maximum power purchase/sale restrictions

from/to EC for DGS m at time t (kW)
qgm,max, qmg,max: Maximum power purchase/sale restrictions

from/to public grid for DGS m at time t
(kW)

r: Actual discount rate (%)
r′: Nominal discount rate (%)
T : Optimization duration (h)
y: ESS lifespan (yrs)
Y : Project life (yrs).

Variables

EESS
t : Available capacity of the shared ESS at time t

(kWh)
E cap: Installable capacity of the shared ESS (kWh)
qt,m, qct,m: DGS m/EC predicted net electricity purchased

from the EC for DGS m at time t (kWh)
qccmt,m, qc

mc
t,m: Recommended electricity purchased from (sold

to) the EC for DGS m at time t (kWh)
qgmt,m, q

mg
t,m: The electricity purchased from (sold to) the

public grid for DGS m at time t (kWh)
qcmt,m, q

mc
t,m: The electricity purchased from (sold to) the EC

for DGS m at time t (kWh)
pcht , p

disc
t : Charge/discharge power of the shared ESS at

time t (kW).
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