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The lithium-ion capacitor (LIC) is a new type of hybrid energy storage device, which combines the advantages of lithium-ion
battery and electric double layer capacitor. To achieve efficient and reliable application of LIC in practical scenarios, accurate
model and state estimation method are needed. In this work, the electrical behavior of LIC is studied, which is then described
by the Thevenin model. A multi-innovation filter- (MIF-) based coestimation method is proposed, in which the multi-
innovation linear Kalman filter (MI-LKF) is used for model parameter identification, the multi-innovation cubature
Kalman filter (MI-CKF) is used for state of charge estimation, and the multi-innovation extended Kalman filter (MI-EKF)
is used for state of health estimation. Compared to traditional methods, this method can significantly improve estimation
accuracy by only expanding the innovation used to update the state from a single moment to multiple moments. The
experimental results indicate that the estimation errors of SOC and SOH can be constrained within ±0.5%. In addition,
the proposed method has good robustness and can achieve high-precision state estimation even in the face of noise
interference, uncertain initial values of the algorithm, and uncertain starting operating points.

1. Introduction

The whole world is in a critical period of energy transition
due to the excessive consumption of fossil fuel and the
increasing of environment temperature [1]. In order to
achieve the goal of reducing the environment temperature
and zero carbon dioxide emissions, countries are trying to
increase the penetration of renewable energy and develop
green energy storage technology [2, 3]. The lithium-ion
capacitor (LIC) is a new type of rechargeable energy storage
device, which consists of a lithium-ion battery (LIB) type
positive electrode, an electric double layer capacitor (EDLC)
type negative electrode, and a Li-ion conducting organic

electrolyte [4]. As reported in literatures, the LIC combines
the advantages of LIC and EDLC and has the ability to pro-
vide high-power density (3-15 kWkg-1) and high-energy
density (10-30Whkg-1) [5–7].

The LIC has a wide range of application, including sta-
tionary energy storage systems and electric vehicles. To
ensure the reliability and safety of LIC during its operation,
a management system is indispensable, which can monitor
the states of LIC in real time and make reasonable operation
control strategy [8]. Hence, the accurate modeling and state
estimation of LIC have attracted the attention of researchers.

Similar to the LIBs, the internal electrochemical reaction
of LIC can be described in detail by an electrochemical
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models (EMs), and the external electrical behavior of LIC can
be expressed in a simple way by equivalent circuit models
(ECMs) and fractional order models (FOMs) [9–11]. In gen-
eral, modeling with EMs can obtain a very high accuracy.
However, plenty of partial differential equations (PDEs) in
EMs makes it hard to solve in short time and thus hard to
use in practical application. In contrast, the good balance
between model complexity and accuracy of ECMs and FOMs
has been proven by researchers, and researches aiming at
online state estimation have been developed based on these
models [12–14].

State of charge (SOC) and state of health (SOH) are two
crucial parameters to battery management system (BMS) for
LIBs, as they indicate the remaining capacity of current cycle
and the ability of long-term cycling of LIBs [15, 16]. The
operating mechanism of LIC is similar to LIB; therefore,
the estimation of SOC and SOH for LIC is indispensable.

A number of state estimation methods have been put
up for LIBs. Among methods for SOC estimation, the sim-
plest one is the ampere hour integration (AHI) method;
however, the measurement error and the initial error
may make the AHI method failed [17]. The open circuit
voltage (OCV) is the most commonly used as the index
for the look-up table method as it decreases monotonically
with the SOC, but long time rest is needed for obtaining
an accurate OCV, which limits its application in online
usage scenario [18]. Data-driven method can ignore the
physical process and internal reaction of a system; how-
ever, it exclusively relies on the quality of dataset and
learning method [19]. Compared with the above methods,
model-based methods have shown certain advantages and
have also received widespread attention. Ref. [20] pro-
posed an improved adaptive square-root cubature Kalman
filter (IASRCKF) for LIB SOC estimation, and the impact
of parameter settings on its performance was discussed. In
Ref. [21], the nonlinear autoregressive exogenous is used
to optimize the Levenberg-Marquardt training algorithm,
and Bayesian regularization (BR) for LIB SOC estimation,
and the author also studied the relationship between the
accuracy of NARX technology and the training dataset.
In Ref. [4], Yang et al. successfully applied improved cuba-
ture Kalman filter (ICKF) to the SOC estimation of LIC,
and its effectiveness has been verified under various work-
ing conditions, providing a certain reference for the state
estimation work of LIC. Compared to the SOC, the SOH
is a slow varying parameter. Nevertheless, the online esti-
mate of SOH is significant as it plays a decisive role in
the estimation accuracy of SOC. To date, many types of
coestimation methods for SOC and SOH of LIBs have
been put forward. In [22], Plett achieved real-time estima-
tion of LIB SOH using EKF by reconstructing the SOC
equation. In Ref. [23], an adaptive dual square-root Kal-
man filtering (ADSRCKF) with the dormancy zone is pro-
posed to achieve real-time coestimation for SOC and SOH
of LIB.

We found that although there has been in-depth research
on the state estimation of LIB and in order to improve the
estimation accuracy, existing methods are gradually showing
a trend of being more complex, which is unfavorable for

future installation on BMS. Meanwhile, to the best of the
authors’ knowledge, there are few literatures which report
the coestimation of LIC SOC and SOH. Hence, this work is
aimed at proposing a joint SOC and SOH estimation method
suitable for LIC, and this method is as simple and lightweight
as possible, with prospects for future deployment in BMS.
Main contribution of this work can be summarized as fol-
lows: (1) a Thevenin model for LIC is established to simulate
its dynamic characteristics. (2) A multi-innovation filter
framework is constructed for SOC and SOH estimation of
LIC, where the multi-innovation linear Kalman filter (MI-
LKF) is used for model parameter identification, the multi-
innovation cubature Kalman filter (MI-CKF) is used for
SOC estimation, and the multi-innovation extended Kalman
filter (MI-EKF) is used for SOH estimation. (3) The robust-
ness of the proposed method was verified under algorithm
initial value uncertainty, state actual initial value uncertainty,
and noise disturbance.

This work is organized as follows. The modeling of LIC
is illustrated in Section 2. The working principles of the pro-
posed MIF-based coestimation method for SOC and SOH
are presented in Section 3. The experimental results and
analysis are shown in Section 4. Finally, the conclusion is
given in Section 5.

2. Modeling of LIC

2.1. Model Selection. Among various types of ECMs, the
Thevenin model has been approved to have a good balance
between model complexity, accuracy, and generalization for
LIBs [24]. The Thevenin model has been proved to be
applicable to simulate the voltage response of LIC, and
the results show that the Thevenin model can approxi-
mately describe the electric behavior of LIC under the con-
ditions of charging, discharging, and shelving [25]. The
Thevenin model is shown in Figure 1, which consists of
an ideal voltage source, a series resistance, and a RC net-
work. The ideal voltage source UOC represents the OCV
of the LIC, which has a functional relationship with the
SOC. The series resistance (i.e., ohmic resistance) R0 is used
to characterize the transient response during charge and
discharge stages. The polarization resistance Rp and polari-
zation capacitance Cp are connected in parallel to form the
RC network, which characterize the polarization effect dur-
ing charge and discharge stages.
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Figure 1: Scheme of the Thevenin model.

2 International Journal of Energy Research



Based on the Thevenin model and the Kirchhoff’s law,
the electric behavior of LIC can be expressed as follows:

U t =UOC + IlR0 +Up,

I l =
Up

Rp
+ Cp

dUp

dt
,

1

where U t represents the terminal voltage of LIC, It repre-
sents the load current, and Up is the polarization voltage.
Generally, in order to simulate the behavior of the LIC, Eq.
(1) should be expressed in discrete time form, as shown in

Up,k =Up,k−1 exp −
Δt

RpCp
+ I l,kR0 1 − exp −

Δt
RpCp

,

U t,k =UOC,k +Up,k + Il,kR0,

2

where Δt represents the sampling time and the subscript k
represents the kth step.

2.2. OCV Curve Fitting. Low current OCV (LO) test is car-
ried out to obtain the OCV data. Constant current charging
of LIC is first carried out with a rate of 0.01C (approxi-
mately 0.05A) to its upper cut-off voltage. After a shelving
time of 30min, the LIC is then discharged under a constant
current with a rate of 0.01C to its lower cut-off voltage. The
results of LO test are shown in Figure 2.

To evaluate the impacts of OCV on the simulation of
LIC states, results of the charging process, discharging pro-
cess, and average of charging and discharging process are
taken into account. It should be noted that the average one
is calculated according to the following equation:

UOC,ave =
UOC,dis +UOC,cha

2
, 3

where UOC,cha represents the OCV obtained from charging
LO process, UOC,dis represents the OCV obtained from dis-
charging LO process, UOC,ave represents the average value

of the former two OCV, and these three OCV are shown
in Figure 3.

Finally, a polynomial of degree 8 is used to fit the func-
tional relationship between OCV and SOC, which is
expressed as

UOC = a0 + a1x + a2x
2+⋯+a8x8, 4

where x represents SOC and ai(i = 1, 2,⋯, 8) represents the
coefficients need to be fitted.

2.3. MI-LKF-Based Parameter Identification. Besides the
OCV curve, the parameters of the electrical components
used in the Thevenin model are essential as well. In order
to identify the parameters in real time, the relationship
between parameters and measurable signals should be
expressed in linear form. By applying the bilinear transform
to the transfer function, the recursive form of Eq. (1) in dis-
crete time can be obtained. The calculation processes are
shown as follows:

Ut s −UOC s
I l s

=
R0 + Rp + R0τs

1 + τs
, 5
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Figure 2: Results of LO test: (a) voltage profile; (b) current profile.
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Figure 3: Results of OCV obtained from different LO tests.
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s =
2
Δt

1 − z−1

1 + z−1
, 6

Ut,k = a0U t,k−1 + 1 − a0 UOC,k + a1I l,k + a2I l,k−1, 7

where τ = Rp × Cp is the time constant of the RC network. In
addition, a0, a1, and a2 are related to R0, Rp, and τ, and they
are expressed as

a0 =
2τ − Δt
2τ + Δt

,

a1 =
RpΔt + R0 2τ + Δt

2τ + Δt
,

a2 =
RpΔt + R0 −2τ + Δt

2τ + Δt

8

With Eq. (6) and Eq. (7), the model parameters can be
identified by recursive algorithm, and the applicability of
the liner KF (LKF) algorithm in this usage scenario has been
proven in our previous work [26, 27]. Nevertheless, the clas-
sical filter only uses single innovation to update the esti-
mated states, and more innovations from the model are
not utilized. The multi-innovation (MI) algorithm proposed
by Ding and Chen in 2007 is to address this issue [28]. With
the MI algorithm, the innovation scalar will be extended to a
vector, which contains more innovation value. The innova-
tion vector is expressed as

EL = ek ek−1 ek−2 ⋯ ek−L+1
T , 9

where EL represents the innovation vector, L is the length of
the innovation vector, and ek represents the system error at
the kth iterative step. Meanwhile, the corresponding gain will
be also expanded to form of vector, which is expressed as

KL = Kk Kk−1 Kk−2 ⋯ Kk−L+1
T , 10

where KL represents the gain vector and Kk represents the
gain value at kth iterative step. Then, the state estimated by
the MI-based filter algorithm should be updated by

xk = x−k + KLEL, 11

where xk represents the estimated state and x−k represents the
priori estimation of the state.

In this work, the MI-LKF algorithm is implemented for
parameter identification of LIC, and the recursive process
of MI-LKF is given in Algorithm 1.

3. Coestimation

3.1. MI-CKF-Based SOC Estimation. The SOC is defined as
the ratio of remaining capacity at present to its maximum
available capacity, which is expressed as follows:

SOC =
Ccur
Cmax

× 100%, 12

where Ccur represents the remaining capacity at present and
Cmax is the maximum capacity available. The remaining

Regression model:
U t,k = θTkφk
Step I: initialization

For k = 0, set θ0, Pl,0, Ql, and Rl.
Step II: computation

State prior estimation
θ−k = θk−1

Error covariance prior estimation
P−
l,k = Pl,k−1 +Ql
Kalman gain calculation

K l,k = P−
l,kφ

T
k φkP

−
l,kφ

T
k

−1

Innovation value calculation
e1,k =Ut,k − θ−,Tk φk

Innovation vector and gain vector calculation
E1,L = e1,k e1,k−1 e1,k−2 ⋯ e1,k−L+1

T

K1,L = K1,k K1,k−1 K1,k−2 ⋯ K1,k−L+1
T

State posterior estimation
θk = θ−k + K1,LE1,L

Error covariance posterior estimation
Pl,k = I − K l,kφk P−

l,k

where θk = a0,k  1 − a0,k UOC,k a1,k a2,k
T represents the identified vector, φk = U t,k−1 1 Il,k I l,k−1 represents the input vec-

tor, K l is the Kalman gain vector of MILKF, Pl is the covariance matrix, Ql is the process noise covariance matrix, Rl is measurement
noise covariance matrix, and I is the unit matrix.

Algorithm 1: Recursive process of MI-LKF.
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capacity at present, Ccur, can be calculated by the AHI
method by expressing the SOC as

SOCt = SOCt0
+

t

t0

ηI1
Cmax

dt, 13

where SOCt0
and SOCt represent the initial and current

value of SOC, respectively, and η is the coulomb efficiency.

Furthermore, the discrete time form of Eq. (9) is shown as
follows:

SOCk = SOCk−1 +
ηIt,kΔt
Cmax

14

Integrating Eq. (11) with representation of the polari-
zation Up in Eq. (2), the state space equation of LIC, that
is indispensable for employing the CKF, can be obtained
as follows:

Nonlinear system:
xc,k = f c xc,k−1 k−1, uk +wk

zk = g xc,k k,uk + vk
Step I: initialization

For k = 0, set xc,0 0, Pc,0 0, Qc, and Rc.
Step II: computation

Time update
Cubature points evaluation

xi,k−1 k−1 = Sk−1 k−1ξi + xc,k−1 k−1

where Sk−1 k−1 is calculated by factorizing Pc,k−1 k−1 according to Pc,k−1 k−1 = Sk−1 k−1S
T
k−1 k−1, and ξ = n

1 0 −1 0

0 1 0 −1
Cubature points propagation

x∗i,k−1 k−1 = f c xi,k−1 k−1, uk
State estimation

xc,k k−1 = 1/2n∑2n
i=1x

∗
i,k−1 k−1

Error covariance estimation
Pc,k k−1 = 1/2n∑2n

i=1x
∗
i,k−1 k−1x

∗,T
i,k−1 k−1 − xk k−1x

T
k k−1

Measurement update
Factorization and cubature points evaluation

Pc,k k−1 = Sk k−1S
T
k k−1

Xi,k k−1 = Sk k−1ξi + xc,k k−1
Cubature points propagation

Zi,k k−1 = g Xi,k k−1, uk
Measurement estimation:

zk k−1 = 1/2n∑2n
i=1Zi,k k−1

Innovation covariance matrix estimation
Pzz,k k−1 = 1/2n∑2n

i=1Zi,k k−1Z
T
i,k k−1 − zk k−1z

T
k k−1 + R

Cross-covariance matrix estimation
Pxz,k k−1 = 1/2n∑2n

i=1Xi,k k−1Z
T
i,k k−1 − xc,k k−1z

T
k k−1

Kalman gain calculation
Kc,k = Pxz,k k−1/Pzz,k k−1

Innovation value calculation
ec,k =U t,k − zk k−1

Innovation vector and gain vector calculation
Kc,L = Kc,k Kc,k−1 Kc,k−2 ⋯ Kc,k−L+1

T

State updating
xc,k k = xk k−1 + Kc,LEc,L

Error covariance estimation
Pc,k k = Pc,k k−1 − Kc,LPzz,k k−1K

T
c,L

Here, Qc is the process noise covariance matrix, Rc is the measurement noise covariance matrix, ξi is the ith column of ξ, and n
denotes the dimension of state vector and n = 2.

Algorithm 2: Recursive process of MI-CKF.
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Nonlinear system:
xe,k = f e xe,k−1 k−1, uk +wk

yk = g xe,k k,uk + vk
Step I: initialization

For k = 0, set xe,0 0, Pe,0 0, Qe, and Re.
Step II: computation

Jacobian matrix calculation
Ak = ∂f e xe, uk /∂xe xe=xe,k−1Ck = ∂ge xe, uk /∂xe xe=xe,k−1

Error covariance prior estimation
Pe,k k−1 = Ak−1Pe,k−1A

T
k−1 +Qe

State prior estimation
xe,k k−1 = f e xe,k−1, uk

Kalman gain calculation

Ke,k = Pe,k k−1C
T
k CkPe,k k−1C

T
k

−1

Innovation value calculation
ee,k =U t,k − ge xe,k k−1, uk

Innovation vector and gain vector calculation

Ee,L = ee,k ee,k−1 ee,k−2 ⋯ ee,k−L+1
T

Ke,L = Ke,k Ke,k−1 Ke,k−2 ⋯ Ke,k−L+1
T

State posterior estimation
xe,k k = xe,k k−1 + Ke,LEe,L

Error covariance posterior estimation
Pe,k k = I − Ke,kCk Pe,k k−1
where Ke,L is the gain vector of MI-EKF, Pe is the covariance matrix, Qe is the process noise covariance matrix, and Re is the mea-
surement noise covariance matrix.

Algorithm 3: Recursive process of MI-EKF.

Measurement signals
Ut,k Ut,k−1 It,k It,k−1

E1,L = [e1,k e1,k−1 e1,k−2 … e1,k−L+1]T

K1,L = [K1,k K1,k−1 K1,k−2 … K1,k−L+1]T

Ec,L = [ec,k ec,k−1 ec,k−2 … ec,k−L+1]T

Kc,L = [Kc,k Kc,k−1 Kc,k−2 … Kc,k−L+1]T
Ee,L = [ee,k ee,k−1 ee,k−2 … ee,k−L+1]T

Ke,L = [Ke,k Ke,k−1 Ke,k−2 … Ke,k−L+1]TP1,L = (I − K1,k𝜑k)P1
−
,k

Zi,k|k−1 = g(Xi,k|k−1,uk)

ee,k = Ut,k − ge(Xe,k|k−1,uk)

xe,k|k−1 = fe(xe,k−1,uk)

Pc,k|k = Pc,k|k−1 − Kc,LPzz,k|k−1K
T
c,L

xc,k|k = xk|k−1 + Kc,LEc,L xe,k|k = xe,k|k−1 + Ke,LEe,L

Pe,k|k = (I − Ke,kCk)Pe,k|k−1

Ke,k = Pe,k|k−1C
T
k[CkPe,k|k−1C

T
k]
−1

Pe,k|k−1 = Ak−1Pe,k−1A
T
k−1 + Qe

R0 R0 𝜏

Ut,k = a0Ut,k−1 + (1−a0) UOC,k +
a1I1,k + a2I1,k−1 e1,k = Ut,k − 𝜃k

−,T 𝜑k

K1,k = P1
−
,k𝜑k

T (𝜑kP1
−
,k𝜑k

T)−1

xi,k−1|k−1 = Sk−1|k−1𝜉i + xc,k−1|k−1

Kc,k = Pxz,k|k−1/Pzz,k|k−1

ec,k = Ut,k − zk|k−1

Xi,k|k−1 = Sk|k−1𝜉i + xc,k|k−1

x⁎i,k−1|k−1 = fc(xi,k−1|k−1, uk)P1
−
,k = P1,k−1 + Q1

𝜃t
− = 𝜃k−1

𝜃k = 𝜃k
− + K1,LE1,L

Cubature points evaluation Innovation covariance matrix Jacobian matrix

Prior error covariance

Prior state

Kalman gain

Innovation value

Innovation and gain vector

Posterior error covariance

Posterior state

Cross-covariance matrix

Kalman gain

Innovation value

Innovation and gain vector

Posterior error covariance

Posterior state

Cubature points propagation

Prior state

Error covariance

Cubature points evaluation

Cubature points propagation

Measurement estimation

Ut SOC SOH

MI-LKF based
parameters

identification

SOCk-1

𝜃k

Cmax, k-1

MI-CKF based
SOC estimation

MI-EKF based
SOH estimation

Prior state

Prior error covariance

Kalman gain

Innovation value

Innovation and gain vector

Posterior error covariance

Posterior state

Eq. (8)

xc,k|k−1 =  Σ  x⁎i,k−1|k−1
1

2n
2n
k=1

Pzz,k|k−1 =  Σ  Zi,k|k−1Z
T
k|k−1

   − zk|k−1z
T
k|k−1+ R

1
2n

2n
k=1

Pxz,k|k−1 =  Σ  Xi,k|k−1Z
T
i,k|k−1

    − xc,k|k−1z
T
k|k−1

1
2n

2n
i=1

Pc,k|k−1 =  Σ  x⁎i,k−1|k−1x
⁎
i,
,T
k−1|k−1

    −xk|k−1x
T
k|k−1

1
2n

2n
i=1

zk|k−1 =  Σ   Zi,k|k−1
1

2n
2n
i=1

Ak = 
𝛿fe(xe,uk)

𝛿xe xe = xe,k-1
Ck = 

𝛿ge(xe,uk)
𝛿xe xe = xe,k-1

Figure 4: Flow chart of the proposed method.
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Figure 5: Results and corresponding OCV-SOC curve fitting: (a, b) based on discharging voltage; (c, d) based on average voltage; (e, f) based
on charging voltage.
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Figure 6: Results of parameter identification: (a1–a3) under dynamic test 1; (b1–b3) under dynamic test 2.

7International Journal of Energy Research



SOCk

Up,k

=

1 0

0 exp −
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RpCp
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+

ηΔt
Cmax

R0 1 − exp −
Δt

RpCp

Il,k +
w1,k

w2,k

,

15

where w1,k and w2,k represent the state noise.
The observation equation of LIC can be expressed as

Ut,k =UOC,k +Up,k + Il,kR0 + vk, 16

where vk represents the observation noise.
The CKF was proposed by Arasaratnam et al. in 2009,

which is derivative-free and is regarded as an optimal
approximation to the Bayesian filter that could be designed
in a nonlinear system [29]. In this work, the MI-CKF is used
to perform state estimation. Defining xc = SOC Up

T as
the system state, u = It as the system input and z =U t as
the system output, the MI-CKF based SOC estimation of
LIC can be processed as per the steps listed in Algorithm 2.

3.2. MI-EKF-Based SOH Estimation. The SOH is defined as
the ratio of the current maximum available capacity to the
nominal capacity, which is expressed as

SOH =
Cmax
Cnom

, 17

where Cmax represents the current maximum available
capacity and Cnom is the nominal capacity.

Considering the slow varying characteristic of the capac-
ity, the state space equation of capacity is set as

Qmax,k =Qmax,k−1 +w3,k, 18

where w3,k represents the state noise. And Eq. (11) is still
used as the observation equation in SOH estimation.

From Eq. (11) and Eq. (13), we can observe that capacity
and voltage are related by a very complex nonlinear relation-
ship. Meanwhile, it is difficult to obtain a functional relation-
ship between voltage and capacity like OCV-SOC. The EKF
made local linearization to a nonlinear system by using Tay-
lor expansion, which provides a way to decouple capacity
and voltage. Hence, in this work, according to Eq. (10) and
the OCV curve, first-order Taylor expansion of the observa-
tion equation based on the capacity is performed at each
time step, which is expressed as

∂Ut

∂Cmax
=

∂Ut

∂SOC
×
∂SOC
∂Cmax

=
∂UOC
∂SOC

×
∂SOC
∂Cmax

19

Furthermore, define Ak = 1 and Ck = ∂UOC/∂SOC
SOC=SOCk−1

× ∂SOC/∂Cmax Cmax=Cmax,k−1
; the EKF-based SOH

estimation of LIC can be conducted. It should be noted that
capacity is a slowly changing parameter. In order to make
the estimation more efficient and reliable, this work uses
MI algorithm to improve the EKF; thus, the MI-EKF can
be processed as the steps listed in Algorithm 3.

Based on the above framework, the online parameter
identification and coestimation of SOC and SOH for LIC
can be implemented follow the flow chart illustrated in
Figure 4.

4. Experimental Analysis

In this work, a LIC with capacity of 5Ah was tested under
various conditions to validate the proposed method. The
tests were carried out at room temperature under two cus-
tom dynamic tests.

4.1. OCV Curve Fitting Results. The results of OCV curve fit-
ting and corresponding errors are shown in Figure 5. As
shown in the results, the fitting errors are limited within ±
4 × 10−3V, ±0.05V, and ±8 × 10−3V, respectively, which
indicate that the fitting curves have high accuracy. However,
the three curves show a deviation within about 40mV
between each other, which may lead to significant perfor-
mance differences on the estimation of states.

4.2. Parameter Identification. The parameter identification
results of MI-LKF are shown in Figure 6. With increasing
time, the ohmic resistance and polarization resistance
increase (i.e., SOC decreases), while the time constant
decreases. Although under various test condition values of
the parameters are different, overall trends are the same. It
implies that under various test conditions, the proposed
method has similar ability to identify parameters. The
parameter accuracy is verified according to eq. (2), and the
results are listed in Table 1. Along with the results depicted
in Figure 6, it suggests that the model established with MI-
LKF outperforms that with forgetting factor least squares
(FFRLS) and LKF. Due to strong fluctuations in the param-
eters obtained by FFRLS, significant errors cannot be
avoided. While the smaller error indicates that MI-LKF has
better simulation ability for the model under dynamic
conditions.

Table 1: Voltage simulation error statistics.

Test condition Algorithm MAE (V) RMSE (V)

Dynamic test 1

FFRLS 0.0271 0.0443

LKF 0.0014 0.0173

MI-LKF 0.0013 0.0173

Dynamic test 2

FFRLS 0.0125 0.0250

LKF 0.0019 0.0173

MI-LKF 0.0014 0.0171
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4.3. SOC Estimation. The results of voltage estimation along
with the corresponding errors are shown in Figure 7, and the
statistical mean absolute error (MAE) and root mean square
error (RMSE) values are shown in Table 2. As illustrated in
Figure 7, the voltage estimation errors obtained by using
these three OCV sources are limited within a very small
range, with the difference between each other being small.
It indicates well matching between the established Thevenin
model and the electrical behavior of LIC. Besides, based on
the slight difference between the three results, it can be
inferred that the discharge OCV-based one is more suitable.

The results of SOC estimation along with the corre-
sponding errors are shown in Figure 8, while the statistical
results are shown in Table 3. In this part, impact of OCV
curve on the SOC estimation error becomes particularly
obvious. Adopting discharge OCV limits the estimation
error within ±1% (with MAE ≤ 0 51% and RMSE ≤ 0 61%).
However, switching to the average OCV results in an
increase of the MAE to more than 2.46% (charge OCV in
4.33%), while the RMSE also increases to more than 2.62%
(charge OCV in 4.61%). It should be noted that the initial
SOC is set as 100%, implying 0% initial error. This confirms
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Figure 7: Results of voltage estimation and corresponding errors: (a, b) under dynamic test 1; (c, d) under dynamic test 2.

Table 2: Statistical results of voltage estimation error.

Test condition OCV data source MAE (V) RMSE (V)

Dynamic test 1

Discharge OCV based 0.0010 0.0169

Average OCV based 0.0010 0.0170

Charge OCV based 0.0009 0.0169

Dynamic test 2

Discharge OCV based 0.0008 0.0172

Average OCV based 0.0008 0.0172

Charge OCV based 0.0008 0.0172

9International Journal of Energy Research



the analysis based on voltage estimation error, and the dis-
charge OCV is more suitable for establishing LIC model
and further SOC estimation.

Figure 9 depicts the comparison results between the pro-
posed MIF method and four commonly used algorithms for
SOC estimation, including the EKF [30], the H infinity filter
(HIF) [29], the CKF [31], and the square-root cubature Kal-
man filter (SRCKF) [32], where for such algorithms, the
parameters are obtained with FFRLS. In addition, the statis-
tical results of estimation error are listed in Table 4. It can be
observed that unlike other algorithms that exhibit strong

fluctuations in SOC estimation under long-term constant
current conditions, results obtained by MIF can converge
to experimental value with high precision. The MAE and
RMSE are limited within 0.47% and 0.55%, respectively. It
is a significant improvement compared to the MAE of over
3% and RMSE of over 4% obtained by other algorithms. Fur-
thermore, this indicates that the MIF method has greatly
improved the accuracy of SOC estimation by incorporating
more innovations, eliminating the need for more complex
methods, which is of positive significance for the practical
application of the model-based method.
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Figure 8: Results of SOC estimation and corresponding errors: (a, b) under dynamic test 1; (c, d) under dynamic test 2.

Table 3: Statistical results of the SOC estimation error.

Test condition OCV data source MAE (%) RMSE (%)

Dynamic test 1

Discharge OCV based 0.47 0.57

Average OCV based 2.36 2.51

Charge OCV based 4.31 4.58

Dynamic test 2

Discharge OCV based 0.51 0.61

Average OCV based 2.46 2.62

Charge OCV based 4.33 4.61
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The initial value of the estimate algorithm plays a crucial
role in SOC estimation, as it can significantly impact the
accuracy of the estimation algorithm. To validate the reli-
ability of the proposed method, experiments with four dif-
ferent initial values for MIF are conducted, and the
corresponding results are presented in Figure 10. The figure
clearly indicates that the convergence time is primarily influ-
enced by the initial error. Specifically, as the initial value
increases, the convergence time also increases. However, it
is worth noting that the SOC estimation can converge to a
high level of precision in less than 10 minutes. Furthermore,
once the SOC estimation has converged, the estimation
errors remain nearly the same regardless of the magnitude
of the initial error. This observation underscores the robust-
ness of the proposed method in handling initial SOC errors
and highlights its ability to provide consistent and reliable
SOC estimations.

In practical applications, LICs may not start working at
full charge state, which means that the SOC corresponding
to the actual initial operating point of the LIC may be
unknown. In this work, the proposed method is validated
at different initial operating points of LIC, where the actual
initial values of SOC are 80%, 60%, and 40%, and results
are illustrated in Figure 11. As it depicts, the initial value
of MIF is set to 100%, which means that the maximum error
from the actual initial operating point of SOC is 60%. Nev-
ertheless, the proposed MIF can quickly track to the actual
operating point of the LIC in a short period of time, with
an error limit of ±3%, indicating the good robustness of
the proposed method in dealing with such uncertainty.

The potential error caused by measurement noise cannot
be ignored. This work validates the performance of proposed
method under noise disturbance as well. Gaussian noise is
added to the raw current and current data, where the inten-
sity of current noise is 25mA and 75mA, and the intensity
of voltage noise is 1mV and 2.5mV. SOC estimation results
under such disturbance are depicted in Figure 12. Overall,
the increase in noise intensity can lead to an increase in
SOC estimation error, but MIF can still limit the error to
within ±3%, indicating the robustness of the proposed
method in dealing with such uncertainties.

4.4. SOH Estimation. The SOH estimation results and corre-
sponding errors are shown in Figure 13 (a1–b2). It should be
noted that for comparison, the R-based estimation results
are shown in Figure 13 (c1, c2) as it associated with SOH
as well [33], where the internal resistance is estimated using
method reported in [34]. Results suggest that compared to
the deviation from experimental values obtained by the
EKF-CKF, the proposed MIF method can estimate SOH
with higher accuracy (with error limited within ±0.5%).
Meanwhile, the results of the R-based method showed

0

100

50

0 500
Time (min)

SO
C 

(%
)

1000 1500 2000

–10

20

10

0 500
Time (min)

SO
C 

er
ro

r (
%

)

1000 1500 2000

Experimental
EKF
HIF

CKF
SRCKF
MIF

0

(a1)

(a2)

0 500
Time (min)

1000 1500 200

a2)

(a)

0

100

50

0 500
Time (min)

SO
C 

(%
)

1000 1500 2000

–20

20

0 500
Time (min)

(b1)

(b2)

SO
C 

er
ro

r (
%

)

1000 1500 2000

Experimental
EKF
HIF

CKF
SRCKF
MIF

0

0 500
Time (min)
1000 1500 2000

b2)

(b)

Figure 9: Results of voltage and SOC estimation and corresponding errors: (a1, a2) under dynamic test 1; (b1, b2) under dynamic test 2.

Table 4: Statistical results of the proposed method.

Conditions Algorithms MAE (%) RMSE (%)

Dynamic test 1

EKF 3.96 5.36

HIF 3.03 4.11

CKF 3.95 5.35

SRCKF 3.29 4.40

MIF 0.44 0.53

Dynamic test 2

EKF 3.03 4.39

HIF 3.19 4.60

CKF 3.03 4.38

SRCKF 3.09 4.35

MIF 0.47 0.55

11International Journal of Energy Research



significant fluctuations, especially during the low rate dis-
charge stage at the end of the operating conditions. It indi-
cates that the method proposed in this work has a more
accurate and reliable estimation ability in such application
scenarios.

Figure 14 illustrates the SOH estimation results with dif-
ferent initial values. It can be seen that the estimated value of
MIF needs to be iteratively calculated for a certain period of
time before it can track the experimental value. This may be
because the capacity of the battery is a slowly changing
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Figure 10: SOC estimation errors with various initial value: (a) under dynamic test 1; (b) under dynamic test 2.

MIF
SOC error

Experimental

-20

0

20

-5

-10

-15

-20

0

5

40

60

80

100

SO
C 

(%
)

0 200 400 600 800 1000 1200 1400 1600
Time (min)

SO
C 

er
ro

r (
%

)

(a)

MIF
SOC error

Experimental

-20

0

20

-5
-10
-15

-40

-20
-25
-30
-35

0
5

40

60

80

100

SO
C 

(%
)

SO
C 

er
ro

r (
%

)

0 200 400 600 800 1000 1200 1400
Time (min)

(b)

MIF
SOC error

Experimental

-20

0

20

40

60

80

100

SO
C 

(%
)

0 100 200 300 400 500 600 700 800
Time (min)

-10

-60

-50

-40

-20

-30

0

10

SO
C 

er
ro

r (
%

)

(c)

MIF
SOC error

Experimental

-20

0

20

-5

-10

-15

-20

0

5

40

60

80

100

SO
C 

(%
)

0 200 400 600 800 1000 1200 1400 1600
Time (min)

SO
C 

er
ro

r (
%

)

(d)

MIF
SOC error

Experimental

-20

0

20

-5
-10
-15

-40

-20
-25
-30
-35

0
5

40

60

80

100

SO
C 

(%
)

SO
C 

er
ro

r (
%

)

0 500 1000
Time (min)

1500

(e)

MIF
SOC error

Experimental

-20

0

20

40

60

80

100

SO
C 

(%
)

0 200 400 600 800 1000 1200
Time (min)

-10

-60

-50

-40

-20

-30

0

10

SO
C 

er
ro

r (
%

)

(f)

Figure 11: SOC estimation at various initial operating point: (a–c) under dynamic test 1; (d–f) under dynamic test 2.
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Figure 12: SOC estimation under various noise disturbance: (a1, a2) σI set to 25mA and 75mA, under dynamic test 1; (a3, a4) σV set to
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Figure 14: Results of SOH estimation and corresponding errors with initial SOH set to 95% and 90%: (a1, a2) initial SOH= 95%, under
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parameter, and the information reflected only by the error
between the battery model voltage and the actual voltage is
idle. Nevertheless, even if the initial error reaches 10%, the
MIF method can still limit the error to a very small range
(3%), indicating that the proposed method is effective and
robust in estimating the SOH of LIC.

5. Conclusion

As a new type of energy storage device, accurate modeling
and reliable and efficient state estimation are the key to pro-
mote the application of LIC. In this work, a multifilter-based
SOC-SOH coestimation method for LIC is proposed. The
LIC is modeled by the Thevenin model, the model parame-
ters are identified by MI-LKF, the SOC is estimated by MI-
CKF, and the SOH is estimated by MI-EKF. Under various
test conditions, when the initial capacity is correct, the
MAE and RMSE of voltage estimation error are limited
within 0.0010V and 0.0172V, respectively. The MAE and
RMSE of SOC estimation error are limited within 0.47%
and 0.55%. The estimation error of SOH can be constrained
within ±0.5%. Robustness of the proposed method is verified
under algorithm initial value uncertainty, state actual initial
value uncertainty, and noise disturbance, and the results
suggest that the SOC estimation error is limited within
±3%. Although SOH requires a certain number of iterations
to converge, its error can also be constrained within 3%. In
summary, MIF can achieve accurate SOC and SOH estima-
tion of LIC and has satisfactory robustness, making it suit-
able for practical applications.
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