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Distributed generations (DGs) have been increasingly addressing the ongoing power deficit in the electricity market. However, a
significant concern in DG-integrated microgrids is the detection of accidental islanding. To tackle this issue, this article proposes a
cost-friendly, novel data-driven passive islanding detection scheme named EEMD-HOBRC, combining noise-assisted ensemble
empirical mode decomposition (EEMD) and a hybrid optimization-based random forest classifier (HOBRFC). The detection
scheme employs a diverse set of features extracted from both raw and EEMD decomposed signals. Essential features are
selected using the binary grey wolf optimizer (BGWO) to reduce computational burden. To further improve classification
accuracy, the parameters of the random forest classifier are optimized through a hybrid particle swarm and reformed grey wolf
optimization (PSRGWO) technique with Cohen’s kappa index as the cost function. The proposed technique is rigorously
validated in two different multi-DG environments, encompassing islanding and various nonislanding events. The results
demonstrate the effectiveness of the approach in terms of enhanced accuracy, detection time, and performance under both
noisy and noise-free conditions. The accuracy of detection under ideal and high noise scenarios is found to be 99.88% and
99.2%, respectively, with maximum detection time of 34.27ms. Comparative analysis with other algorithms also supports the
superiority of the proposed technique. Finally, the method is successfully applied to shrink the nondetection zone (NDZ) with
minimal power mismatch, further enhancing its utility in practical applications.

1. Introduction

Distributed generators (DGs) are proving to be the best solu-
tion to match the ongoing demand for electricity. Since
every solution is equipped with new problem(s), the DGs

are equipped with the challenge of unintentional islanding.
In simple terms, islanding is such a scenario where the
DG(s) of an area is/are kept on supplying power to the
nearby loads even though the central grid is no longer con-
nected. This occurrence should be detected within 2 sec as
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per IEEE 1547 [1] norms. The conventional strategies of
islanding detection [2–5] have a common concern that is
reducing the nondetection zone (NDZ). By definition,
NDZ is a power mismatch region where the islanding is
remained undetected due to supply-demand equilibrium.
Several research works have already proposed to conquer
the NDZ issue by applying signal processing approach
(SPA) to the conventional passive detection techniques [6,
7]. But still, these have issues like computational complexity,
affected by noise interference, and unapplicable to nonlinear
and nonstationary signals. Hence, the necessity of further
research is essential in this particular field. Eventually, mode
decomposition- (MD-) oriented SPAs are gaining popularity
that brings forward empirical MD (EMD) [8], variational
MD (VMD) [9], and empirical wavelet transform (EWT)
[10] into the limelight. But these MD techniques basically
suffer from mode mixing issues. This major drawback is
wonderfully eliminated by a recently proposed noise-
assisted technique called ensemble EMD (EEMD) [11] by
taking the mean of an aggregate of trials that comprises of
signal and finite amplitude white noise. It has also displayed
significant results in detecting differential protection [12],
load forecasting [13], wind speed prediction [14], etc. Thus,
EEMD is chosen as the base SPA in this work.

Disturbance detection only with SPA brings threshold-
ing challenges in front. Setting such critical thresholds is a
tough job. A suitable alternative is to go for machine learn-
ing classifiers (MLCs) that detect the class of event by
training-testing approach [15]. Such an application utilizes
the inherent features of a signal. Since there are lot of simple
as well as complex features can be obtained from any signal,
it is important to look for an effective feature selection tech-
nique (FST) so as to reduce the time complexity and thereby
increasing the efficacy of the MLC with least number of fea-
tures. Many researchers have already suggested several FSTs
where the feature selection process is considered as a combi-
natorial problem [16]. But the classical FSTs have some flaws
which can be overcame by evolutionary optimization tech-
niques [17–20] those can be of two types, namely, continu-
ous and discrete (binary). As the decision variable of
feature selection varies in binary space, a binary optimiza-
tion algorithm can be chosen to deal with this [21–23]. But
it is essential to look for an algorithm that maintains a
proper balance between exploration and exploitation. One
of the recent bioinspired techniques is grey wolf optimiza-
tion (GWO) that is gaining popularity due to its smooth
transition between exploration and exploitation [24, 25]. A
binary variant of GWO has been proposed by Ahmadipour
et al.[26] which has shown significant result for feature selec-
tion problems. That is why BGWO has been chosen for fea-
ture selection. Once the features are obtained, then it is
required to look for a classifier. A number of MLCs are
already implemented in several research works starting from
consensus-based intelligent control [27], machine faults
[28–30], and islanding detection [31–35], which have their
own uniqueness and limitations. Eventually, ensemble
machine learning paradigms are stepping ahead with the
concept of combining more than one learner together to bol-
ster the classification rate. One of such learners is random

forest (RF) which ensembles the decision trees (DTs). RF
possesses the advantages like well performance with less
parameters, hardly affected by fitting issues, and has better
generalizing capability [36]. Furthermore, the efficacy of
RF is tested under public data [37], and it has observed that
RF is displaying significant result among the MLCs. Hence,
RF is considered as the base classifier in this study. But
before implementing RF classifier, it is necessary to look
through two major factors; those are DTs inside forest and
cardinality of feature subset. These two deciding factors also
called hyperparameters can be evaluated by implementing
any optimization algorithm. A hybrid optimization algo-
rithm combining the social behaviour like swarm etiquettes
and grey wolf hunting is proposed in this study to extremize
the major hyperparameters of RF which can enhance the
robustness and classification capability of the classifier.
Moreover, for solving any optimization problem, it is
required to define an objective function. Here, the objective
function can be the classification accuracy or some other cri-
terion that might consider the best trade-off between attri-
bute extraction, computational burden, and efficiency. For
instant, evaluating the performance of any classifier only
considering the number of misclassifications may be deceit-
ful [38], if there is prediction failure obtained for one or
more features. Hence, a different statistical measure is sug-
gested in this study for assessing the classification accuracy
called Cohen’s kappa. The kappa index is generally a mea-
sure of inter-rater agreement that indemnifies the possibility
of classification by chance [39]. Further, it is unrealistic to
rate all the error as identical. For example, an islanding event
if misclassified as capacitor switching is much more destruc-
tive than a transformer switching misclassified as capacitor
switching. Thus, for cost sensitive classifications, the prelim-
inary job is to ensure that the errors are free of constraints,
assumptions, and biasing which can be achieved by estimat-
ing Cohen’s kappa.

Furthermore, integration of multiple DG units with the
exiting grid is creating added complexity, which is to be
addressed. The generated voltage out of any DG unit can
be AC or DC depending on the nature of the source. It has
to be converted first to the nominal voltage and frequency
with the nominal parameters before feeding to the grid.
For that reason, transformers and/or inverters are usually
used while DG-GRID integration. Hence, DGs can be classi-
fied into two major categories such as inverter-based DG
and rotating machine DG which have separate impact indi-
vidually on the associated system. For an instant, when a
wind power generation unit is disconnected from grid, the
voltage of the system will swell up for few cycles due to the
sudden drop in reactive power of the system. On the con-
trary, the outage of a PV unit certainly brings some fluctua-
tion in frequency along with voltage amplitude that
resembles a flicker. Hence, it is highly desired to detect the
PQ events arising because of these DGs along with other
PQ events and islanding [40].

Briefly, the work focuses on islanding and power quality
disturbance classification from the BGWO reduced feature
dataset that fed into the novel particle swarm and reformed
grey wolf optimization (PSRGWO) random forest classifier.
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Further, the proposed approach is validated with two differ-
ent multi-DG systems under ideal and noisy conditions. The
descriptive information of all the concepts is discussed in the
Section 2. Section 3 is dedicated to microgrid system under
consideration whereas Section 4 explains about feature
extraction and data collection. The methodology part is cov-
ered in Section 5, and the results are analyzed in Section 6.
At last, the study is concluded in Section 7.

The major highlights of this paper can be as follows:

(i) Application of EEMD on extracted signals to
decompose into different IMFs and most informa-
tive IMF is chosen to extract multiple features,
and some of the features are extracted from raw
signal

(ii) Maidan application of binary grey wolf optimiza-
tion to select optimal informative features

(iii) A novel hybrid PSRGWO optimization algorithm
has been formulated to optimize the parameters of
the proposed random forest classifier, i.e., termed
as hybrid optimization-based random forest classi-
fier (HOBRFC)

(iv) Kappa statics is used as objective function for the
optimization problem to eradicate the possibility
of classification by chance

(v) The proposed method is used for classifying the
islanding and other power quality disturbances

(vi) The efficacy of the proposed classifier is tested for
two different test systems for ideal and noisy
scenarios

(vii) Finally, the reduction of nondetection zone is vali-
dated with a separate dataset of very small power
mismatch

2. Theoretical Background

2.1. Binary Grey Wolf Optimization. The grey wolves are
preferring to stay in a pack by maintaining a social hierarchy
where the alpha wolves lead the pack followed by beta and
delta wolves. The movement of the wolves in GWO algo-
rithm took place stochastically in the search space. There
are problems, whose solutions are restricted to binary 0/1
or true/false type that inspires to go for a special variant of
optimization technique, i.e., binary optimization algorithms.
Thus, BGWO comes into picture as an FST. In BGWO, the
conventional grey wolf optimization is carried out initially
and the position updating equation is forced to be binary.

The wolves try to encircle their target first which can be
mathematically represented as

S = Z T j −W j ,

W j + 1 = T + Y S ,
1

where j is the iteration number, S is the distance vector, T is

the position vector of target, W is the position vector of grey

wolf, and Y and Z are the coefficient vectors with values.

Y = 2g r1 − g,

Z = 2r2

2

These coefficients are aiding to the moment of the
wolves around the search space whereas g is the factor that
keep on decaying to shift the wolves closer to the prey (tar-
get) in each iteration as per (3), and r1 and r2 have random
values between 0 and 1.

g = 2 −
2

TotalIterations
∗ j 3

Moreover, the hierarchy assumption takes three best
solutions, and others try to update their positions according
to the top three. The updating equation is

W j + 1 =
W1 +W2 +W3

3
4

Here, W1 =Wα − Y1 Sα , W2 =Wβ − Y2 Sβ , and

W3 = Xδ − Y3 Sδ .
Now to binaries this problem, the result obtained in (4)

undergoes a sigmoidal function validation as follows:

Wb j + 1 =
1, if sigmoid W j + 1 ≥ rand,

0, or else,
5

where sigmoid of any quantity x can be defined as

Sig x =
1

1 − e−10 x− 1/2 6

2.2. Ensemble Empirical Mode Decomposition (EEMD).
Mode decomposition is eventually gaining enormous inter-
est both in the community of researchers as well as indus-
trialists. EMD is the start point of such signal
preprocessors and has already used in wide range of appli-
cations. The descriptive explanation of EMD can be found
in [14]. It simply divides the original signal into several
intrinsic mode functions. But the major problem arises
here is the mixing of modes which can be eliminated by
implementing a noise-assisted method called EEMD that
collaborate the different scale signals to their respective
band of IMFs.

In general, every recorded data is impure and an amal-
gam mixture of signal and noise which arises question about
the clarity of signal measurement. A noise-assisted method
assumes that the collected data are separately measured
observations by adding different series of noises to it. To
realize this conceptualization, let us presume a recorded data
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as c t . A set of white noises are added to it which can be
seen as a kth artificial observation.

ck t = c t +wk t 7

Here, each of the observation is impersonated by
appending different realization of white noise to a single
observation c t . Even though the white noise inclusion
brings about the drop in signal-to-noise ratio, but it comes
up with relatively uniform distribution of reference scale
which actually eradicates the problem of mode mixing.
Hence, EEMD determines the true IMF by calculating the
average on ensemble of trails where each trail consists of a
signal and finite amplitude white noise. Figure 1 represents
a flow diagram for the implementation of EEMD.

The critical abstractions of the technique are as follows:

(i) The cluster of white noises abandons each other in
an ensemble mean that only left out the components
of original signal

(ii) The finite amplitude noise actually facilitates the
inhabitation of different scale signal into the corre-
sponding IMF which makes the ensemble mean
much more worthwhile

Moreover, EEMD introduces an element of randomness
to the decomposition process by incorporating white noise
into the disturbance signal. This results in the generation
of multiple slightly varied realizations of the signal. The
IMFs from these realizations are then averaged, providing
a stronger illustration of each IMF. The ensemble averaging
technique proves effective in mitigating the mode mixing
problem. Because the added noise in each realization is ran-
dom, the mixing effects tend to cancel out when combining
results from multiple realizations. Additionally, EEMD fol-
lows statistical process to address mode mixing, leveraging
the law of large numbers. With an increasing number of
realizations, the signal’s statistical properties become more
evident, leading to a more reliable decomposition process
[11, 14].

2.3. Random Decision Forest Classifier. RF is an ensemble
classifier whose prediction is not established on a single
classifier rather than on a bunch of classifiers whose
decision-making is much more accurate and noise robust.
A random forest generally consists of several decision trees
that justifies the term “forest” and can be represented math-
ematically as

Forest = TR1 xrand, crand , TR2 xrand, crand ,
⋯ , TRz xrand, crand

8

Here, xrand is the random feature set at each node split,
and crand is the subset of classes a tree can predict.

It is important to note that, out of the whole dataset, a
certain amount of data vector is designated for training
and rest which are kept for out-of-bag estimation. Once
the model is trained, it can predict a new set of data with
the majority vote of the trees. For any input data vector X,
it can be defined as

PZ
rf =maxvote P X 1, P X 2,⋯, P X z , 9

where P X z symbolizes the prediction of zth tree.
Furthermore, the limitation of RF is high variance and

biasing that arises fitting issues. That means a delta amount
of change in training data is supposed to create a completely
different variant of decision trees. However, the problem of
underfitting and overfitting is effectively addresses through
two primary strategies: bagging and random feature selec-
tion. Bagging entails creating multiple subsets of the training
data by sampling with replacement. Each subset undergoes
training with a decision tree. This approach diminishes the
model’s variance, reducing its sensitivity to noise or outliers
in the data. Another important strategy is random feature
selection, where instead of using all features at each split of
the decision tree, a random subset of features is chosen. This

START

k = k + 1 END

Y

N

Input c (t), 
initialize k

Create new
white noise wk (t)

Generate
ck (t) = c (t) + wk (t)

Implement
EMD on ck(t) to

obtain IMFj
k

If
k == K IMFj IMFj

k=
K

1

Figure 1: EEMD workflow.

Table 1: Parameters of TS-I.

Parameters Specification

Utility grid 120 kV, 60Hz

DG1, DG2
9MW wind system, 6 units of 1.5MW,

60Hz, 575V

DG3
3.125 MVA synchronous diesel engine,

60Hz, 575V

Switching capacitor (C) 25 kV, 2 MVAR

Induction motor (M) 6 MVA

TF1 25 MVA, 120 kV/25 kV star-delta

TF2, TF3 12 MVA, 25 kV/575V delta-star

TF4 5 MVA, 25 kV/575V delta-star

L1, L2, L3 22 km, 60Hz, 3-phase π-section line

LOAD3,4 8MW, 1.75 MVAR

LD5 2.5MW, 0.75 MVAR

LOAD1,2 6MW, 1.4 MVAR
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helps minimize the correlation among trees and boosts the
model’s resilience to irrelevant or redundant features. By
combining these two techniques, the random decision forest
achieves a well-balanced trade-off between bias and vari-
ance, effectively managing challenges related to underfitting
and overfitting issues [41, 42].

3. Systems under Study

In this study, the validations are made with two separate test
systems, namely, TS-I and TS-II, to ensure the dynamism of
the proposed work. The first microgrid TS-I [40] is con-
nected to a central grid at 120 kV bus which can be inten-
tionally islanded by operating circuit breaker 1 (CB1). The
related TS-I parameters are summarized in Table 1. The
main transformer TF1 steps down the voltage from 120 kV
to 25 kV and connected to the PCC at the low voltage end.
Figure 2 shows the one-line diagram of TS-I that comprises
of 3 DGs at separate location. On the other hand, the TS-II is
consisting of 7 numbers of DGs where DG-1,2,7 are wind
farms, DG-3,5,6 are diesel generators deployed in the time
of emergency, and DG-4 is alone a PV unit. It is shown in
Figure 3. The specifications of TS-II are presented in [43].

4. Data Collection and Feature Extraction

The purpose of the study is classification of disturbance
events with machine learning which requires labelled data-
set. Thus, dataset formation is very essential while imple-

menting any MLC algorithm. But the preliminary step is to
accumulate the skeletal parts of the dataset, i.e., features.
This is done by the following steps:

(a) The voltage and current signals form the PCC are
collected from few cycles and saved as time series
data

(b) The signals are sampled uniformly at 2.4 kHz, and
data samples are stored within a time frame of 0.6
to 0.8 seconds as disturbance is intentionally
occurred within this interval. This can be seen in
Figures 4(a) and 4(b)

(c) From the retrieved signals, 2 types of features are
extracted, namely, raw signal features (RSFs) and
decomposed signal features (DSFs)

The mathematical formulations of RSF and DSF are
mentioned from Eq. (10)–(26). Here, (10)–(20) are for RSF
and rest are applied on 3rd IMF of voltage signal to obtain
DSF. Now for any signal y k having K number of samples,
the features are represented as follows:

Voltage RMS, V rms, 10

Current RMS, Irms, 11

Mean of first derivative of voltage, MEAN
dv
dt

, 12

S1 S2
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D
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Figure 2: TS-I microgrid.
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Mean of second derivative of voltage, MEAN
d2v
dt2

,

13

Mean of first derivative of current, MEAN
di
dt

, 14
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Figure 3: Studied microgrid system-II.
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Figure 4: PCC voltage and its decomposed IMFs: (a) PCC voltage with 1st and 2nd IMFs; (b) 3rd to 5th IMF.
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Mean of second derivative of current, MEAN
d2i
dt2

,

15

Mean of first derivative of frequency, MEAN
df
dt

,

16

Mean of second derivative of frequency, MEAN
d2 f
dt2

,

17

Mean of first derivative of power, MEAN
dP
dt

, 18
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as of (12) to

(22)

Apply EEMD to collected
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Extracting 6
other features

as per (23) to (28)
All 17 features

collected

9 features are selected out of 17 using BGWO feature selection algorithm
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forest classifier with
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Figure 5: Flow diagram of proposed method.
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Voltage THD, THDv =
∑∞

n=2V
2
n RMS

V fd RMS
, 19

Current THD, THDi =
∑∞

n=2I
2
nRMS

I f dRMS

, 20

Mean, Af = 〠
K

k=1
yk, 21

Energy, ENGf = 〠
K

k=1
y2k, 22

Variance, VAR f =
1

K − 1
〠
K

k=1
yk − Af

2, 23

Standard deviation, DEVf =
1
K
〠
K

k=1
yk − Af

2, 24

Skewness, SKW f =
1

K × DEV3
f

〠
K

k=1
yk − Af

3, 25

Kurtosis, KUTf =
1

K × DEV4
f

〠
K

k=1
yk − Af

4, 26

where Vn RMS and In RMS are the nth harmonic voltage/cur-
rent and V f dRMS

and I f dRMS
are the fundamental voltage/

current.

5. Methodology

There are several events in power system such as trans-
former/capacitor switching, load/line switching, and operat-
ing of circuit breakers that are wrongly identified as
islanding events by the traditional detection schemes. The
working flow of the proposed techniques is undetected due
to low power mismatching which should be avoided. A flow
diagram of the proposed work is presented in Figure 5 for
detection of islanding and nonislanding (I&NI) events cor-
rectly. Keeping in mind the actual grid scenarios, a wide
range of I&NI events are deliberately simulated in MATLAB

Simulink environment. In this process, 10 different classes of
events are obtained as explained in Table 2. For each event
occurrence, both voltage and current signals are collected
from PCC. From the collected signal, a total of 17 features
including RSF and DSF are extracted. As discussed before,
RSFs are calculated directly from raw signal, but DSFs are
extracted from the 3rd IMF of the EEMD decomposed volt-
age signal. The motive behind considering the 3rd IMF and
discarding others is only because of the highest similarity of
this with respect to the disturbance signal. This can be visu-
alized by Pearson’s correlation coefficient (PERCC). PERCC
serves as a gauge for the linear relationship between two sig-
nals. Its value ranges from -1 to 1. This coefficient indicates a
perfect negative correlation at -1, no correlation at 0, and a
perfect positive correlation at 1. It can be defined as

PERCC X, Y =
1
M

〠
M

k=1

xk − Xμ

Xσ

yk − Yμ

Yσ

, 27

where Xμ and Yμ are the mean and Xσ and Yσ are the stan-
dard deviation of the respective signals.

The PERCC of all the IMFs to that of the healthy signal
is given in Table 3. It clearly displays that IMF-3 has the
highest correlation of 0.9137 with the disturbance signal
and hence chosen for DSF extraction. Thus, 800 data
instances of each EC have been saved to the database. An
8000 × 17 feature vector has been extracted in this procedure
and fed to a FST called binary grey wolf optimizer (BGWO)
which will eliminate the redundant features and only hold 9
uncorrelated features. Those are V rms, ITHD, MEAN dv/dt ,
MEAN d2i/dt2 , MEAN df /dt , MEAN dP/dt , ENGf ,
DEV f , and SKWf . The objective function of BGWO is taken
as the overall accuracy error (OAE). It is defined as

OAE = 1 −OA, 28

where OA stands for overall accuracy.

Table 2: Class of events.

Event classes Name of event Description Samples

EC-1 Islanding CB1 opening 800

EC-2
Outage of DG

DG-1 800

EC-3 DG-2 800

EC-4 Capacitor switching S1 switching 800

EC-5 Line switching CB3 opening 800

EC-6 Induction motor switching S3 switching 800

EC-7 Load switching S2 switching 800

EC-8 Fault LG, LLG, LLL, LLLG 200

EC-9 Voltage sag At target DG 800

EC-10 Voltage swell At target DG 800

Table 3: Correlation of IMFs with healthy signal.

IMFi IMF1 IMF2 IMF3 IMF4 IMF5

PERCC 0.0173 0.0392 0.9137 0.1733 0.0851

8 International Journal of Energy Research



Next, the compressed dataset undergoes data prepara-
tion stage where the data is get divided into training and
testing data to fed into RFC. But with the focus on improv-
ing the efficacy of this classifier, a hybrid optimization tech-
nique, namely, PSO with reformed-GWO (PSRGWO), has
been proposed in this paper. This hybrid optimizer is basi-
cally going to optimize two parameters. The detailed infor-
mation regarding the application of PSRGWO is presented
in the next subsection.

5.1. Hybrid PSO and Reformed GWO Algorithm (PSRGWO).
In this section, a hybrid algorithm is suggested combining
the traditional particle swarm optimization with a reformed
version of grey wolf optimization so as to strengthen the
exploration capabilities. Here, within a single iteration of
main loop, there exist few iterations of PSO followed by a
few iterations of GWO. At the end of every loop, the out-
comes of PSO and GWO are compared to save the best value
till that particular iteration. As a result, the modified GWO
will ensure the reduction in probability of PSO to get
trapped in local extrema. The workflow of the proposed
algorithm is shown in Figure 6.

Furthermore, there are few modifications which are
imposed to the conventional GWO algorithm to make the
entire optimization process more efficient. In any population-
based optimization technique, the agents will first get distrib-
uted among the entire search space to explore it and then
exploit the collected knowledge to converge the solution to

global extremum. Mathematically, if Y > 1 (as of 3), then
exploring is going on and it continues till half of the total

GWO iterations and in the next half of iterations Y < 1 that
carry out the exploitation work. As higher exploration reduces
the possibility of local stagnation, the iteration dedicated to
exploration can be increased by modifying (3). It is defined as

g = 2 −
2

TotalIterations
2 ∗ j2 29

This will devote more than two-thirds of the total itera-
tions for exploration job, and the rest are committed to
exploitation. Secondly, there is a mere possibility of the solu-
tion to get trapped other than the major three wolves called
omega (ὼ) wolves. For this cause, the positions of omega
wolves are also updated in GWO reformation. It can be rep-
resented as

W4 = Xω − Y3 Sω 30

Thirdly, even though it was said in conventional GWO
that the wolves are following a specific hierarchy but while
updating the position vector equation, all three major wolves
are treated equally as shown in (4). Here, the updating equa-
tion is rewritten with a weighted valuation of wolves. Thus,
the reformed updating equation is as follows:

WR j + 1 =
4W1 + 3W2 + 2W3 +W4

10
31

Moreover, the cost function used in such type of prob-
lems is generally based upon accuracy index. But in this
error minimization problem, Cohen’s kappa error is mini-
mized to ensure an optimum number of trees and especially
least number of FPS. This will guarantee the highest accuracy
with lowest correlations between trees. The kappa index can
be mathematically represented as

₭ =
PA − PAC

1 − PAC
, 32

START

Initialize the parameters
of PSO and GWO

Set the random position of particles within
their limit and initialize their velocity 

STOP

Perform PSO algorithm within the PSO loop

Set the initial positions of gray wolves as
updated positions of particles

Perform RGWO algorithm within the
RGWO loop

Save best fitness of PSO as PSO_best

Save best fitness of RGWO as RGWO_best

Set the main_loop_best value for the next
iteration by comparing PSO_best and

RGWO_best

ITER = ITER + 1

YES

NOIs Main Loop
ITER >

ITER_MAX ?

Figure 6: Flow diagram of proposed PSRGWO.
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where PA is the probability of agreement and PAC is the
probability of agreement by chance. Now the objective func-
tion of the minimization problem can be defined as

₭error = 1 −₭ 33

Here, ₭error represents the kappa error, and ₭ represents
the actual kappa index. These are function of number of
trees (TR) in the forest and feature involved in each split
(FPS) of any tree construction.

6. Result Analysis

The proposed system is simulated in MATLAB (version
2018a) software running in a Lenovo personal computer
with INTEL core-i5 8th generation 2.3GHz processor and
8GB RAM. The performance will be evaluated using the fea-
ture optimized dataset consisting of 9 distinct features (col-
umn wise) that holds 10 sets of event classes (row wise) to
form an 8000 × 9 data vector. The collection of data samples
is made under a wide range of power mismatch condition
for both I&NI occurrences which results in a diversified
dataset that have the seldom possibility of redundancy and
biasing. Here, half of the data are taken for training and
the remaining half for testing to verify the hybrid
optimization-based random forest classifier (HOBRFC).
Normally, a higher percentage of data (70 to 80%) are taken
to train any classifier to ensure higher accuracy, but purity
and clarity of data abstraction can play a vital role to amplify
the performance indices of any classifier. A “training data
percentage” versus “accuracy error” graph in Figure 7 can
well describe the meaning of the previous statement. It can
be observed that the reduced dataset can attain maximum
prediction level even with 50% of training data. This signifies
the unmatched data abstraction ability of EEMD as well as
the unbiased feature selection capability of BGWO.

6.1. Optimal Parameter Selection for HOBRFC. RF classifier’s
performance is based on the decision of several DTs whose
branch division is carried out with a random subset of fea-
tures. Training such type of models requires the dimension-
ality definition of both of these two elements which can be

achieved using optimization. As we are optimizing TR and
FPS, the preliminary requirement is to set the lower and
upper limits of these two. The default FPS [42] in an RFC
is chosen as p, where p is the maximum number of avail-
able features. In this case, p = 9 so the lower limit of FPS is
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Figure 9: OBCE to determine maximum number of trees required
for optimization.
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Figure 8: Tree structure in a RF model each having 9 classes with
unique split.
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taken as 3. On the other side setting, the max value as the
upper limit, certainly going against the core definition of
the term “random” as this signifies any node of a DT inside
the RF is subdivided into further branches using a random
subset of features.

Moreover, a higher value of FPS can increase the corre-
lation between the trees which in turn reduces their indi-
viduality. Hence, the upper limit of FPS is taken as 8
instead of 9. Further, setting the limits of TR is quite tricky.
Choosing a much smaller lower limit can affect agreement
to disagreement ratio as the decision-making of RF relies
on collective voting approach. Since lower limit of FPS is
3 and maximum feature available is 9, a total of 84 combi-
nations of feature subsets can be formed as per (33). If each
subset is assumed to be used uniquely to split only a single
node of a tree in the entire forest, it is required at least 9
trees to accommodate all. A glimpse of Figure 8 can well
explain why it has been said. There are 4 example trees
where blue-colored nodes are split nodes and green-
colored nodes are end nodes or class nodes. It can be noted
that, to reach 9 end nodes, there should be minimum 8
split nodes in a tree. As the end nodes of trees are the clas-
ses, at least “m − 1” node splits are needed to specify “m”
classes in a tree. Since the number of classes is 10 over here
and 9 node splits are required to make 10 end nodes, 84/
10 = 8 4 ≈9 trees are desired to accommodate 84 feature
subsets. Hence, the lower limit of TR is set to be 9.
Although RF never overfits while adding more and more
numbers of trees [43], still it is important to find out the
optimum trees for the classifier speed point of view. So,
the upper limit can be decided by plotting, out-of-bag clas-
sification error (OBCE) vs. number of trees as shown in
Figure 9. It can be seen that the OBCE remains stable

approximately after 190 trees. Therefore, with a small mar-
gin, the upper limit is placed at 200.

Combinations = Cn
r n ≥ r =

n
r n − r

34

The parameters used during the implementation of
proposed optimization algorithm are presented in Table 4.
It can be seen from Figure 10 that PSRGWO’s performance
is proving better both in terms of a number of iterations
and error margin. While the PSGWO is taking 29 iterations
to get the least converged error, on the other hand, the pro-
posed PSRGWO is only taking 18 iterations to achieve an
even low error margin. Finally, the optimum values of
FPS (OFPS) and TR (OTR) are found to be 4 and 141,
respectively, after taking the modes of 100 trails.

6.2. Performance Indices. Performance indices (PIs) are the
measures to analyze the prediction capability of a classifier
once it is trained. It may sound a little weird if the formulae
of different indices are directly stated over here. But it will be
much easier to understand the PIs once after understanding
the concept of the confusion matrix (CM). Simply, CM is a
square matrix datasheet that estimates the performance of
any ML classification model.

The core of the random forest machine learning model is
decision trees, and each decision tree will train with random
subset of features. Furthermore, the end nodes of these trees
are the event classes. Therefore, a model trained with 10
classes will one islanding, and 9 PQ events (case 1) have sep-
arate tree structures than that of a model trained with only 9
PQ event classes (case 2). For this reason, the proposed
model is tested with both the conditions.

Table 4: Parameters of PSRGWO.

Parameters Values Parameters Values

Max iteration of main loop 40 Search agents 20

Max iteration of PSO loop 15 Max iteration of GWO loop 15

Range of split features [3 8] Range of trees [9 200]

5 10 15 20 25 30 35 40
Main loop iterations

0.005
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0.015

0.02

0.025

0.03
Ka
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18

29
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PSGWO

Figure 10: Comparison of PSGWO and PSRGWO.
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In Figure 11(a), the confusing matrix is obtained for the
model trained with case 1, where 800 events per class are
predicted using the proposed detection technique. It is found
that the method shows 99.88% accuracy in detecting the
islanding scenarios as 799 islanding cases are truly detected
out of 800 classes. Apart from that, other nonislanding
events are also showing promising accuracy of detection.
Here, classes EC-1 to EC-10 are mapped as 1 to 10. Simi-
larly, in Figure 11(b), only the case 2 events are considered.
The proposed classifier also displays much accuracy for non-
islanding events alone where EC-10 has highest accuracy
rate of 99.63% since 797 events have predicted truly out of

800. Here, classes EC-2 to EC-10 are mapped as 1 to 9.
The figures are represented as heatmaps. The darker color
of the diagonal elements reflecting the elegant performance
of the classifier. Now the above statement can be verified
mathematically with the help of several PIs.

The mathematical formulae of several PIs such as accu-
racy, specificity, sensitivity, and Matthew’s correlation coef-
ficient (MCC) are presented in the (35)–(38). Two bar
chart distributions of all the PIs of every EC both under
I&NI events are shown in Figures 12(a) and 12(b). Due to
the randomness property of RF, all the indices are obtained
by taking the mean of 100 trials. These results are ensuing
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Figure 11: CM with 800 samples/EC for TS-I.
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the efficacy of the proposed HOBRFC which is well capable
of detecting islanding and PQ disturbance events.

6.3. Noise Tolerance Evaluation. Noise is a nonavoidable part
of any system, thus also visible in power system. The com-
panionship of communication lines with power lines creates
electromagnetic interference which is the main reason for
noise existence in collected signal.

As the studied system is designed in MATLAB environ-
ment, to simulate the noisy condition, additive white Gauss-
ian noise with 3 different signal-to-noise ratio is added to the
collected signal. It can be expressed as

RS/N = 10 ∗ log
power of signal
power of noise

in dB 39

The proficiency of the suggested approach under noisy
conditions can be contemplated in Figures 13(a) and 13(b).
It is observed that the noise-free accuracy of important
islanding events (EC-1) is reaching 99.88% whereas it is hit-
ting 99.2% even under the dense noise of 20 dB. Similarly,
the mean accuracies of the other events under islanding con-
ditions represented by EC-2 to EC-10 are maintained at
98.79%, 98.58%, 98.39%, and 98.18% for 40 dB, 30 dB, and
20 dB SNR, respectively.

Additionally, the proposed EEMD-HOBRFC also pro-
vides faster detection of all the events, and it is noted to be
only 23.16msec under the ideal situation. The exceptional
ability of the technique makes it to elapse almost same time
to detect any type of trained event. But the performance is
stagnated with the introduction of noise. A series of 500 dis-
turbance cases is taken for each SNR level, and the mean
time of detection is illustrated in Figure 14.

6.4. Performance Assessment in TS-II. The extraordinary effi-
cacy of the EEMD-HOBRFC is already seen in the previous

subsections for test system 1. However, it is essential to ver-
ify whether it is performing in the same manner or not for a
different system. So as to validate it, a separate test system is
taken into consideration as shown in Figure 3. A 400 num-
ber of cases are extracted for each event class only having
the BGWO optimized prediction variables (9 numbers of
features) from test system 2. This extraction has taken place
in both islanding and nonislanding scenarios. The confusion
matrix in relation to both the scenarios can be seen in
Figures 15(a) and 15(b). It can be seen from Figure 15(a)
that the method shows 100% accuracy in detecting the
islanding scenarios as all the 400 cases are truly detected.
Here, classes EC-1 to EC-10 are mapped as 1 to 10. On
the other hand, the proposed classifier also displays much
accuracy for nonislanding events alone where EC-15 has
highest accuracy rate of 99.5% since 398 events have pre-
dicted truly out of 400. Here, classes EC-2 to EC-10 are
mapped as 1 to 9.

It can be noted that, under islanding condition
(Figure 15(a)), the method of EEMD-HOBRFC successfully
detected all the 400 islanding events. In addition, it is also
displayed its detection capability for the other events with
and without islanding occurrences. Hence, the proposed
method is found to be effective even in other microgrid
structures.

6.5. Comparative Study. This section covers up the compar-
ative study of the proposed EEMD-HOBRFC method with
several other methods. Firstly, both EMD and EEMD are
combined with simple unoptimized RF and latterly clubbed
with HOBRFC for 3 different SNR levels as presented in
Table 5. The resulting accuracy data can well define the
dominancy of the proposed method that reaching 99.2%

Accuracy,AECx
=

truly predicted as ECX

total number of events fromECX
, 35

Sensitivity, SVECX
=

truly ECX

truly ECX + falsely other than ECX

=
Pos XX

∑Xcolumn
,

36

Specificity, SPECX
=

truly not ECX

truly not ECX + falsely ECX

=
∑main diagonal − Pos XX

∑main diagonal − Pos XX + ∑Xrow − Pos XX
,

37

MCCECX
=

Pos XX ∗ ∑MD − Pos XX − ∑Xrow − Pos XX ∗ ∑Xcolumn − Pos XX
∑Xrow∗∑Xcolumn ∗ ∑MD+∑Xrow − 2 ∗ Pos XX ∗ ∑MD+∑Xcolumn − 2 ∗ Pos XX

38
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under substantial noise (20 dB) and 99.88% without any
noise. Moreover, Table 6 unveils its supremacy over other
ML tools. It can be noticed that the EEMD-HOBRFC is dis-
playing appreciable accuracy with respect to all these MLTs
with maintaining a mean accuracy of 98.75%.

Further, the analysis is extended in terms of detection
time, detection accuracy, and performance under noisy con-
ditions. The time required for islanding detection for differ-
ent preproposed techniques with their references can be seen
in Table 7. The maximum detection time taken is around
55ms for a transient monitoring [45] based detection system
which is more than twice of the detection time of the pro-
posed one. Besides that, the performance of the EEMD-
HOBRFC is evaluated against other prepublished work in
Table 7. Furthermore, in Table 8, it can be noticed that,
although [48, 52] delivering an accuracy level of 100%, still
they are underperforming in the presence of noise. But the
proposed method has built up with both noise-assisted sig-
nal processing technique and noise robust machine learning
technique that is why performing at towering level of accu-
racy in all three noisy conditions.

6.6. Nondetection Zone Validation. The contraction of NDZ
can be validated by considering a mix of 500 diversified
islanding data samples within a power mismatch range of
0.0005 pu to 0.03 pu with 30dB SNR. Even in such a narrow
range, the EEMD-HOBRFC is still capable of detecting 498
islanding event classes. The other two are detected falsely
as DG outage and capacitor switching. The outcomes not
only indicate the impact of the proposed method under
low power mismatch conditions but also replicate the effi-
cacy under the noisy situations. That means it can be well
implemented in practical environment. The result of this test
is given in Table 9, and the contracted region of nondetec-
tion is shown in grey color in Figure 16.

7. Conclusion

The manuscript presents an islanding detection scheme,
namely, EEMD-HOBRFC, that can identify and classify the
islanding as well as nonislanding power quality events. In
the proposed approach, some of the features are retrieved
from the raw signal to retain the original characteristics of
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Figure 12: Performance indices of each event class (EC).
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Figure 13: Impact of noise on classification accuracy.
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Figure 15: CM with 400 samples/EC for TS-2.

Table 5: Comparing with optimized and nonoptimized EMD and EEMD techniques.

Techniques Zero noise
SNR level

40 dB 30 dB 20 dB

EMD-RF 97.6% 97.4% 97.1% 96.6%

EMD-HOBRFC 98.6% 98.42% 98.24% 97.97%

EEMD-RF 99.1% 98.87% 98.69% 98.4%

EEMD-HOBRFC 99.88% 99.7% 99.45% 99.2%
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the signal and the rest of the features are extracted from the
decomposition of noise-assisted signal preprocessor called
EEMD to capture the inherent characteristics.

Moreover, the least correlated features are filtered with
BGWO and then fed to a PSRGWO optimized random for-
est classifier. The proposed technique is validated with a sys-
tem consisting of multi-DG system with high wind energy
penetration, and accuracy of islanding detection under ideal
condition is found to be 99.88%.

Its performance is not worsening under noisy condition
and maintained at 99.2% even in the dense noise of 20 dB
because both EEMD and RF are noise robust in nature.
Additionally, the detection time is found to be as low as
23.16ms with no noise and 34.27ms at heavier noise.

Lastly, the method is also able to detect islanding
event in real scenario (30 dB SNR) alongside a power
mismatch range of 0.03 pu to 0.005 pu with an apprecia-
ble accuracy of 99.6%. Hence, the method is found to be
very competitive with reference to the related research
works of recent past. From rigorous simulation study, it
is found that the proposed EEMD-HOBRFC is able to
detect and classify the islanding and nonislanding event
classes efficiently.

Table 6: Comparing with other ML techniques with EEMD in absence of any noise.

Classes NB ELM KNN SVM DT Proposed

EC-1 93.58% 98.65% 98.81% 99.02% 99.3% 99.88%

EC-2 92.95% 98.11% 98.25% 98.47% 98.81% 99.38%

EC-3 92.78% 97.6% 97.77% 98.01% 98.33% 98.75%

EC-4 91% 96.07% 96.23% 96.43% 96.78% 97.25%

EC-5 91.72% 96.95% 97.09% 97.31% 97.6% 98.13%

EC-6 92.53% 97.76% 97.93% 98.15% 98.48% 99%

EC-7 91.47% 96.63% 96.8% 97.03% 97.34% 97.88%

EC-8 92.39% 97.5% 97.64% 97.87% 98.17% 98.63%

EC-9 92.75% 97.89% 98.03% 98.26% 98.61% 99.13%

EC-10 93.04% 98.18% 98.36% 98.55% 98.98% 99.50%

Mean 92.421% 97.534% 97.691% 97.91% 98.24% 98.75%

Table 7: Detection time of the proposed method with respect to
other research works.

Sl no. Related works ref. Detection time

1 [6] Less than 28ms

2 [44] 45 to 60ms

3 [45] Less than 34ms

4 [33] 40ms

5 [46] 50ms

6 [47] Around 55ms

7 Proposed 23.16ms

Table 8: Accuracy tally with some of the prepublished articles.

Sl no. Published work
Accuracy

Noise free 20 dB 30 dB 40 dB

1 [26] 98.8% 98.3% 97.5% 97%

2 [34] 99.09% 91.51% 96.96% —

3 [48] 100% 97.66% — —

4 [49] 98.19% — — —

5 [50] 98% — — —

6 [51] — — 98.3% —

7 [52] 100% 90% 98.78% —

8 [53] 99.33% — — —

9 [54] 98% 94.2% — —

10 Proposed 99.88% 99.2% 99.45% 99.7%

Table 9: Event detection inside narrow range to validate NDZ.

True
class

Predicted class
EC-1 EC-2 EC-3 EC-4 EC-5 EC-6 EC-7 EC-8 EC-9 EC-10

EC-1 498 1 0 1 0 0 0 0 0 0

𝛥P

𝛥Q

0.03 p.u.
0.0005 p.u.

Figure 16: Nondetection zone validation.
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Abbreviations

BGWO: Binary grey wolf optimization
CM: Confusion matrix
DG: Distributed generator
DSF: Decomposed signal feature
DT: Decision tree
EC: Event class
EEMD: Ensemble empirical mode decomposition
EMD: Empirical mode decomposition
EWT: Empirical wavelet transform
FPS: Feature per split
FST: Feature selection tool
GWO: Grey wolf optimization
HOBRFC: Hybrid optimization-based random forest

classifier
I&NI: Islanding and nonislanding
IMF: Intrinsic mode function
MCC: Matthew’s correlation coefficient
MLC: Machine learning classifier
NDZ: Nondetection zone
OAE: Overall accuracy error
OBCE: Out-of-bag classification error
PCC: Point of common coupling
PERCC: Pearson’s correlation coefficient
PI: Performance index
PSRGWO: Particle swarm and reformed grey wolf

optimization
RF: Random forest
RSF: Raw signal feature
SPA: Signal processing approach
TR: Number of tress in forest
TS: Test system
VMD: Variational mode decomposition.
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