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Developing cost-effective and stable materials for the electrocatalysis of hydrogen evolution reaction (HER) remains challenging.
In this study, efficient catalysts for HER were synthesized by integrating the cobalt and molybdenum oxides via electrodeposition,
followed by subsequent sulfurization of the as-prepared oxides using chemical vapor deposition (CVD). This methodology
allowed the incorporation of both cobalt and molybdenum components into the catalyst in a single step. The as-synthesized
CoSx@MoSx/MoOx-based catalysts exhibited excellent hydrogen production performance in acidic media owing to the presence
of Co-S and Mo-S bonds in the hybrid structure. Particularly, CoSx@MoSx/MoOx(90@360) and MoSx@CoOx(180@180)
displayed the best HER performances with low overpotentials of 80mV and 150mV, respectively. The catalysts were highly
stable, with their stability preserved for over 1000 cycles with marginal reduction in overall efficiency. Therefore, these findings
suggest the potential of CoSx@MoSx/MoOx and MoSx@CoOx composites as ideal candidates for developing low-cost catalysts
for electrochemical hydrogen production.

1. Introduction

The critical problems caused by climate change, the impend-
ing energy crisis, and our over-reliance on fossil fuels have
triggered an investigation into the possibility of developing
and utilizing alternative fuels to ensure a sustainable future
[1–12]. Hydrogen is one of the alternative fuels receiving
considerable attention and a huge demand owing to its clean
energy and high-energy-density value [13–16]. Electrolysis
can be a desirable green process for the synthesis of hydro-
gen, given that the energy used during the process originates
from renewable energy sources such as wind or solar energy
[17–20]. The hydrogen evolution reaction (HER) and the
oxygen evolution reaction (OER) are the two most important
reactions occurring during electrolysis. To date, noble metals,
particularly platinum (Pt), with a near-zero overpotential and

a neutral hydrogen absorption energy (ΔG), act as the most
efficient catalysts for HER [2, 14, 21–25]. However, the high
costs of noble metals have led to a significant increase in the
investigation and generation of earth-abundant catalysts to
develop nonnoble metal electrocatalysts with high efficiency
and the ability to function in different electrolyte solutions.

Over the past decade, nonnoble metal compounds such as
transition metal dichalcogenides [26–34], carbides [35–37],
transition metal phosphides [38, 39], transition metal oxides
[40–44], and nitrides have proven to be effective alternatives
to the noble metal-based electrocatalysts. However, the perfor-
mance of nonnoble metal catalysts is still not comparable to
that of noble metal-based catalysts. As a result, different tech-
niques have been used to enhance their performance, with one
technique involving the usage of heterostructures comprising
multiple components with variable properties [45, 46]. These
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heterostructures possess superior electrical conductivity
owing to their abundant and more exposed chemically reac-
tive sites compared to those of their single-component coun-
terparts [47]. Additionally, their distinctive components
produce synergistic effects, boosting their electrocatalytic
activity. Darshan et al. used a hydrothermal method to pro-
duce CoS2/MoS2@N-rGO-MWCNT hybrid structures [48].
The MWCNT improved the dispersion and stability, whereas
rGO enhanced electrical conductivity. The presence of the
N-rGO-MWCNT support increased the stability and effective
loading of the CoS2 nanoparticles, rGO, andMoS2 nanosheets,
which resulted in numerous active sites for the HER. There-
fore, the results suggested that the improved electrochemical
performance could be attributed to abundant active sites,
synergistic effects between CoS2 and MoS2, and increased
conductivity.

Metal oxide-based materials have garnered considerable
interest owing to their utilization in a variety of applications,
attributed to their advantageous compositional and struc-
tural diversity, flexible tunability, low cost, earth-abundance,
ease of synthesis, and environmental friendliness [21, 49,
50]. However, bare and pure metal oxides, particularly bulk
materials, are inactive toward the HER because of their poor
electrical conductivity and limited number of catalytically
active sites, although several of them display high activity
for the anodic OER. Therefore, their catalytic performance
is enhanced using methods such as doping, hybridization,
and surface reconstruction of metal oxides [40].

In this study, we proposed a simple method for produc-
ing CoSx@MoSx/MoOx and MoSx@CoOx (Figure 1) electro-
catalysts, with CoOx@MoOx and MoOx@CoOx prepared via
electrodeposition at room temperature followed by their sul-
furization, yielding CoSx@MoSx/MoOx and MoSx@CoOx,
respectively, as products. Chemical vapor deposition was
used to grow CoSx and MoSx nanosheets on the surfaces of
cobalt and molybdenum oxides. The unique CoSx@MoSx/
MoOx and MoSx@CoOx heterostructures acted as efficient
electrocatalysts for the HER.

2. Experimental Section

2.1. Material Synthesis

2.1.1. Electrode Preparation. The substrate (carbon cloth)
was cut into 1 × 1 cm2 pieces, washed sequentially in deion-
ized water and acetone for 5min using sonication, and blow-
dried with N2 before use.

2.1.2. Electrodeposition of Heterostructure Catalyst on the
Electrode. The electrodeposition process involved two steps
for the fabrication of CoOx@MoOx and MoOx@CoOx het-
erostructures on carbon paper (CP) substrates. A mixture
of H2SO4 (95–98%) and 30% HNO3 (70%) was used in a
3 : 1 ratio to enhance the hydrophilicity of the substrate,
and the CP was immersed in this solution for 30min at
60°C. Electrodeposition was performed using a three-
electrode cell system composed of the pretreated CP with
an exposed area of 6 cm2 as the working electrode, a Pt mesh
as the counter electrode, and a saturated calomel electrode
(SCE) as the reference electrode. 100mM CoSO4·7H2O and
100mM Na2MoO4·4H2O dissolved in deionized (DI) water
were used as deposition electrolytes. Before deposition,
the electrolyte was purged using N2 gas for 30min to
eliminate the dissolved oxygen. Deposition was performed
by varying the deposition time (90, 180, 360, and 540 s) at
-2.0 VSCE in the Na2MoO4·4H2O electrolyte followed by
drying on a hot plate at 60°C for 1 h. Subsequent electro-
deposition was performed in the CoSO4·7H2O electrolyte
under the same conditions as described above to oxidize
Co into CoOx, generating CoOx@MoOx (Figure 1). The
electrodeposition order was reversed to fabricate MoOx@-
CoOx structures following the same procedure, resulting
in 16 different electrodes based on the plating time. The
electrodes were denoted as CoOx(90–360)@MoOx(90–
360) and MoOx(90–360)@CoOx(90–360). Subsequently,
the as-synthesized CoOx(90–360)@MoOx(90–360) and
MoOx(90–360)@CoOx(90–360) along with sulfur powders
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Figure 1: Schematic illustration of the CoSx@MoSx/MoOx and MoSx@CoOx catalyst synthesis.
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(≥99.0%) were placed upstream and downstream of a tune
furnace and heated to 800°C for 2 h under N2 environ-
ment to afford the CoSx@MoOx and MoSx@CoOx hetero-
structures, respectively.

2.2. Characterization. Cu K radiation (=0.154 nm) was used
for the X-ray diffraction (XRD; Bruker New D8-Advance,
Seoul, Korea) analysis of the crystal structure of the as-
prepared catalyst. A Raman analyzer (LabRAM-HR Evolu-
tion) was used to get Raman spectra. To examine the
morphology of the prepared samples, field emission scan-
ning electron microscopy (FESEM; Zeiss 300 VP, Seoul,
Korea) images were collected. The X-ray photoelectron spec-
troscopy (XPS) method was used to confirm the elemental
composition and oxidation states of the catalysts. The
morphology was also confirmed by transmission electron
microscopy (TEM).

2.3. Electrochemical Measurement. Using a potentiostat
workstation (Ivium 5612), the HER performance of the
catalysts was evaluated in an acidic (0.5 M H2SO4) electro-
lyte solution. The counter, reference, and working elec-
trodes were carbon rods, a saturated calomel electrode
(SCE), and the as-prepared electrode (with a working area
of 0 5 × 0 5 cm2). The data for the electrochemical imped-
ance spectroscopy (EIS) graphs were collected within a fre-
quency range of 0.1–100 kHz. Cyclic voltammetry (CV) in
the potential window of 0.1–0.3V vs. reversible hydrogen
electrode (RHE) at a scan rate of 100mV/s and chron-
oamperometry for 12h at a constant voltage were per-
formed to evaluate the long-term quality and stability of
the working electrode.

RHE (reversible hydrogen electrode) potentials were cal-
culated using the following formula: potential (E) vs. RHE
V = E vs SCE saturated calomel electrode + E° SCE +
0 059 pH (V). All the electrochemical data are reported
without iR compensation.

3. Results and Discussion

The fabrication of CoSx@MoSx/MoOx and MoSx@CoOx het-
erostructures is schematically illustrated in Figure 1. Before
sulfurization, CoOx and MoOx are electrochemically depos-
ited. Field emission scanning electron microscopy (FESEM)
was conducted to confirm the formation of the hybrid struc-
ture. The thickness of the nanoparticle layer increases with
an increase in electrodeposition time for Co, forming a thick
film after sulfurization (Figure S1). In contrast, Mo
deposition on CP remains flat even with an increase in
plating time; however, after thermal treatment, the Mo
particles agglomerate, ranging in size from several to tens
of nanometers (Figure S2). The shape and structure of the
catalyst vary depending upon the Co plating time, even
after sulfurization (Figure S3, S4). Additionally, the
structure depends on the Co and Mo deposition sequences.
When Mo is deposited for 360 s, followed by Co deposition
for 90 s, the resulting structure closely resembles that of Co
deposition for 90 s. However, the CoSx(90) particles
agglomerate significantly after heat treatment, whereas the

particle size of CoSx(90)@MoOx(360) reduces to tens of
nanometers (Figure 2(b) and Figure S1). When Co is
electrodeposited for 180 s, followed by Mo deposition for
180 s, the structure differs from that of Co deposition alone
and remains distinct after heat treatment (Figures 2(d)–2(f)
and Figure S2). The increase in deposition time of Co to
360 s results in the formation of a thick film over the entire
substrate, regardless of the plating order (Figure S5, S6).

The XRD patterns of CoSx@MoOx(90-90), CoSx@-
MoOx(90-180), and CoSx@MoOx(90-360) are shown in
Figure 3(a). The peaks at 2θ values of 11.1° and 26.1° can
be indexed to the (020) and (040) planes, respectively, of
molybdenum oxide [51]. The XRD pattern of CoSx@MoOx
exhibits a peak at 53.9° corresponding to the (221) plane of
CoSx [52]. The XRD patterns of CoSx@MoOx (90-360)
showed a similar structure after stability maintaining its
original structure (Figure S6). The TEM image of
CoSx@MoSx/MoOx (Figures 3(b)–3(d)) and the elemental
mapping images of Co, Mo, S, C, and O (Figure 3(e))
further confirm that the product is successfully obtained
and comprises the exact elements in the selected area of
the sample (CoSx@MoSx/MoOx(90@360)).

CoSx, MoSx, CoSx@MoSx/MoOx, and MoSx@CoOx were
further investigated using XPS to determine the elemental
states and chemical compositions. Figure S7 confirms the
successful growth of CoSx as demonstrated by the existence
of peaks corresponding to Co 2p1/2 and 2p3/2. The
presence of peaks assigned to S 2p1/2, S 2p3/2, and S-O
further confirms the formation of CoSx. However,
Figure S8 reveals that MoOx is not fully converted to MoSx
because the intensity of the S 2p peak is almost negligible;
therefore, it shows the lowest performance among the
synthesized samples. Figure S9 displays the XPS spectra of
Mo 3d and Co 2p, and O 1s in the as-synthesized MoOx/
CoOx. The peaks at 234.9 and 231.7 eV correspond to
Mo4+ 3d3/2 and Mo4+ 3d5/2, respectively, whereas the peaks
at 796.8 and 780.9 eV could be assigned to Co 2p1/2 and
2p3/2, respectively. After sulfurization, the S 2p high-
resolution XPS spectrum displays two peaks at 169.8 and
163.1 eV corresponding to S-O and S 2p1/2, respectively, and
a satellite peak at 161.2 eV (Figure S10). The XPS survey
spectrum in Figure 4(a) reveals the trace of Co, Mo, S, C,
and O elements in CoSx@MoSx/MoOx. Long-term exposure
to air results in the presence of carbon and oxygen elements.
The Co2+ is characterized by peaks at 781.4 eV (Co 2p3/2)
and 796.9 eV (Co 2p1/2) (Figure 4(b)) [53], which shift to a
higher energy state after the sulfurization of CoOx/MoOx as
compared to the two peaks at 781.0 and 796.7 eV
corresponding to Co 2p3/2 and Co 2p1/2 in CoOx/MoOx
before sulfurization, respectively (Figure S11). The Co3+ is
characterized by two peaks at 779.1 eV (Co 2p3/2) and
794.1 eV (Co 2p1/2) along with satellite peaks at 785.8 and
803.6 eV. The Mo 3d XPS spectrum exhibits peaks at 232.7
and 229.5 eV ascribed to Mo 3d3/2 and Mo 3d5/2,
respectively, corresponding to Mo4+. Additionally, the peaks
at 226.5 and 235.7 eV could be attributed to the Mo-S bond
and the Mo6+ state, respectively, with Mo6+ originating from
MoOx indicating the formation of oxygen bonds in the
hybrid structure (Figure 4(c)) [54]. The HER activities were
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enhanced by the existence of Mo-S and Mo-O bonds in the
hybrid structure, in addition to the Co-S bond. The XPS
spectrum of S 2p corresponding to the Mo-S bonds in MoSx/
MoOx shows a peak at the binding energy of 162.3 eV
ascribed to S 2p3/2, whereas a smaller peak positioned at
163.7 eV is assigned to S 2p1/2. Similarly, the peaks belonging
to S 2p3/2 and S 2p1/2 of the Co-S bonds in CoSx are found
at 161.8 and 163.5 eV, respectively (Figure 4(d)). Figure 4(e)
displays the XPS spectrum of O 1s showing the presence of
oxygen at the surface of the as-prepared catalyst.

A series of tests were performed to evaluate the electro-
chemical performance of MoSx@CoOx(90, 180, 360@90,
180, 360) and CoSx@MoSx/MoOx(90, 180, 360@90, 180,
360) nanocomposites for the HER. Pristine CoSx (90, 180)
and MoSx (180, 360) were prepared using the same method
for comparison. The HER activity of the as-synthesized cata-
lysts was investigated in a 0.5M H2SO4 solution using a
three-electrode setup, where the as-synthesized sample-
coated carbon cloth electrode was used as the working elec-
trode. Figure 5(a) displays the polarization curves of CoSx(90),
CoSx(180), MoSx(180), MoSx(360), MoSx@CoOx(180@180),

and CoSx@MoSx/MoOx(90@360). MoSx(180) shows low
catalytic activity for hydrogen evolution, whereas the
CoSx@MoSx/MoOx(90@360) electrode exhibits the best
HER yield. MoSx (180) shows poor HER catalytic perfor-
mance as compared to that of CoSx as it contains more oxide
components, resulting in fewer catalytically active sites.
Figure S12 shows that the overpotentials at 10 and 20mA/
cm2 for CoSx@MoSx/MoOx(90@360) are 80 and 250mV,
respectively, whereas those for MoSx@CoOx(180@180) are
150 and 260mV, respectively. The potential for the
MoSx@CoOx and CoSx@MoOx hybrid structure of different
deposition time at 10 and 20mA/cm2 is listed in Table S1
and Table S2. Pristine CoSx and MoSx at different
depositions show much higher potentials than that of the
hybrid structure. The electrocatalytic performances of the
other hybrid structures of MoSx and CoSx at different
depositions are shown in Figure S13 and S14. A comparison
of the overpotentials with other known electrocatalysts is
given in Figure 5(b) [55–58].

EIS was used to investigate the electrode kinetics during
the HER process at -0.2V vs. RHE to better understand the
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Figure 2: FESEM images of (a) MoOx(360), (b) CoOx(90)@MoOx(360), (c) CoOx(90)@MoSx/MoOx(360), (d) CoOx(180), (e)
MoOx(180)@CoOx(180), and (f) MoSx(180)@MoOx(180).
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electrocatalytic process. The semicircles reflect the charge
transfer resistance (Rct) across the electrocatalyst/electrolyte
interface, and the catalytic activities can be determined from
these resistances. Figure 5(c) shows the EIS spectra of the
samples, which are fitted with an equivalent circle (inset of
Figure 5(c)) to determine the Rct. The Rct value for CoSx@-
MoSx/MoOx(90@360) is 25Ω, which is much lower than
that of MoSx@CoOx (180@180) (60Ω) and MoSx@-
CoOx(90@90) (300Ω). During the electrocatalytic process,
the CoSx@MoSx/MoOx(90@360) catalyst exhibits the fastest
interfacial charge transport kinetics because it has the lowest
Rct. However, the Rct value of CoSx@MoSx/MoOx (90@360)
increased after the HER measurement as shown in
Figure S15. The Rct values for other samples are shown in
Figure S16 and S17. The Rct values compared to catalysts
are shown in Table S3.

The electrochemically active surface area (ECSA) is
responsible for the observed variations in the HER catalytic
efficacy of the working electrodes [59, 60]. A cyclic volt-

ammetry (CV) analysis was conducted to determine the
ECSA, which is closely related to the double-layer capaci-
tance (Cdl). CV measurements were conducted within a spe-
cific potential range of 0.1–0.2V vs. RHE at seven distinct
scan rates (20–150mV/s), focusing entirely on nonfaradaic
current. Cdl is represented by the slope of the plot in
Figure 5(d), which depicts the variation in the current den-
sity with respect to the scan rate. Notably, the Cdl value of
CoSx@MoSx/MoOx(90@360) is 6.3mF/cm2, which is
approximately four times greater than that of MoSx@-
CoOx(180@180) (1.6mF/cm2). This significant observation
demonstrates that CoSx@MoSx/MoOx(90@360) has the
greatest effective surface area, confirming a strong relation-
ship between ECSA and catalytic properties. The turnover fre-
quencies (TOFs) were calculated using a formula established
in a previous study [31]. The values are 0.01 s-1 and 0.04 s-1

for CoSx@MoOx(90@360) and MoSx@CoOx(180@180),
respectively. It is plotted in a bar diagram of Figure 5(e), with
CoSx@MoOx(90@360) showing higher activity.
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High stability is a crucial catalyst property for enabling
utilization in practical applications. A durability test was
conducted for the CoSx@MoSx/MoOx(90@360) catalyst
subjected to continuous CV cycles at a scan rate of
50mV/s in a 0.5M H2SO4 solution. This test determines
the extent to which the catalyst remains effective. The
polarization curve after 1000 CV cycles closely resembled
the initial curve obtained before CV measurement, as
shown in Figure 5(f). This indicates a negligible decrease
in current density and confirms the outstanding stability
of CoSx@MoSx/MoOx(90@360) under acidic conditions.
Additionally, the current-time responses demonstrated that

the electrocatalytic activity of CoSx@MoSx/MoOx(90@360)
could be preserved for at least 24 h in an acidic solution.

4. Conclusions

In this study, the CoSx@MoSx/MoOx and MoSx@CoOx
hybrid structures were successfully fabricated from CoOx@-
MoOx and MoOx@CoOx, respectively, and used as effective
electrocatalysts for HER in acidic environments. The studies
revealed a considerably higher HER activity of CoSx@MoSx/
MoOx compared to those of MoSx@CoOx, CoOx@MoOx,
and MoOx@CoOx catalysts. Notably, CoSx@MoSx/MoOx
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Figure 5: (a) LSV curves and (b) comparison of the overpotential required to achieve a current density of 10mA/cm2 with reported papers;
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(90@360) displayed a very low overvoltage of 80mV at a
current density of 10mA/cm2. Following a test period of
24 h, the catalyst exhibited outstanding stability. The excel-
lent HER activity could be attributed to the sulfurized CoSx
and MoSx, both of which aided the formation of Co-S and
Mo-S bonds in the hybrid structure, resulting in a large sur-
face area. Thus, these results highlight the potential of
CoSx@MoSx/MoOx and MoSx@CoOx composites as ideal
candidates for developing low-cost catalysts for electro-
chemical hydrogen production.
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