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Machine learning (ML) algorithms are increasingly used in power systems applications. One important application is the
classification and localization of various types of transmission line faults. Using voltage and current measurements from phasor
measurement units (PMUs), a number of useful features can be extracted, which can form the basis of a ML-based prediction
of the fault type, line, and distance on the line. This paper proposes a technique to find the optimal number and placement of
PMUs by performing thorough feature selection. The features are selected to maximize the accuracy of the ML classification
and regression algorithms. The results show that for the IEEE 14 bus system, the use of only five PMUs is sufficient to obtain
high levels of accuracy. For example, a testing accuracy of 99.0% and 97.1% can be achieved for the fault type and fault line
location, respectively. As for the fault distance along the line, the testing MAE of 3.1% can be obtained along with an R2 score
of 94.4%. Adding more PMUs does not provide any additional value in terms of accuracy.

1. Introduction

Phasor measurement units (PMUs) have recently been
employed in power grids with the goal of monitoring the
state and operation of the grid with much higher accuracy
and at a much higher data rate than its previous counterpart,
the supervisory control and data acquisition (SCADA) sys-
tems. SCADA systems are still very widely used in monitor-
ing today’s grid, but the advancement in PMU technology
and the high accuracy of synchrophasor measurement are
promising to revolutionize the monitoring and control pro-
cess of the power grid to provide higher accuracy and much
faster action mechanisms that would ensure higher stability,
reliability, and security for the grid.

In addition, with the recent advances in machine
learning (ML) algorithms, the data provided by PMUs
can be used to provide a faster and more accurate assess-
ment of the system state, which can be used to detect
abnormal conditions and take appropriate actions much

faster than before, which can provide a great benefit in
regard to controlling the system operation, including the
mitigation of different types of disturbances, line faults,
or generator tripping events, as well as reacting to sudden
changes in demand which can otherwise cause serious dis-
ruption to the grid operation if not addressed quickly
enough.

In that respect, the use of PMUs in combination with
ML algorithms can provide an accurate assessment of sys-
tem operation, quickly detect abnormal situations, and help
the control centers take quick action to mitigate any prob-
lems in the grid, or at least help isolate them to prevent fur-
ther propagation of the problems.

In this paper, signals obtained from PMUs were used to
classify and localize faults that occur in the power grid using
ML algorithms. The IEEE 14 bus system is used as a test
case, and various types of faults are simulated in some trans-
mission lines in the network and at varying distances on
each transmission line in question. PMUs collect positive
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sequence voltages and currents at each bus, in addition to
zero sequence components of the same voltages and cur-
rents, and store the results to be processed by the system.

By obtaining sufficient information from the grid, ML
algorithms are able to provide an accurate classification of
the fault type, determine at which transmission line the fault
has occurred, and at what distance the fault has occurred as
measured from the two buses between which the line is con-
nected. In this paper, a support vector machine (SVM) clas-
sifier was used to determine the fault type and location,
while random forest regression was used to predict the fault
distance.

In addition, this paper shows that while we can theoret-
ically place a PMU at each bus and obtain voltage and cur-
rent information from every bus in the system, there is
actually no need to place a PMU at all buses. Through
correlation-based feature subset selection, we show that only
a subset of the available signals can be used to accurately
determine the type and location of the faults. By carefully
selecting the most relevant signals, we show that rather than
using signals from all 14 PMUs, it suffices to use the signals
obtained from only 5 PMUs to accurately classify the type of
fault and determine its exact location with a high degree of
accuracy. In fact, our results show that adding more data
to our ML algorithm does not necessarily improve the accu-
racy of our classification and regression any further. As such,
it would be considered a waste of computing resources to
continue processing data from all PMUs when it is sufficient
to use only a few.

It is worth mentioning that the majority of the proposed
approach workload is completed offline, including data
preparation, optimal feature selection, training the machine
learning model, and optimizing PMU placement. This off-
line setup ensures that real-time processing remains stream-
lined and does not require significant time or resources. This
approach guarantees that the proposed technique is highly
suitable and practical for this application.

Despite advancements in PMU placement studies, a
notable research gap exists in addressing fault classification
and localization as primary factors in the placement deci-
sion. Previous works primarily focused on system observ-
ability. The literature lacks comprehensive methodologies
that specifically consider fault classification and localization
in determining the optimal number and positioning of
PMUs. This research is aimed at bridging this gap by pro-
posing a novel machine learning-based approach that targets
the optimization of PMU placement for improved fault clas-
sification and localization in power systems.

It follows that the main contribution of this work lies in
proposing a machine learning-based methodology to deter-
mine the optimal number and positioning of PMUs for the
classification and localization of faults in transmission lines.

The rest of the paper is organized as follows. Section 2
provides a thorough review of the related literature. Section
3 describes the details of the IEEE 14 bus system, the PMU
placement, and the signals and relevant features obtained
from the PMUs to develop the dataset used in this research.
In Section 4, the methodology used to select the most impor-
tant features in the dataset is outlined. In addition, the ML

algorithms used were explained, and the methods used to
evaluate their correctness are outlined. Section 5 presents
the results of the ML algorithms and discusses their accuracy
in terms of correctly classifying and localizing the transmis-
sion faults. In addition, in this section, we provide the ratio-
nale for choosing only a subset of the PMUs to provide the
relevant signals in the system in light of the obtained results.
Section 6 concludes this paper and provides directions for
future research.

2. Literature Review

A summary of related literature is presented in this section. It
includes a review of the most common ML applications in
power systems, a survey of fault detection and classification
research using ML methods, in addition to a summary of the
most relevant research on the optimal placement of PMUs.

2.1. ML in Power Systems. ML techniques have many appli-
cations in power systems, and a number of recent papers
have provided a good overview of the main areas of research
that have benefited from various ML algorithms.

Miraftabzadeh et al. present several applications for ML
algorithms in the areas of power flow solutions, load fore-
casting, forecasting for solar energy, and power quality con-
siderations, including disturbance detection and classification
[1, 2]. In addition, they list the main ML classification algo-
rithms used in power system-related research, such as logis-
tic regression, K-nearest neighbor (KNN), random forest,
and support vector machines (SVM), all of which have appli-
cations in the aforementioned areas, mainly in the areas of
detection and classification of power related disturbances
and faults.

Regression techniques such as linear regression, regres-
sion trees, and deep neural networks have also been exten-
sively used in various types of forecasting and control
methods in power systems.

The work of Ozcanli et al. [3] mentions wind and solar
energy forecasting as valuable applications of ML algorithms
while also confirming that the detection and classification of
different types of faults and/or disturbances can effectively
be done using ML algorithms.

The work in [4] also presented ML applications in power
systems, focusing on predicting power outages, decision-
making, and system restoration, in addition to system stabil-
ity assessment and stability control.

2.2. Machine Learning in Fault Detection. Several papers
were found in the literature on the topic of using ML algo-
rithms for fault detection. Examples of these algorithms are
deep learning, artificial neural networks (ANNs), SVM,
recurrent neural network (RNN), and long short-term mem-
ory (LSTM).

Deep learning is a widely used technique to detect faults
in power systems. For example, Yu et al. [5] proposed a
wavelet transform and deep learning-based technique to
detect faults in microgrids. The proposed technique was
applied to the CERTS microgrid and the IEEE 34 bus sys-
tem. In [6], Wang et al. used deep learning neural networks
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(DLNN) to diagnose faults in power systems. The data was
collected from the power system dispatching department
and fed into stacked autoencoders (SAEs) to train the
DLNN. The number of hidden layers was examined to eval-
uate the model results. Markovic et al. [7] proposed a hybrid
approach of two stages to detect the faults that may occur in
a buck converter connected to a distribution network. The
first stage used a model-based technique to estimate system
parameters, while during the second phase, a deep neural
network classifier was used to predict if the system was nor-
mal or faulty.

On the other hand, Barreto et al. [8] used the ANN tech-
nique for fault detection and identification in power systems.
The study considered different types of faults like short cir-
cuits, line contingencies, and load contingencies. The study
was carried out on the IEEE 39 bus system considering dif-
ferent numbers of PMUs.

The SVM technique was widely used in the scope of
power system fault detection. Aleem et al. [9] presented a
quarter-sphere SVM for fault detection and classification in
power systems, while the author of [10] used two binary
classification algorithms to detect and identify faults in
smart grids. To enhance the performance of these classifiers,
hyperparameter tuning and data balancing using the Syn-
thetic Minority Oversampling Technique (SMOTE) were
evaluated. Medeiros et al. [11] developed a field application
system for detecting structural faults on anchor rods using
frequency domain reflectometry analysis. The system utilizes
ML techniques to classify the measured signals as normal or
faulty, achieving an accuracy greater than 98%.

To compare SVM and ANN techniques in detecting and
identifying faults in power systems, Manojna et al. [12] com-
pared the effectiveness of these algorithms using a dataset of
phase voltage, phase current, and their combinations. The
paper concluded that the three models give high accuracy
for fault detection while SVM gives the highest accuracy
for fault classification.

Belagoune et al. [13] introduced three deep learning
models based on long short-term memory (LSTM). These
models are for fault region identification (FRI), fault type
classification (FTC), and fault location prediction (FLP).
The study was conducted on a two-area four-machine
power system. The study shows that the LSTM-based
models effectively identify faults in power systems. Tehrani
and Levorato [14] extracted time domain and frequency
domain features and used LSTM to detect faults and
abnormalities in smart grids.

2.3. Fault Classification and Localization. Many papers
address the problem of classifying and localizing faults in
power systems. For example, to classify and locate frequency
disturbance events (FDEs) such as generator trip (GT), line
outage (LO), and load disconnection (LD) that occur in
power systems, Shadi et al. [15] used a hierarchical method-
ology that employed two machine learning algorithms,
namely, recurring neural networks (RNNs) and an LSTM.
The study shows that RNN performs better than LSTM
and converges faster with fewer epochs. Zhang et al. in
[16] used an LSTM model to capture temporal features in

the power grid, which performs fault detection. The LSTM
is followed by an SVM classifier that can classify the fault
type accurately.

On the other hand, Zhang et al. in [17] used RNN and
bidirectional gated recurrent unit (Bi-GRU) for fault loca-
tion on the IEEE 39 bus system. The model is used to main-
tain the temporal current signal characteristics. Chen et al.
[18] used a graph convolutional network (GCN) to localize
faults in power distribution networks. The model was tested
using IEEE 123-bus and 37-bus benchmark systems. This
model outperforms the SVM, random forest, and a three-
layer fully connected neural network (FCNN) in terms of
accuracy and robustness.

Ren et al. [19] used deep learning convolutional neural
networks (CNNs) to classify and localize power system dis-
turbances. A dataset was generated by conducting a dynamic
simulation on the Polish 3120 bus system, and a hyperpara-
meter search was done to optimize the CNN model, where
the model accuracy was around 84% and 91% for the classi-
fication and localization, respectively.

SVM was widely used in classifying fault types of power
systems. The authors of [20] used SVM to classify the fault
type in a transmission system with a connected loop config-
uration. The model achieved an accuracy result of 92.13%.
Mandava et al. [21] used SVM to identify if a system is work-
ing correctly and identify the type of fault if any.

Various research papers used ANN and DNN to classify
and locate faults in hybrid power systems. The model pro-
posed in [22] used feed-forward of three-phase voltages
and currents while using backpropagation for fault classifi-
cation. Resmi et al. [23] used ANN to locate the faults in
transmission lines by identifying the zone in which the fault
occurred. The paper focused only on unsymmetrical faults of
types of line-to-ground faults, line-to-line faults, and double
line-to-ground faults. On the other hand, Jain et al. [24] used
ANN to classify and locate phase-to-phase faults in parallel
transmission lines within one cycle after the fault happened.
Nasrin et al. [25] used deep learning to locate ten types of
faults that may occur in power systems.

To overcome the issue of data imbalance in the dataset, a
data augmentation classifier (DAC) and multigenerator data
augmentation classifier (MDAC), which are based on gener-
ative adversarial networks (GANs), were proposed in [26].
The paper shows the improvement of the accuracy results
after balancing.

In this paper, the work presented uses a linear SVM clas-
sifier and random forest regressor to classify and localize
faults in an IEEE 14 bus system using voltage and current
data signals obtained from PMUs placed in the system. Fur-
thermore, we show a method to determine the best location
and optimal number of PMUs to be placed in the system for
optimal fault classification and localization in the system
based on the accuracy of the ML techniques used in the clas-
sification and localization.

2.4. PMU Placement. Various studies have focused on find-
ing the optimal location for PMU placement in different
power systems of various sizes. Most recent references on
this topic focus on finding the best locations for PMUs from
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the perspective of system observability for state estimation
applications. However, very little work was done for placing
the PMUs for the specific purpose of fault localization and
classification. For example, Abbasy et al. present an
approach for optimal PMU placement based on the observ-
ability of the network using a binary integer linear program-
ming optimization method. The number of PMUs used was
set to the minimum required to achieve the required observ-
ability [27]. Eladl et al. used binary integer programming as
well for optimal allocation of PMUs by minimizing the cost
of total PMUs given connectivity and observability con-
straints [28]. On the other hand, Taher et al. used the mod-
ified imperialist competitive algorithm for optimal allocation
of PMUs and also for full observability with a minimal num-
ber of PMUs [29].

Sodhi et al. [30] presented a two-stage method for opti-
mal placement of PMUs for system state estimation, where
in stage 1, PMU placement was done using integer linear
programming. In stage 2, a sequential elimination algorithm
was used for numerical observability.

The work by Madani et al. [31] presents a methodology
for the optimal placement of PMUs based on multiple cri-
teria and not just state estimation. Their methodology
includes a weighted average, whereby different criteria are
given different weights in the decision-making process. In
addition to state estimation, the criteria considered for opti-
mal PMU placement include system robustness, critical net-
work paths, and interarea oscillations.

The work in [32] by Li et al. considered PMU placement
for fault line localization. They used convolutional neural
networks (CNNs) to best place the PMUs for the best local-
ization of faults in the system. They presented various accu-
racy and observability levels for different PMU placement
algorithms.

Many studies have aimed to determine the optimal
placement of PMUs across various IEEE networks, including
the IEEE 14 bus system, employing diverse approaches. Ref-
erences [33, 34], for example, adopted an instruction-level
parallelism (ILP) approach, while [35] utilized integer linear
programming. The authors of [36] explored several methods,
including depth-first search (DFS), graphic theoretic procedure
using themergermethod, original simulated annealingmethod,
and recursive security N algorithm. Furthermore, [37]
employed a hybrid algorithm, combining the graph-theoretic
procedure and the recursive algorithm (RA), to address the
optimal PMU placement problem. Reference [38] employed
mathematical programming formulations, specifically mixed-
integer linear programming (MILP) and nonlinear program-
ming (NLP). The work in this paper used a machine learning
approach not only to find the optimal placement of PMUs
but also to optimize the number of needed PMUs for improved
fault classification and localization in power systems.

It is noted that most of the previous studies have looked
at the PMU placement problem from the perspective of sys-
tem observability. Our work differs as it considers the prob-
lems of fault classification and localization as the main
factors in placing PMUs in a system, which has, so far,
received limited attention in the literature. Our work goes
on to develop a methodology for placing the PMUs at the

locations that will yield the most accurate results while also
minimizing the number of PMUs required to obtain the
required accuracy.

3. Dataset and Feature Generation

The dataset used in this paper was generated using
MATLAB/Simulink. The IEEE 14 bus system was used
as a test system and was fully implemented using Simu-
link, based on the transmission line, load, and generation
information provided in [39]. MATLAB/Simulink is capa-
ble of providing accurate transient analysis for voltage and
current signals in the system; therefore, it accurately cap-
tures the behavior of these parameters when a system dis-
turbance such as a transmission line fault occurs. A PMU
is connected to each bus in the system to measure the cur-
rent and voltage parameters. Each PMU measures the
voltage with respect to the reference at the bus to which
it is connected and measures the current injected into
the network at the same bus. Each PMU provides the fol-
lowing values based on the three-phase voltage and cur-
rent measurements at each bus and at a sampling rate of
64 samples per cycle:

(i) The magnitude of the positive sequence voltage

(ii) The phase angle of the positive sequence voltage

(iii) The frequency of the positive sequence voltage

(iv) The magnitude of the zero sequence voltage

(v) The magnitude of the positive sequence current

(vi) The phase angle of the positive sequence current

(vii) The frequency of the positive sequence current

(viii) The magnitude of the zero sequence current

For example, Figure 1 shows the four voltage-related
signals that the PMU provides for bus 3 when simulating
a three-phase symmetrical fault on Line 2-3. Note that
unsymmetrical faults produce currents and voltages that
can be decomposed into their symmetrical components:
the positive, negative, and zero sequence components. As
such, including both the positive and zero sequence com-
ponents in the analysis is useful in differentiating between
symmetrical and unsymmetrical faults, in addition to dis-
tinguishing between the different types of unsymmetrical
faults.

For the purposes of developing the dataset, several fault
scenarios were simulated. Ten different fault types were sim-
ulated, as shown in Table 1, and 15 different transmission
lines were considered, as shown in Table 2. This includes
all transmission lines in the IEEE 14 bus system. Further-
more, the faults were placed at varying distances on the line
itself in 5% increments of the total line length, starting from
the bus of the lower number towards the bus of the higher
number. The total number of simulated faults was, therefore,
2850 faults, each representing one unique data point in the
dataset.
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For each fault type, line, and distance, a number of
features were calculated using the eight PMU signals
from all PMUs in the network. More specifically, the fol-
lowing features were directly taken from the PMU
measurements:

(1) The voltage’s positive sequence magnitude

(2) The voltage’s positive sequence phase angle

(3) The voltage’s zero sequence magnitude

(4) The current’s positive sequence magnitude

(5) The current’s positive sequence phase angle

(6) The current’s zero sequence magnitude

These six values were obtained by averaging the first 100
signal samples right after the fault occurrence.

In addition, the frequency signals of the voltage and cur-
rent right after the fault changes dynamically are used, and a
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Figure 1: Screenshot for the PMU signals for voltage on bus 3.

Table 1: Summary of fault type simulated.

Fault type number Fault type

1 Three-phase-to-ground ABC-G

2 Single-line-to-ground (A-G)

3 Single-line-to-ground (B-G)

4 Single-line-to-ground (C-G)

5 Line-to-line (AB)

6 Line-to-line (AC)

7 Line-to-line (BC)

8 Double-line-to-ground (AB-G)

9 Double-line-to-ground (AC-G)

10 Double-line-to-ground (BC-G)

Table 2: Summary of all possible fault lines in the IEEE 14 bus
system.

Fault line number Fault line

1 Line 1-2

2 Line 1-5

3 Line 2-3

4 Line 2-4

5 Line 2-5

6 Line 3-4

7 Line 4-5

8 Line 6-11

9 Line 6-12

10 Line 6-13

11 Line 9-10

12 Line 9-14

13 Line 10-11

14 Line 12-13

15 Line 13-14
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number of features were extracted from each frequency sig-
nal that best describes the faults as follows:

(1) Frequency overshoot: the highest value the fre-
quency reaches after the occurrence of a disturbance

(2) Frequency undershoot: the lowest value the fre-
quency reaches after the occurrence of a disturbance

(3) Frequency overshoot time: the time from the
moment fault occurs until the moment frequency
reaches its maximum value

(4) Frequency settling time: the time from when the dis-
turbance occurs until the frequency settles back to
within less than 10% of the overshoot value

(5) Rate of change of frequency (ROCOF): the slope of
the frequency directly after the disturbance occurs

(6) Frequency range: the range of the frequency change
after the disturbance, which can be calculated as
the difference between the overshoot and the under-
shoot values

Figure 2 depicts the features obtained from the analysis
of each frequency signal. Note that the frequency signal
has the ability to provide visual insight into the system
dynamics when the fault occurs. The sudden change in
the system configuration caused by the fault will lead to
visible transients in the rotor dynamics of the generators
in the system, which will lead to oscillatory changes in
the frequencies of the voltage and current signals in the
network.

Overall, this results in nine different features for every
current signal and nine different features for every voltage
signal. Therefore, each PMU in the network provides a total
of 18 signals. Having connected a PMU to each bus, and
given there are 14 buses in the system, there are a total of

252 features available for the classification of the fault. These
252 features will be used to classify the faults in the system in
terms of their type, line, and distance on the line. A sche-
matic diagram of the IEEE 14 bus system is shown in
Figure 3 for reference.

The sampling rate of the PMUs used in this simula-
tion is set at its highest value of 64 samples/cycle, as
defined by the IEEE Standard for Synchrophasor Measure-
ments for Power Systems [40]. This is a relatively high
sampling rate and largely distinguishes PMU measure-
ments from regular SCADA measurement tools. As such,
the features obtained in this analysis are highly accurate.
To demonstrate this accuracy, a similar analysis was con-
ducted by reducing the sampling rate of the PMUs and
observing the relative variation in the values obtained for
the desired features.

Tables 3 and 4 show the variations (or errors) in the
values of the features obtained by reducing the sampling rate
of the PMU in factors of 2 starting at 32 samples/cycle down
to 1 sample/cycle. Most of the results show very little varia-
tion in the obtained values even at the lowest sampling rate
of 1 sample/cycle; therefore, we are only showing the results
of simulation for the voltage magnitude at bus 1, considering
all 10 types of faults, and assuming the fault occurs in the
middle of the line.

From Table 3, we can note that there is a slight increase
in the error as the sampling rate is reduced, which is
expected. However, a small deviation of about 1 volt or less
is very insignificant, given the typical voltage rating of sev-
eral kilovolts. In that respect, the small increase in error is
considered insignificant.

The more serious issue is in the reading of the ROCOF
values displayed in Table 4, as it can be noted that there is
a sharp increase in the error as the sampling rate is reduced.
This is not surprising since the ROCOF rapidly changes dur-
ing a fault and is considered an important indicator of the
occurrence of the fault. Note that at high sampling rates
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Figure 2: Description of frequency-related features.
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(16-64 samples/cycle), the error is relatively low. However,
as the sampling rate values become lower, the error rises
sharply. At a sampling rate of 2 or 1 sample/cycle, many of
the ROCOF values cannot be properly read, thus emphasi-
zing the importance of using a high sampling rate. A similar
analysis is performed on all PMUs for both voltage and cur-
rent readings, and given the low variation in the results at
sampling rates between 16 and 64 samples/cycle, we can rea-
sonably conclude that a sampling rate of 64 samples/cycle is
sufficient for our purposes.

Moreover, a sampling rate of 64 samples/cycle is also
sufficient for allowing timely protection for the system
under fault. As mentioned in [41], the critical clearing
times for a three-phase symmetrical fault is about 200-
300ms, which represents the worst-case scenario as
three-phase faults are typically the most severe and require
the fastest action for protection equipment. Since PMUs
obtain 64 samples per cycle, it is sufficient to take the
measurements from the first 2-3 cycles immediately after
the occurrence of a fault to determine the type and
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Figure 3: The IEEE 14 bus system (reprinted from [39]).

Table 3: Sampling error for voltage magnitude at bus 1.

V1 mag (V) Samples/cycle 64 32 16 8 4 2 1
Fault type Fault location Error (V)

1

1

0 0.001 0.008 0.008 0.014 0.019 0.024

2 0 0.001 0.007 0.029 0.006 0.194 0.435

3 0 0.002 0.000 0.035 0.068 0.228 0.260

4 0 0.002 0.003 0.010 0.066 0.428 0.677

5 0 0.003 0.008 0.012 0.097 0.644 1.012

6 0 0.004 0.005 0.058 0.107 0.338 0.350

7 0 0.000 0.006 0.038 0.004 0.317 0.649

8 0 0.002 0.007 0.007 0.062 0.433 0.675

9 0 0.003 0.006 0.042 0.075 0.220 0.219

10 0 0.000 0.002 0.022 0.005 0.239 0.463
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location of the fault, which would require no more than
50ms, allowing sufficient time for the protection equip-
ment to take the required breaking action.

4. Methodology

4.1. Feature Selection. As mentioned earlier in Section 3, 18
features are extracted from every PMU. In a system with
14 PMUs installed, this adds up to 252 features. This section
focuses on extracting the most important features for each of
the three outputs the system is trying to predict, which will
be designated henceforth as the fault type, fault line, and
fault distance.

For feature selection, the popular WEKA tool has been
used [42]. WEKA is a data mining tool that can be used
for multiple purposes; feature selection is one of them.
The tool employs multiple algorithms and techniques for
feature selection. The method used was the correlation-
based feature subset selection (CfsSubsetEval). This method
evaluates how good a set of features is by considering their

predictive ability as well as the degree of redundancy
between the features [43]. The algorithm’s ideal output is
a set of highly correlated features—with the output/tar-
get—but with a low correlation among these features. In
order to have better generalization ability, the tool also
supports cross-validation when performing the feature
selection.

The feature selection was performed three times inde-
pendently, once for each output. Each time, 10-fold cross-
validation was performed. The results of the feature selection
runs are shown in Table 5. One can see the top features
selected per each output and how many times each feature
was selected during the 10-fold cross-validation runs. For
example, when performing the feature selection for the fault
type, the feature I6_F_Sett_Time (which represents the set-
tling time of the current signal’s frequency at bus 6) was
selected ten times. This shows that this feature is consistently
important and must be factored in the fault type classifica-
tion. Based on the table, 10, 14, and 11 features were selected
for the three outputs.

Table 4: Sampling error for ROCOF in voltage at bus 1.

V1 ROCOF Samples/cycle 64 32 16 8 4 2 1
Fault type Fault location Error (Hz/s)

1

1

0 0.166 0.565 0.906 0.122 0.410 22.747

2 0 0.276 0.354 0.949 0.977 — 13.985

3 0 0.000 0.081 0.056 0.031 5.857 —

4 0 0.039 0.023 0.218 0.799 0.352 —

5 0 0.345 1.396 3.170 5.835 — —

6 0 0.135 0.369 0.847 0.373 0.055 —

7 0 0.069 0.069 0.230 0.925 5.972 —

8 0 0.120 0.120 1.639 1.417 1.532 21.174

9 0 0.101 0.364 0.448 0.564 0.627 18.719

10 0 0.000 0.409 0.470 0.532 6.479 —

Table 5: List of features selected per output.

Fault type Fault line Fault distance

I6_F_Sett_Time 10 I12_F_OS_Time 10 I12_Mag 10

V14_F_Sett_Time 10 I8_F_Sett_Time 10 I6_Mag 10

I6_F_OS_Time 8 V5_F_Sett_Time 10 I3_Mag 10

V2_F_Sett_Time 8 V3_F_OS_Time 10 I2_ROCOF 10

V10_F_Sett_Time 7 V3_F_Sett_Time 10 I2_Mag 10

V3_F_Sett_Time 6 V2_zero 10 I1_Mag 10

V1_F_Sett_Time 5 I1_F_OS_Time 10 I12_ROCOF 9

I8_F_Range 2 V1_F_OS_Time 10 I6_zero 9

I13_ROCOF 1 I9_F_Overshoot 9 I14_Mag 3

I9_F_Sett_Time 1 V8_F_OS_Time 9 I14_zero 1

I5_F_OS_Time 9 I5_zero 1

I10_F_Overshoot 1

V6_F_OS_Time 1

V5_F_OS_Time 1
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In order to consider the practical aspect of this problem,
if one has a PMU at a certain location, then one can fetch all
the features available from that PMU. To be able to proceed
with the analysis, the list of PMUs that generate the features
in Table 5 are extracted and aggregated across all of the three
outputs. The results are shown in Table 6, which clearly
indicates that PMUs {2, 6, 3, and 1} are the most important
PMUs. This list will be used as a priority list in devising the
test cases and prioritizing what PMUs should be selected. It
is worth noting that this analysis can be recomputed for any
bus configuration.

4.2. Experimental Setup and Test Scenarios. As outlined in
Section 4.1 and presented in Table 5, PMUs {1,2,3,6} were
identified as the most critical PMUs within the power system
under investigation. To construct the experiments for this
study, various combinations of these PMUs were utilized.
The details of the experiments and corresponding test sce-
narios can be found in Table 7.

The base case experiment (Experiment 0) involved the
utilization of all 14 PMUs within the system. Subse-
quently, a series of experiments were conducted with indi-
vidual PMUs out of the four critical PMUs {1,2,3,6}
(Experiments 1-4) and combinations of two PMUs (Exper-
iments 5-10). Additionally, four different experiments were
carried out with three PMUs (Experiments 11-14).

Furthermore, an experiment was conducted involving
all four PMUs (Experiment 15), followed by the incre-
mental addition of PMUs {12, 5, 8, 14, 9, 10, 13} one at
a time, resulting in seven additional experiments (Experi-
ments 16-22).

In total, 23 experiments were executed for each label
based on the selected features, as discussed in Section 4.1.
All experiments were implemented using Python 3.0 and
executed on Google Colab, a cloud computing service pro-
vided by Google [44].

For each experiment, all features of the included PMUs
in that experiment will be fed to the machine learning
model. For example, for Experiment 5 in Table 7, all features
from PMU 1 and PMU 2 will be fetched from the dataset,
which gives a list of 36 features (18 features per PMU) as dis-
cussed earlier in Section 3.

4.3. ML Algorithms and Metrics

4.3.1. ML Algorithms. Different machine learning algorithms
were used to classify and localize faults that occur in the
power grid. A linear support vector machine (SVM) classi-
fier was used to classify the fault type and location, while a
random forest regressor was used to predict the fault dis-
tance. SVM is one of the popular supervised ML algorithms
that are used primarily for classification problems. In this
work, linear SVM is used to classify the type of fault that
occurred in the power grid as listed in Table 1 and to predict
the line where the fault was found. Random forest regression
is a supervised machine learning algorithm that uses ensem-
ble learning and builds multiple decision trees while train-
ing. Random forest regression is used in this work to
predict the distance where the fault occurred as measured
starting from the bus of the lower number towards the bus
with the higher number between which the fault line is
connected.

These algorithms were optimized by conducting hyper-
parameter selection using the grid search technique. Grid
search is used to exhaustively search from a list of predefined
values for the hyperparameters to optimize these values.
Below is a list of the hyperparameters used in the grid search
for the classification and regression algorithms:

(i) max_iter for the linear SVM classifier: this value pre-
sents the maximum number of iterations needed for
the algorithm to converge. The default value in the
algorithm is 100, but after conducting a grid search over
a list of values, the value of 1200000 was found to be the
optimum and is sufficient for the model to converge

(ii) n_estimators for the random forest regressor: this
value presents the number of trees in the random
forest. The default value in the algorithm is 100,
but with a grid search, it was found that setting this
value to 50 gives better results

In addition, stratification and cross-validation were used
to split the data between training and testing. The data was

Table 6: Aggregated feature selection per PMU.

PMU Sum of features selected

PMU_2 38

PMU_6 38

PMU_3 36

PMU_1 35

PMU_12 29

PMU_5 21

PMU_8 21

PMU_14 14

PMU_9 10

PMU_10 8

PMU_13 1

Table 7: Summary of all experiments.

Experiment
Number of
PMUs

PMUs

0 All All

1-4 1 {1}, {2}, {3}, {6}

5-10 2 {1,2}, {1,3}, {1,6}, {2,3}, {2,6}, {3,6}

11-14 3 {1,2,3}, {1,2,6}, {1,3,6}, {2,3,6}

15 4 {1,2,3,6}

16 5 {1,2,3,6,12}

17 6 {1,2,3,6,12,5}

18 7 {1,2,3,6,12,5,8}

19 8 {1,2,3,6,12,5,8,14}

20 9 {1,2,3,6,12,5,8,14,9}

21 10 {1,2,3,6,12,5,8,14,9,10}

22 11 {1,2,3,6,12,5,8,14,9,10,13}
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split into ten stratified folds, preserving the percentage of
data samples in each class type.

4.3.2. Evaluation Metrics. Different metrics were used to
evaluate the performance of the classification and regression
algorithms. For the classification algorithm, these metrics
are accuracy, precision, recall, and F1-score. The confusion
matrix was also reported.

The accuracy was calculated by dividing the number of
correctly predicted values by the total number of values.
The correctly predicted values equal the sum of True Posi-
tives (TP) and True Negatives (TN), while the total number
of values equals the sum of True Positives, True Negatives,
False Positives (FP), and False Negatives (FN), as shown in
the following:

Accuracy =
TP + TN

TP + TN + FP + FN
1

The precision was calculated by dividing the number
of True Positives by the sum of the number of True Pos-
itives and False Positives, as shown in the following:

Precision =
TP

TP + FP
2

The recall was calculated by dividing the number of
True Positives by the sum of True Positives and False
Negatives, as shown in the following:

Recall =
TP

TP + FN
3

Finally, the F1-score was calculated using the values of
precision and recall, as shown in the following:

F1 score =
2 ∗ precision ∗ recall
precision + recall

=
2 ∗ TP

2 ∗ TP + FP + FN
4

For the regression algorithm, the metrics used are
R-squared score (R2) and mean absolute error (MAE).

R2, also known as the coefficient of determination, is
used to evaluate how well a regression model fits a given
dataset. R2 usually ranges from 0 to 1, where 0 represents a
poor fit, and 1 indicates an excellent fit of the provided data-
set. Equation (5) shows the formula for calculating R2.

R2 = 1 −
∑N

i=1 actual valuesi − predicted valuesi
2

∑N
i=1 actual valuesi − average of actual values 2

5

MAE is defined as the average of the differences between
actual and predicted values, as shown in Equation (6). In
MAE, the absolute value is used so the negative errors are
properly accounted, which makes MAE less sensitive to the
outliers in the dataset.

MAE =
1
N
〠
N

i=1
actual valuesi − predicted valuesi 6

In summary, Figure 4 presents the procedure outlined in
Sections 3 and 4 by visually depicting the relationship
between the three main procedures used in this paper, that
is, the “Raw Data Preparation” outlined in Section 3, the
“Optimal Feature Selection” addressed in Section 4.1, and
the “ML Models Training and Evaluation” thoroughly
explained in Sections 4.2 and 4.3.

As shown in the flowchart, this work combines the phys-
ical aspects of power system fault simulation with the pre-
diction power of ML algorithms, through the optimal
feature selection analysis to provide the optimal PMU list.
This list would include the number and location of each
PMU in the network, which would provide the optimal set
of PMUs for correctly classifying and localizing the different
fault types in the system.

This procedure can be easily extended and applied to
any other similar power system by running the relevant
line fault simulations and by using a similar procedure
for feature selection and ML model training and evalua-
tion. The following section presents the results obtained
in this research.

5. Results and Analysis

5.1. Fault Type. The first set of results is concerned with pre-
dicting the fault type, which is a ten-class classification prob-
lem. Figure 5 shows both the average testing and training
accuracy when running all the experiments reported in
Table 7.

It can be seen that the accuracy starts around 87% for
a single PMU and grows rapidly to around 94% with only
two PMUs. However, it plateaus to above 99% after using
5 PMUs, where the return on investment for any addi-
tional PMUs will be limited. As expected, it can also be
noticed that the testing accuracy is usually lower than
the training accuracy, especially around the knee of the
curve.

The detailed results of using only two PMUs are
shown in Figure 6(a). While using any two of the four
selected PMUs would yield an accuracy above 90%, it is
clear that the PMU pair {1,6} produced the highest testing
accuracy of 96.2%, while the pair {2,3} had the lowest
accuracy of 92.0%. A similar analysis using three PMUs
is demonstrated in Figure 6(b). The testing accuracy differ-
ences here are not as clear as in the two PMUs case; how-
ever, all of the four combinations’ testing accuracy is now
above 96.5%.

Since 10-fold cross-validation was used to produce the
results, the standard deviation of the accuracy among these
10-fold is shown in Figure 7. It is clear that the training stan-
dard deviation starts with a high value of around 3.7% for a
single PMU and drops significantly once four PMUs are
used. A similar pattern appears for the testing accuracy.
However, a residual value of around 0.5% does not diminish
with increasing the number of PMUs.
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Figure 8 compares other metrics such as precision,
recall, and the F1-score for different fault types. A 3-
phase to ground fault (ABC-G) is more likely to be
detected correctly than other fault types. Meanwhile, the
double-line-to-ground (AC-G) fault is the most difficult,
with all its detection performance metrics around 93.5%.
One can observe that, in general, for all fault types, all
three metrics, precision, recall, and F1-score, are aligned.
This can be attributed to the balanced number of test
cases and the accuracy of the classifier, as well as the use
of cross-validation.

Considering the results reported in Figure 5, it can be
seen that using more than five PMUs does not significantly
improve accuracy. Thus, an attempt to study the details of
the case where five PMUs {1,2,3,6,12} are used is shown in
Figure 9. The figure shows that most of the faults are
detected correctly. However, it can be seen that there is an
issue in the (A-G) and (B-G) faults, where 1.1% and 1.4%
of the faults are being mixed up between these two types,
respectively. Another significant problem is in the (BC-G)
faults, where 1.1% and 0.7% are misclassified as (AB-G)
and (AC-G).
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5.2. Fault Line. A similar analysis to the results presented in
the fault type section is discussed here for the fault line clas-
sifier. Figure 10 shows how the accuracy of the fault line clas-
sification improves as the number of PMUs increases. It is
clear that the accuracy with a low number of PMUs is lower
than the accuracy in the fault type classification. This is
expected as the number of output classes (lines in this case)
is fifteen, while it is ten for the fault type. Again, it is clear
that having five PMUs guarantees roughly the highest possi-
ble accuracy with the least number of PMUs.

To compare the accuracy of multiple combinations of the
cases where two and three PMUs are used, Figures 11(a) and
11(b) are presented. It can be seen that the use of PMUs
{3,6} yields the highest accuracy of 83.1%. Note that bus 6 is
central among the buses of the IEEE 14 bus system (see

Figure 3), with many lines connected to it. In addition, buses
3 and 6 have a synchronous condenser connected to them, dis-
patching reactive power immediately as a result of any distur-
bances, resulting in many of the features changing due to a
fault. This makes the two PMUs connected to buses 3 and 6
among the most valuable ones in the system.

When considering the three PMU test cases, in
Figure 11(b), the numbers generally improve, and a testing
accuracy of 87.3% is achieved using PMUs {2,3,6}, confirm-
ing the status of the PMUs at buses 2, 3, and 6 as the most
valuable ones, as presented earlier in Table 6.

Figure 12 shows the standard deviation of accuracy
among the 10-fold runs for the fault line classification. The
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results follow a similar pattern to that achieved with the
fault-type classifier. However, the values in the case are
slightly higher, meaning there is a higher variation in the
fault line accuracy than in the fault type.

To study the variation of the performance metrics across
different fault lines, Figure 13 is introduced. It can be seen

that the precision, recall, and F1-score are very high for
Line 1-2, which connects the two generators in the sys-
tem. Looking back at the IEEE 14 bus configuration,
one can note that Line 1-2 is the line that carries the
most amount of power under normal operating condi-
tions. This makes any fault on this line easily detectable,
as that would lead to a major change in voltages and
currents in the system when this fault occurs, as a big
redistribution of power flow in the system will be needed
to resume normal operation. Another observation is the
low recall value for faults on Lines 9-14 and 6-11. This
can also be explained by the fact that these are low-
power carrying lines, in addition to being away from gen-
erators and the presence of multiple alternative paths to
the power flowing through them, making the identifica-
tion of the fault line more difficult.

Finally, the confusion matrix of the five PMU cases is
also introduced for the fault line classifier in Figure 14. Some
of the major issues apparent in this confusion matrix are the
4% on Lines 6-11 and 9-10, which are being incorrectly clas-
sified as faults on the Line 10-11. This is expected since all
three segments, Line 10-11, Line 6-11, and Line 9-10, are
connected in series, with no branching on either line, which
makes faults on these three lines have a similar effect on the
system thus resulting in a few erroneously detected faults.
Nonetheless, a 4% error is a very small one considering the
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similarity between the lines. Another issue to point out is the
Line 2-4 faults, which are classified as either 2-3, 2-5, 4-5, or
9-10. Again, the close proximity of these lines means that
sometimes, a fault on one of these lines will affect the system
in a similar manner to faults on the surrounding lines. With
only 5 PMUs used, however, these small errors in classifica-
tion are acceptable.

5.3. Fault Distance. The last output of this classification is
the fault distance, as measured on the transmission line
starting from the bus with the lowest number. Recall that
the data points used in the training and testing were simu-
lated at distances of 5 percentage points of the total length
along the line.

Therefore, since the fault distance is a numeric value, the
metrics used to assess the classifier performance will differ.
Figure 15 shows both the R2 score and the MAE as the num-

ber of PMUs increases. The figure shows a gradual drop in
the testing MAE as the number of PMUs increased. How-
ever, this pattern stops once five PMUs are used, and the
MAE starts fluctuating around an error of three percentage
points. It can also be seen that the training MAE is consis-
tently lower than the testing MAE. These results are
expected as a 10-fold evaluation is used. Similarly, the R2

score increases as the number of PMUs is increased. How-
ever, the knee of the curve is not as obvious in the training
dataset as it is in the testing dataset.
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One issue to remember when considering the fault dis-
tance MAE is that the data simulated was discrete in 5%
intervals. This means there is up to 2.5% error resulting from
discretization only. The average error due to using discrete
values would be 1.25%, which would still exist even if an
ideal classifier existed.

Figure 16 shows the MAE and R2 score when only two or
three PMUs are used. Figure 16(a) shows the MAE and the R2

score when only two PMUs are used. It is clear that the com-
binations of {1,3} and {2,6} produced slightly worse results
than the rest. Meanwhile, for the three PMU cases, the first
three combinations produced roughly similar results. How-
ever, the {2,3,6} combination had slightly worse results. This
could be explained by the lack of slack bus (bus 1) features,
which can be very useful in determining the exact distance
of the fault given its effect on the power, and hence, the current
provided by the slack bus itself, and how much it changes
when a disturbance or a fault occurs in the system.

Meanwhile, Figure 17 shows the MAE standard devia-
tion for training and testing data. One can notice the sheer
difference between the training and testing MAE standard
deviation. In addition, one can notice that the standard devi-
ation in testing MAE continues to fluctuate with the increas-
ing number of PMUs. While the standard deviation of MAE
tends to decrease when increasing the number of PMUs, a
certain amount of error remains and cannot be reduced fur-
ther as the values of the dataset are discrete. A smaller step in
the distance between percentage points would reduce the
error; however, the authors believe that a step of 5 percent-
age points is sufficient to obtain reasonable error results.
However, this can be changed in practice to accommodate
any desired level of accuracy.
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Figure 14: Fault line confusion matrix (no. of PMUs = 5).
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In an attempt to further study the impact of the fault dis-
tance on the accuracy of the fault, the analysis in Figure 18
was performed for the case where 5 PMUs are used {1, 2,
3, 6, and 12}. Figure 18(a) shows how the MAE changes with
the fault distance. The data in this graph is aggregated across
all fault lines and across all fault types. It can be clearly seen
that the error on the sides of the line is higher than on the
center. Faults closer to the bus can lead to higher currents
than faults in the center of the line, due to the lower imped-
ance the fault current has to go through. This, in turn, can
lead to higher variation in the measurements obtained by
the PMU and result in higher errors in determining the dis-
tance of the fault. If one considers a single fault type at a time
but aggregates it for all lines, similar results can be obtained.
However, when only a single line is considered, the error will
vary significantly based on where the line is located within
the grid.

Figure 18(b) shows how the fault distance MAE changes
with the fault type. It is clear that the 3-phase to GND fault
produces the highest error among all fault types. This is
expected as the 3-phase to GND fault results in the highest
fault current, which in turn produces more variation in mea-
surement. This large variation would translate to a higher
error in the fault distance prediction.

Finally, the impact of the line on the fault distance
error is shown in Figure 18(c). It can be seen that certain
lines suffer from higher MAE in the fault distance than
other lines. For example, Line 2-5 have an MAE of about
1.5%, while lines like 9-10 have an MAE of 6%. This dis-
crepancy is more difficult to explain and can vary from
one system to another, as the fault current in each line
is attributed to multiple factors, including the line imped-
ance and the power flowing in the line before the fault,
which can, at times, have conflicting effects on the predic-
tion error.

5.4. Additional Discussion. It is clear that the tools used in
this work and the intelligent placement of the PMUs based
on the results of the machine learning algorithms and the

feature selection were sufficient to correctly classify the type
of fault and correctly identify the line and distance at which
the fault occurs. It is important here to state the main limi-
tations of this work, which can be addressed in subsequent
research efforts.

First, this work was done on the IEEE 14 bus system, and
while this system is a typical power system, and many of the
conclusions derived can be extended to other systems of dif-
ferent sizes, a similar analysis can be performed on other
systems to confirm the applicability of this work on other
systems as well. In addition, this analysis only considered
fixed loads and faults in the transmission lines. Variations
in the load profile and disturbances that do not constitute
faults can also be studied to provide further insights into sys-
tem operation.

Finally, to obtain more accurate results regarding the
fault distance, additional more rigorous sampling can be
done at shorter distances, which will significantly increase
the available data points for training and validation, which
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can lead to more accurate results. The simulation results pre-
sented in Figure 18 show variations in the MAE of the fault
distance prediction, which can be further studied to obtain
more insights about the effect of sampling on the correctness
of the result, but for the purposes of this work, the results
showed sufficient accuracy. Applying this work to other sys-
tems of a different size might require that some of the train-
ing and feature generation parameters be modified to better
suit their properties.

In addition, while the effect of the sampling rate dis-
cussed in Section 3 showed sufficient accuracy of the sam-
pling rate defined by the relevant IEEE standards, future
improvements in the PMU technology would allow for the
use of higher sampling rates, at which case it can be evalu-
ated whether adding further redundancy in the sampling
will have any additional benefits on the current prediction
accuracy or not.

6. Conclusion

This paper presented a methodology for determining the opti-
mal number and placement of PMUs to be used for classifying
faults in transmission lines. Machine learning algorithms such
as the support vector machine and random forest were used to
classify the faults in terms of their type, the transmission line
on which the fault occurred, and its distance on that line. It

was concluded that it is sufficient for the IEEE 14 bus system
to install a PMU on only five buses to achieve high classifica-
tion accuracy. Adding more PMUs will not add a significant
improvement to the classification results.

Future directions for this work include analyzing and
classifying other disturbances, which may require additional
PMUs or different features. PMU signals can also be used to
assess system stability, reliability, and power quality, all of
which can be further analyzed and improved using ML tech-
niques. Furthermore, the procedure used in this paper will
be used on additional systems of various sizes to confirm
the scalability of this method.
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