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In this paper, a novel model of an energy management system (EMS) for a microgrid (MG) under uncertain conditions is
proposed. The MG consists of renewable photovoltaic and wind sources along with electric vehicle parking lots. Hence, the
model incorporates the uncertainties of renewable DGs, parking lots, and also load. In this study, the MG operation cost and
voltage stability index are considered objective functions. A novel combined algorithm (hMOPSO-HS) is proposed for
microgrid energy management. The hMOPSO-HS algorithm is a combination of the mutant multiobjective particle swarm
optimization (MOPSO) algorithm and the harmony search (HS) algorithm. The simulations are performed in two parts, with
and without considering the uncertainty. The comparative analysis involves evaluating the optimization outcomes achieved by
the hMOPSO-HS algorithm in contrast to various other metaheuristic algorithms for multiobjective optimization. The
simulation findings validate the superior efficacy of the hMOPSO-HS algorithm compared to other approaches. Also, the
simulation results showed that in the conditions of uncertainty, the operating cost is 6.1% higher and the microgrid stability
index is 6.8% lower. Also, considering the uncertainty has caused the penalty for energy not supplied (ENS) and demand
response program (DRP) costs to increase by 3% and 4%, respectively.

1. Introduction

Energy management in microgrids (MGs) is a crucial aspect
of power system studies. It encompasses various objectives,
including cost reduction, emission reduction, enhanced reli-
ability, and improved power quality. A microgrid typically
comprises key components such as power sources, electrical
storage, and loads. The DGs in a microgrid can be renew-
able, such as photovoltaic (PV) arrays and wind turbines
(WTs), or nonrenewable sources as well as microturbines.
Additionally, electrical energy storage can be achieved
through battery storage banks or electric vehicle (EV) parking
lots (PLs). Smart parking lots integrated into the microgrid
provide various functionalities, including improvements in
system power quality and also reliability, maintaining volt-
age stability, minimizing losses, and increasing profitability
for EV owners [1]. Maximizing profitability and enhancing
reliability are crucial aspects of smart parking utilities, par-
ticularly in their significance. To achieve these objectives, a

comprehensive scheduling approach is required for EV
charging and discharging programming. In recent years, a
plethora of research investigations has been carried out in
the domain of EMS, delving into diverse concepts and
methodologies [2].

In [3], a novel approach is presented for coordinating the
EV charging in the MG. The method aims to improve MG
reliability by minimizing the charging costs of EVs. To
achieve this, it considered the electric energy price uncer-
tainty in the market and the charging time of EVs. In [4],
a daily energy management model is introduced to enhance
MG reliability in the context of a substantial number of elec-
tric vehicles (EVs) being present. The model allows vehicle
owners to manage energy consumption during their travels
through effective energy management techniques. In [5], a
simulation technique utilizing probabilistic indices is
employed to enhance the reliability of MGs with DG sources
and EVs, particularly in island mode. In [6], an efficient
objective function is put forth to diminish the operational
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costs of an MG with a significant number of EVs and DGs.
In [7], the study focuses on the calculation details of MG
reliability that incorporates both DG sources and EVs. [8]
presents an economic-based optimization approach for
EVs in the MG, specifically considering cogeneration, while
also taking into account MG reliability indexes as opera-
tional constraints. In [9], the energy not supplied criterion
(ENS) and the time of MG connection to the network are
utilized to evaluate MG reliability. [10] investigates both eco-
nomic and reliability aspects of the MG, using real-time
pricing for power exchange transactions of the MG and
parking lots (PLs) and employing a probabilistic method to
calculate network reliability with and without DG sources
and EVs. [11] proposes an energy management system for
EV charging in the power system through a DRP, aiming
to reduce operation costs and enhance MG reliability, with
customer participation encouraged for effective energy man-
agement. [12] employs a DRP to improve distribution net-
work characteristics, leveraging EV charging stations to
enhance network reliability, with simulation results showing
a significant reduction in ENS value through load response
programs and scheduled EV charging. [13] introduces an
intelligent algorithm based on neural networks for the
microgrid EMS, highlighting the impact of DR on MG
power exchange and EV charging/discharging. [14] proposes
an optimal EMS approach for a MG incorporating PV
panels, EVs, and responsive loads, considering load uncer-
tainty and indicating a cost reduction of about 2.5% with
the use of DR programs. [15] focuses on MG energy man-
agement with peak load management, aiming to reduce
operating costs using time of use (TOU) pricing, incorporat-
ing an error function to calculate uncertainty in different
scenarios. [16] defines demand response programs (DRPs)
as changes in electricity consumption patterns in response
to time-varying prices, including incentive payments to
reduce consumption during high-price or reliability issue
periods. [17] explores DRPs through pricing methods that
incentivize consumers to shift their electricity demand away
from peak times, highlighting the advantage of avoiding
expensive peak-time power plant construction. In [18], a
demand DRP is introduced for grid-connected EVs. The pri-
mary aim of this study is to conduct a comparative analysis
of different approaches for managing EVs in the day-ahead
scenario.

In [19], the study addresses the optimal scheduling of
electric vehicle (EV) charge and discharge, taking into
account uncertainty in electricity prices. The objective func-
tion is designed to maximize network profitability. [20]
focuses on microgrid (MG) energy management with EVs
and DG sources, aiming to improve MG reliability indices
while considering uncertainties associated with DGs. [21]
presents an optimal EV charge and discharge strategy con-
sidering uncertainties in EV and DG operations, with the
objective function aimed at cost reduction and pollution
mitigation based on probabilistic behaviors of EV and wind
turbine charging and discharging. [22] introduces a schedul-
ing method for optimizing the utilization of MG infrastruc-
ture during nonpeak times for EV charging, considering
environmental and economic factors to effectively integrate

a significant number of electric vehicles (EVs) into the net-
work accounting for their uncertainties. In [23], a novel
approach to microgrid EMS is proposed, considering the
presence of electric vehicles (EVs), aiming to achieve maxi-
mum profitability in the standard 33-bus power system by
reducing generation costs considering uncertainties in energy
market prices and EV charging times. In [24], an energyman-
agement system is proposed that takes into account the uncer-
tainties associated with electric vehicles and wind turbines.

This paper explores the influence of uncertainties on
both EMS and system reliability. A stochastic energy man-
agement approach is employed for an MG featuring smart
parking lots and photovoltaic and wind energy sources, with
the aim of reducing operational costs and enhancing reliabil-
ity. Additionally, a novel cost-based objective function is
introduced, taking into account the probability of different
scenarios occurring. Finally, a novel and innovative com-
bined algorithm is put forward to address the optimization
challenge. The proposed algorithm is a combination of the
mutant MOPSO and HS algorithms. Therefore, the main
contributions to this paper are as follows:

(i) Assess the probabilistic EMS of EV parking lots and
renewable DGs with the objectives of cost reduction
and enhancement of system voltage stability

(ii) A novel weighted objective function is introduced,
which takes into account the probability of scenario
occurrence

(iii) A new innovative hybrid multiobjective algorithm
with high accuracy is proposed

2. Problem Formulations

For an MG study, there is an essential need to provide a suit-
able model of the MG to consider the uncertainties. Various
goals such as cost reduction, improved voltage stability index,
reliability, and power quality are desired and are considered
forMG energymanagement. Ensuring the provision of electri-
cal energy at the lowest cost while minimizing the occurrence
of blackouts is of utmost importance [25]. In the subsequent
sections, we present the formulation of objective functions
for the EMS problem in a MG under uncertain conditions.

2.1. Proposed Objective Functions. The initial objective func-
tion pertains to the MG cost with the PL.

The proposed MG operation cost is a combination of the
energy purchasing cost from the power system, DG power
cost, EV parking cost, penalty cost for energy not supplied
(ENS), and DRP cost. The first objective function can be for-
mulated as follows:

F1 = 〠
Nh

h=1
πh 〠

T

t=1
cost t, h =min 〠

NK

s=1
πκ 〠

T

t=1
Cgrid
t,h + 〠

NDG

i=1
CDG
t,h,i

+ 〠
NPL

j=1
CPL
t,h,j + CENS

t,h + CDR
t,h ,
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where Cgrid
t,h , CDG

t,h,i, C
PL
t,h,j, C

ENS
t,h , and CDR

t,h represent the costs
associated with purchasing energy from the power system,
DGs, electric vehicle parking lots, energy not supplied
(ENS) penalties, and DRP costs at time t, respectively.
Also, πh represents the selected scenario probability, Nh
denotes the number of samples, NPL signifies the number
of PLs, and NDG indicates the number of distributed gener-
ators. Finally, T is a period which is 24 hours. Also, in this
paper, the time interval is considered one hour. The energy
procurement cost from the power system is expressed as
follows [26]:

Cgrid
t,h = Pgrid

t,h × Bgrid
t , 2

where Pgrid
t,h represents the quantity of exchanged electric

power with the upstream power network and Bgrid
t denotes

the market energy price. The operation cost of the distrib-
uted generator is computed according to the following
equation [27]:

CDG
t,h,i = α × PDG

t,h,i
2 + β × PDG

t,h,i + γ, 3

where PDG
t,h,i represents the power generated by the ith distrib-

uted generator at the h-level demand. Furthermore, α, β, and
γ are specific cost values associated with each unit. The cost
of the PL is determined using the following equation:

CPL
t,h,j = Pcharge

t,h,j × Bcharge
j + Pdischarge

t,h,j × Bdischarge
j , 4

where Pcharge
t,h,j and Pdischarge

t,h,j represent the quantities of power

used for charge and discharge in the jth parking lot. Bcharge
j

and Bdischarge
t,h,j denote the electricity prices for EV charge

and discharge in the parking lot [28]. The ENS penalty is
determined using the following equation:

CENS
t,h = PLPSP

t,h + PUW
t,h × RENS

t,h , 5

where PLPSP
t,h and PUW

t,h represent the power shortage proba-
bility and the penalty for undesired power deficit. It is
assumed that PUW

t,h accounts for 1% of the total load in the
microgrid. The cost of the DRP is determined using the fol-
lowing equation:

CDR
t,h = PDR

t,h × RDR
t,h , 6

where PDR
t,h represents the reduction in power consumption

by user participating in the demand response program, while
RDR
t,h signifies the compensation provided to them for their

reduced consumption [29].

The voltage stability index (VSI) of the power system is
regarded as an additional optimization objective. Equation
(7) is employed to calculate the VSI.

F2 =
1

VSI ni

= 1
Vmi

4 − 4 Pni ni Rni +Qni ni Xni Vmi
2 − 4 Pni ni Rni +Qni ni Xni

2 ,

7

where Pn and Qn are the load active power and load reactive
power, respectively, Vm represents the mth bus voltage, and
Rn and Xn are the resistance and line impedance between
the bus n and m. Figure 1 shows part of a radial distribution
feeder.

2.2. Constraints

2.2.1. Generation and Load Balance Constraint. The initial
restriction focuses on ensuring an equilibrium between
power generation and load within the microgrid as

Pgrid
t,h + PPV

t,h + PWT
t,h + Pdischarge

t,h = PLoad
t,h − Pdefict

t,h − PUW
t,h + Ploss

t,h

+ Pcharge
t,h ,∀t ∈ 1,⋯, T ,

8

where PPV
t,h and PWT

t,h are the photovoltaic and wind turbine
generation capacity, respectively. Pdefict

t,h and PLoad
t,h are the

amount of the nonsupplied power and power consumption.

2.2.2. DG Constraints. Two additional constraints relate to
the maximum and minimum production capacities of the
distributed generators. These limitations are expressed by

PDG‐min × u t ≤ PDG
t,h, ≤ PDG‐max × u t ,∀t ∈ 1,⋯, T , 9

where PDG−max and PDG−min are DG generation capacity.
The binary variable u t indicates the status of the DG
units (i.e., whether they are offline or online).

2.2.3. Power System Constraint. The transfer of electrical
power between the microgrid and the power system is con-
strained by the following:

Pgrid
t,h ≤ Pgrid‐max, 10

where Pgrid
t,h represents the amount of energy exchanged with

the power system and Pgrid−max denotes the upper limit on
the power capacity that can be transferred to/from the
upstream power network.

2.2.4. Parking Lot Constraints. For each planning time, it is
not possible for the charging and discharging of electric
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vehicle batteries to occur simultaneously, as indicated in the
following equation:

At,n + Bt,n ≤ 1, A, B ∈ 0, 1 ,∀n ∈ 1,⋯,NEV ,∀t ∈ 1,⋯, T ,
11

where At,n and Bt−n are the binary indicating the EVs charge
and discharge of the nth electric vehicle PL. The constraints
on the charge and discharge ratios of each EV are defined
by the following limitations [30]:

PEV‐charge
t,h,n ≤ Pcharge‐max

n × At,n ,∀n ∈ 1,⋯,NEV ,∀t ∈ 1,⋯, T ,

PEV‐discharge
t,h,n ≤ Pdischarge‐max

n × Bt,n ,∀n ∈ 1,⋯,NEV ,∀t ∈ 1,⋯, T

12

In equations (13) and (14), Ω and Ψ denote the maxi-
mum charging and discharging rates of the nth electric vehi-
cle (EV) battery, respectively. The energy stored in the EV
batteries must satisfy predetermined lower and upper limits,
as expressed in equations (13) and (14).

Pcharge‐max
n and Pdischarge‐max

n represent the charging and
discharging rates of the electric vehicle. The energy stored
in the batteries must comply with the predetermined mini-
mum band and maximum band, as outlined in the following
equations:

ES
t,h,n ≤ ψcharge‐max

n ,∀n ∈ 1,⋯,NEV ,∀t ∈ 1,⋯, T , 13

ES
t,h,n ≥ ψcharge‐min

n ,∀n ∈ 1,⋯,NEV ,∀t ∈ 1,⋯, T , 14

where ES
t,h,n is the charging mode of the EV, ψcharge‐max

n and
ψcharge‐min
n are the battery state of charge (SOC) and depth

of discharge (DOD). These limitations are implemented to
safeguard against battery degradation and extend battery
lifespan. ES

t,h,n is calculated by

ES
t,h,n = ES

t−1 ,h,n + ηchargen × PEV‐charge
t,h,n − Etrip

t,h,n −
1

ηdischargen

× PEV‐discharge
t,h,n ,

15

where ES
t−1 ,h,n represents the residual energy from the previ-

ous time interval, Etrip
t,h,n is traveling energy consumption,

PEV‐charge
t,h,n and PEV‐discharge

t,h,n are the discharge and charge

power of nth electric vehicle in period t, ηchargen represents
charging efficiency, and ηdischargen represents discharging
efficiency.

3. Uncertainty Modeling

3.1. The Proposed Model Incorporates Uncertainties. Given
the increasing trend of MG privatization and the dynamic
nature of load and production, managing uncertainties is
crucial for ensuring the power system’s reliability, operation,
and control. The MG uncertainty emerges due to the
absence of accurate data on the MG parameters. The pri-
mary sources of the MG uncertainty include variations in
parameters over time, unanticipated dynamics, and mea-
surement errors.

3.1.1. Electrical Demand Uncertainty. Electrical demand,
being the primary source of uncertainty, significantly influ-
ences the performance of microgrids (MGs). Demand
changes in MGs are primarily influenced by two factors:
time and weather. The daily and weekly variations in
demand are largely driven by the energy usage patterns of
the user. The load changes are suitably characterized by a
normal probability density function (PDF) as

f PLoad =
1

σP
Load × 2π

exp −
PLoad − μP

Load 2

2 × σPLoad
2 , 16

where PLoad is the electrical demand, μP
Load

is the demand
mean, and σP

Load
is the demand variance [31].

3.1.2. Irradiation Uncertainty. The generation capacity of
each photovoltaic array is influenced by deterministic factors
such as solar radiation, panel surface temperature, panel sur-
face area, and efficiency. Nevertheless, owing to the stochas-
tic nature of solar irradiation, the power output of a
photovoltaic array is subject to probabilistic variations. The
behavior of PV units is described using the beta PDF, as
shown in the following equation [32]:

f pvt,h sit,h =
Γ α + β

Γ α Γ β
sit,h

α−1 1 − sit,h
β−1 for α > 0, β > 0,

0 otherwise,
17

where sit , h (kW/m2) is solar radiation intensity, Г is the
gamma function, and also α and β represent the parameter

Sending end Receiving end

Pni+jQni

|Vni| �ni|Vmi| �mi

Rmi+jXmi

ni

lni

mi

Figure 1: Section of the radial branch in the distribution network.
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of beta PDF. These parameters can be calculated by the fol-
lowing equations:

β = 1 − μS
μS 1 − μS

σS
− 1 ,

α =
μSβ

1 − μS

18

Equation (19) is used to calculate the power generated by
PV units in each hour.

Ppv sit,h = ηpv × Apv × sit,h, 19

where ηpv represents the PV system efficiency and Apv (m2)
represents the photovoltaic surface area. The generation
capacity of the photovoltaic system is formulated as

PPV
t,h = PPV,rated × f PV ×

Gt,h

GSTC + λT Tt,h − TSTC , 20

where PPV,rated is the photovoltaic array nominal capacity,
f PV is dirtiness factor, Gt,h and GSTC are the real-time irradi-
ation and the array standard irradiation, λT is temperature
parameter, and Tt,h and TSTC are the array real-time temper-
ature and its standard temperature. It is worth mentioning
that GSTC and TSTC are 1000w/m2 and 25°C [32].

3.1.3. Wind Turbine Model. In this paper, a variable-speed
turbine is utilized, and its generation power is directly influ-
enced by the uncertainty in wind velocity [33]. The stochas-
tic nature of wind velocity can be described by utilizing the
Weibull PDF, as depicted in the following equation:

fWT
t,h υ =

k
Ω

×
υt,h
Ω

K−1
exp −

υt,h
Ω

K
, forΩ > 1, k > 0,

0 otherwise,
21

where fWT
t,h υ is the Weibull PDF, υt,h m/s is the wind

speed, and k and Ω represent the shaping parameter and
scaling parameter, respectively, which can be calculated
using the following equations:

K =
συ

μυ

−1 088
,

Ω =
μυ

Γ 1 + 1/k
,

22

where μv is the mean of wind speed data and σv is the wind
speed data variance. The power generation capability of the
WT can be determined by utilizing the following equation:

PWT υ =

0 υ ≤ υci or υ ≥ υco,

Pr υ − υco

υr − υco
υci < υ < υr ,

Pr υr < υ < υco,

23

where PWT
t,h is the generated turbine power and Pr is the WT

nominal capacity. Also, υcut‐in is the cut-in velocity, υcut‐out is
the cut-off velocity, and υr is the rated velocity of a WT,
respectively. The power generation curve as a function of
wind speed variations is depicted in Figure 2.

3.1.4. The PL Uncertainties. The characterization of the
input/output power of parking lots relies on multiple factors
of uncertainty, such as the charging/discharging plan of EVs,
the capacity and type of EV batteries, the proportion of EVs
in parking lots, driver behavior, EV arrival/departure tim-
ings, and the SOC of the batteries. In this paper, the total
capacity of PLs is assumed to be 500 EVs [34]. The schedul-
ing of EV arrival and departure times is represented by the

�co
(p

.u
.) 

Po
w

er
 W

T
Wind speed (m/s)

0
0

1

�ci �r

Figure 2: Power curve of a typical WT.

Table 1: Parameters of the probability density functions for arrival
and departure.

Arrival
K Ω

18.91 5.90

Departure
μ σ

2.21 0.30
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Weibull and Lognormal probability distribution functions,
respectively. The parameters of the PDFs are listed in
Table 1. The Weibull PDF and Lognormal PDF are repre-
sented by equations (24) and (25), respectively [35].

f arrt,h =
k
Ω

t
Ω

k−1
e− t/Ω k

, 0 < t < 24, 24

f dept,h =
1

tσ 2π
e− ln t−μ 2/2σ2 , 0 < t < 24, 25

where f arrt,h and f dept,h represent the Weibull PDF and Lognor-
mal PDF for the EV’s arrival and departure, respectively.

Figure 3 illustrates the amount of EV arrivals and their
departures, based on the parameters of the probability den-
sity functions (PDFs) [35].

The initial conditions of battery charging are influenced
by several factors, such as distance traveled, kind of the EV
battery, and its efficiency. Due to the variations in these
parameters across EVs, the remaining energy in the batteries

can be calculated probabilistically. This study encompasses
three modes of charging and discharging ratio. The initial
battery charge and the nominal charging and discharging
ratios are selected based on the obtained scenario from
Figure 4 PDFs. The scenario distribution curves presented
in this approach are categorized into three zones for the ini-
tial SOC and five zones for the charge/discharge ratio.

It is worth mentioning that the PDF curve is estimated
using the information provided in Table 2.

It is assumed that the initial charge and charging and
discharging ratio are considered independent of one
another. Therefore, the scenarios are combined in order to

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

N
um

be
r o

f E
V

Time

Departure
Arrival

Figure 3: The EVs of arrival and their departure.

SOC1 = �1−2.5σ1

SOC2 = �1−1.5σ1

SOC5 = �1+2.5σ1

SOC4 = �1+1.5σ1

SOC3 = �1

�1−2σ1 �1−σ1 �1+σ1 �1+2σ1

(a)

SOC1 = �1−1.5σ1 SOC3 = �1+1.5σ1

�2−σ2 �2+σ2

SOC2 = �2

(b)

Figure 4: (a) The initial battery charging PDF. (b) The charging and discharging ratio PDF.

Table 2: The SOC and charging rate parameters [36].

SOC
Maximum

charge\discharge rate
Discharge
mode

Discharge
mode

Mean 72 26 10

μ 2.6 1.7 1.1
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generate a comprehensive scenario, based on equation (26).
These scenarios are shown in Table 3.

πS = πEV × πSOC 26

In this equation, πEV represents the probabilities associ-
ated with the charging and discharging ratio. Additionally,
πSOC denotes the probability of the initial SOC in scenarios.

Equations (27) and (28) can be used to calculate the
needed time for full charging or full discharging of the EV
battery depending on the initial SOC:

tcharge s, n =
SOCmax − SOCn,s × ESn

PVs

, 27

tdischarge s, n =
SOCs,n − SOCmin × ESn

PVs

28

Equation (29) can be employed to compute the antici-
pated input and output power generated by the jth parking
lot within each Monte Carlo simulation. In this equation,
SOCmax is the maximum charging level and SOCmin repre-
sents the minimum charging level of the EV battery. ESn
indicates the capacity of the battery, and Pv represents the
maximum charging and discharging ratio of the EVs. There-
fore, the anticipated input and output power of the jth park-
ing lot at the demand level h in each Monte Carlo test (e) can
be calculated using the following equation [37]:

PPL,e
h,j = 〠

NS

s=1
〠
NEV j

n=1
CPj × PVs

× SOCs,n, 29

where CPj is the amount of parked electric vehicles in the
PL, Me

h,j is the percentage of the EVs present in the PL at
the demand level h, and also SOCs,n is the initial SOC of
an electric vehicle. NEVj is the amount of EVs in the PL.

Also, SOCmin is 20% and SOCmax is 80%.

3.2. Monte Carlo Simulation. In this research, the Monte
Carlo simulation (MCS) is employed to generate the
required scenarios for energy management within the
microgrid.

The MCS is a stochastic approach employed to predict
the behavior of components within the MG. The following
are the essential stages involved in estimating uncertainty
using the MCS [38, 39]:

Step 1. Develop the mathematical representation of the
measurement.

It is necessary to establish the mathematical equation
among the quantification outputs (Y) and the inputs (Xi).

Y = f X1, X2,⋯, Xn 30

Step 2. Assign PDFs to the inputs.

Considering the PDFs for the input (Xi), the inputs are
independent.

Step 3. Obtain the PDFs for the outputs.
A significant random value (M) is generated for each

input based on its respective distribution function. These
generated random values for each input are subsequently
fed into the mathematical model of the measurement sys-
tem. By employing the mathematical models, the corre-
sponding M value is obtained as the output variable.
Ultimately, by utilizing the computed values, the proba-
bility density function of the output variable can be
determined.

Step 4. Estimate the uncertainty of the measurement.
During this stage, the PDF of the output quantity (Y) is

utilized to calculate the mathematical expectation of Y (esti-
mated value of the output quantity). The standard deviation
of Y is determined as a measure of the standard uncertainty
associated with the output variable. Additionally, the certi-
tude distance, taking into account Y , is determined to spec-
ify the probability.

The advantages of using the MCS method include:

(i) No knowledge of the exact value of the transfer
function f is required in the MCS to calculate Y .
This allows the problem to be treated as a black
box that accepts samples and produces the corre-
sponding output

(ii) The MCS performs effectively in complex and high-
level systems

(iii) The MCS accommodates various types of probabil-
ity density functions

Table 3: The scenarios of initial SOC and charging/discharging
ratio along with their associated probabilities.

SOC Charge and discharge ratio (πs)

S1 μ1 − 2 5σ1 μ2 − 1 5σ2 0.0035

S2 μ1 − 1 5σ1 μ2 − 1 5σ2 0.0182

S3 μ1 μ2 − 1 5σ2 0.0966

S4 μ1 + 1 5σ1 μ2 − 1 5σ2 0.0182

S5 μ1 + 2 5σ1 μ2 − 1 5σ2 0.0035

S6 μ1 − 2 5σ1 μ2 0.018

S7 μ1 − 1 5σ1 μ2 0.0936

S8 μ1 μ2 0.4936

S9 μ1 + 1 5σ1 μ2 0.0936

S10 μ1 + 2 5σ1 μ2 0.018

S11 μ1 − 2 5σ1 μ2 + 1 5σ2 0.0035

S12 μ1 − 1 5σ1 μ2 + 1 5σ2 0.0182

S13 μ1 μ2 + 1 5σ2 0.0966

S14 μ1 + 1 5σ1 μ2 + 1 5σ2 0.0182

S15 μ1 + 2 5σ1 μ2 + 1 5σ2 0.0035
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(iv) The MCS is simple and easy to implement

4. Proposed Optimization Algorithm

The proposed hMOPSO-HS algorithm is a combination of
the MOPSO and HS algorithms. In the proposed algorithm,
genetic mutations are applied to the MOPSO algorithm and
subsequently, during each iteration of the algorithm, the
parameters are effectively fine-tuned using the harmony
search algorithm. The mechanism of the proposed algorithm
is shown in Figure 5.

The multiobjective particle swarm optimization algo-
rithm is a modified version of the PSO algorithm, initially
proposed. In this algorithm, particles are initially scattered
randomly throughout the search space, and objective func-

tions are computed for all the particles. Following that, the
particles are assessed based on their results, and the nondo-
minated particles are retained in a repository. The particle’s
positions are updated according to the following equations:

Vk t + 1 =Dd ×w × vk t + c1 × r1

× xPbestk t − xk t + c2 × r2

× Repk t − xk t ,

xk t + 1 = xk t + vk t + 1 ,

31

where νk is the particle velocity, Dd is the damping coef-
ficient, w is the weighting factor, and r1 and r2 represent

HS algorithm

Obj-function

MMOPSO

Cost1/VSI

Adjust parameters

Pareto front

Ideal point

Original

Original

Correct
copy

Mutant
copy

min 
(d

)

f2

f1

Figure 5: The hMOPSO-HS algorithm mechanism.
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random values ranging from 0 to 1. Also, c1 and c2 are
impression coefficients and Repk t represents a chosen
solution from the repository. For the following iterations,
the xk

Pbest t t is updated using the following procedure:

(1) If xk t + 1 dominates xk
Pbest t , then xk

Pbest t +
1 = xk t + 1

(2) If the current dominates xk t + 1 , then xk
Pbest t +

1 = xk
Pbest t

Select HS and MOPSO algorithm data (population, maximum
iteration, pareto archive size and so on)

Generate initial population with normal PDF

Calculate the objective functions for all the particles

Select the non-dominant particles and save in an
archive (repository)

Calculate the objective for all the particles

Update the position of each particle

Select leader for each particle group

Select the nondominant particles and add them to
the previous archive

Nrep<Nindentified

Delete additional members and add
them to the previous population

Are conditions for the
program to end?

Arrange particle archives (repository)
according to level of merit

yes

Start

Yes

No

No

Stop

Perform mutation

Initialize HS

Improvise a new harmony

Update the HM

Choose MOPSO optimal parameters

Stopping criteria?

C1, C2, W

Original

Original

Correct
copy

Mutant
copy

Non-dominated particle

Dominated particle

F2 (X)

F1 (X)

Pareto front

Figure 6: The proposed hMOPSO-HS algorithm flowchart.
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(3) If no clear dominance exists among the solutions, a
random selection is made to determine the xk

Pbest

t + 1 from the available options

These stages is repeated till the best solution is achieved.
For the mutated version of the MOPSO algorithm, genetic
mutation is used for the number of particles. Thus, the
PM% (percent of mutation) of the particles that are not in
the repository are selected for making mutations as equa-
tion (32). It is recommended that the PM be selected less
than 25%.

xk t + 1 = xk t +Mf × r × maxval −minval , 32

where r represents a randomly generated number follow-
ing a normal distribution, maxval and minval are variable
upper and lower limits, respectively, and Mf is the muta-
tion rate.

In the hMOPSO-HS algorithm, the harmonic search
(HS) algorithm is used for accurate estimation of the
MOPSO parameters. The HS algorithm is inspired by the col-
laborative behavior of musicians during music production.
The harmonic search algorithm defines a harmonic memory
that contains a finite set of better harmonies (responses). This
space is defined as a matrix called the harmonic memory
matrix. After the initial formation of harmonic memory,
the response vectors are arranged according to the results
for these vectors. The general form of this memory matrix
is as follows [40]:

HM=

x1

x2

⋮

xHMS

=

x11 x12 ⋯ x1N

x21 x22 ⋯ x2N

⋮ ⋮ ⋱ ⋮

xHMS
1 xHMS

1 ⋯ xHMS
N

33

To create a value for the i variable, first, a random num-
ber between zero and one is generated. This random number
is compared to the HMCR, and if it is smaller than that, a
value for the i variable is selected from the memory matrix
and the i column. Otherwise, a random amount of search
space is selected for the i variable. If a value is selected from
the memory matrix, then another random number is gener-
ated and compared to PAR. If the random number is less
than PAR, the selected variable from the memory matrix is
changed to a small value according to the following equation.
To determine the amount of change in the variable selected
from the matrix memory, another parameter called bw is
defined, which is obtained according to the value of the
new variable:

xk t + 1 = xk t + bω + ε 34

In the same way, all variables of a harmony are created
and then the value of that harmony is calculated according
to the objective function, and they are compared with the
worst harmony in the matrix memory. If it is better than
the worst harmony in the matrix memory, the new harmony
is replaced with the previous one. The condition for stopping
the algorithm is to achieve maximum iteration. The

Start
• Select the hMOPSO-HS algorithm parameters
• Initialize the HS population. (Select randomly C1, C2 and ω)
• While Iter1< Maximum Iteration
• For all HS populations do
• Initialize the MOPSO population.
• Calculate objective functions for all the particles.
• Select non-dominated populations and store them in the repository.
• Choose the best result.
• While Iter2< Maximum Iteration
• For all MOPSO particles do
• Update C1, C2, ω.
• Update MOPSO population positions.
• Choose a non-dominated population and update the repository.
• Find the best result.

end for
• Iter2=Iter2+1;
• end while
• Improvise new harmony
• Update HM
• end for
• Iter1=Iter1+1;
• end while

End

Algorithm 1: The pseudocode of the proposed hMOPSO-HS algorithm.
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Figure 8: The per-hour electricity price [45].
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schematic diagram illustrating the MOPSO-HS algorithm is
depicted in Figure 6.

The pseudocode of the proposed hMOPSO-HS algo-
rithm is given in Algorithm 1.

5. The Understudy Microgrid

Figure 7 illustrates the test system employed as a microgrid
(MG) in this study [41–43]. The understudy microgrid
incorporates two 500 kW WTs located at bus 15 and bus
21, as well as two 500 kW PV arrays situated at buses 9
and 30. Furthermore, the MG includes six 500 kW parking
lots positioned at buses 5, 12, 17, 19, 24, and 28. The wind

velocity and irradiation data utilized in the analysis are
obtained from the McHenry precinct of the North Dakota
region [44]. Moreover, the load flow calculations are carried
out using the forward-backward sweep (FBS) method.

An energy management period of 24 hours is carried out
to facilitate the charging and discharging operations of EVs.
The power exchange between PLs and the MG involves a
total of 500 EVs. These EVs are assumed to be of the Chevro-
let model, based on the technical specifications provided in
[44]. Each EV has a battery capacity of 16 kWh, and the max-
imum charging and discharging power for each EV is set at
5 kW. The electricity prices procured from the upstream net-
work for each hour are illustrated in Figure 8 [45].
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Figure 9: Pareto fronts of the proposed algorithm for the UF functions.

Table 4: The IGD index values for the unconstrained benchmark functions.

UF1 UF2 UF3 UF4 UF5 UF6 UF7 UF8 UF9 UF10

hMOPSO-HS 0.005743 0.004373 0.048562 0.053022 0.071675 0.062543 0.05348 0.061612 0.057973 0.180345

MOPSO 0.006115 0.005784 0.043003 0.049105 1.930803 0.610471 0.008268 0.236419 0.175671 0.526617

MOABC [47] 0.00618 0.00484 0.0512 0.05801 0.077758 0.06537 0.05573 0.06726 0.0615 0.19499

MOEAD [47] 0.00435 0.00679 0.00742 0.06385 0.18071 0.00587 0.00444 0.0584 0.07896 0.47415

GDE3 [47] 0.00534 0.01195 0.10639 0.0265 0.03928 0.25091 0.02522 0.24855 0.08248 0.43326

MOEADGM [47] 0.0062 0.0064 0.0429 0.0476 1.7919 0.5563 0.0076 0.2446 0.1878 0.5646

MTS [47] 0.00646 0.00615 0.0531 0.02356 0.01489 0.05917 0.04079 0.11251 0.11442 0.15306

LiuLi algorithm [47] 0.00785 0.0123 0.01497 0.0435 0.16186 0.17555 0.0073 0.08235 0.09391 0.44691

Table 5: The IGD index values for the constrained benchmark functions.

CF1 CF2 CF3 CF4 CF5 CF6 CF7

hMOPSO-HS 0.005743 0.004373 0.048562 0.053022 0.071675 0.062543 0.05348

MOPSO 0.006115 0.005784 0.043003 0.049105 1.930803 0.610471 0.008268

MOABC [47] 0.00992 0.01027 0.08621 0.00452 0.06781 0.00483 0.01692

GDE3 [47] 0.0294 0.01597 0.1275 0.00799 0.06799 0.06199 0.04169

MOEADGM [47] 0.0108 0.008 0.5134 0.0707 0.5446 0.2071 0.5356

MTS [47] 0.01918 0.02677 0.10446 0.01109 0.02077 0.01616 0.02469

LiuLi algorithm [47] 0.00085 0.0042 0.1829 0.01423 0.10973 0.01394 0.10446
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6. Simulation Results Analysis

The simulations are performed in three parts. Firstly, the
performance of the hMOPSO-HS algorithm is assessed by
conducting optimization on several benchmarks. In the sec-
ond part, the simulation is done regardless of the uncer-
tainties and with the predicted definite data, and in the

third part, the uncertainty is considered by selecting 15 sce-
narios from the MCS. To achieve the optimal energy man-
agement of MG in two cases, multiobjective particle swarm
optimization (MOPSO) algorithm, nondominated sorting
genetic algorithm (NSGAII), multiobjective differential evo-
lution (MODE), multiobjective gray wolf optimization
(MOGWO), and also the hMOPSO-HS algorithm is used.
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Figure 11: The predicted electrical demand [45].
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6.1. First Section of the Simulation Results (Algorithm
Performance Evaluation). In this part, the hMOPSO-HS
performance is assessed by conducting optimization on the
CEC′09 benchmark functions [46]. The optimization pro-
cess covers both unconstrained test functions UF1–UF10
and constrained test functions CF1–CF7 using the
hMOPSO-HS algorithm. The acquired outcomes are subse-
quently contrasted with diverse multiobjective algorithms.
The performance assessment is based on the calculation of
the inverse generational distance (IGD). Smaller values of
the IGD index indicate a smaller discrepancy between the
values of the actual Pareto front and the Pareto front
obtained through the optimization algorithm. After solving
UF1-UF10, the corresponding IGD values were calculated
and presented in Table 4.

The lower values of IGD indicate the superior perfor-
mance of the proposed hMOPSO-HS algorithm in finding
optimal solutions. Figure 9 displays the Pareto front for
UF1 to UF3.

As depicted in Figure 9, the Pareto front obtained by the
hMOPSO-HS algorithm exhibits minimal deviations from
the actual Pareto front. Subsequently, the proposed
MOGOA-BES algorithm was employed to optimize the con-
strained test functions (CF1-CF7), and the corresponding
IGD index values are calculated and presented in Table 5.

The lower values of the IGD index in solving CF prob-
lems validate the higher accuracy and suitable dispersion of
the solutions obtained by the proposed algorithm in com-
parison to other algorithms. Figure 10 illustrates the Pareto
fronts of the proposed algorithm and the actual Pareto fronts
for CF1, CF2, and CF3.

6.2. Second Section of the Simulation Results (Regardless of
Uncertainty). For the first part of the simulation, uncertainty
is not considered, and definite data are used to perform the

optimization. The predicted electrical demand by customers
is shown in Figure 11.

The projected values of irradiation and wind speed are
illustrated in Figure 12. The PV system unit has the capabil-
ity to generate electricity between 8 am and 6 pm, while no
power generation occurs during the remaining hours due
to insufficient solar irradiation. The wind speed in the spec-
ified area fluctuates between 6m/s and 11m/s [47].

The Pareto fronts for the optimization algorithm are
depicted in Figure 13.
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Table 6: The optimal results in the first section.

NSGAII MOPSO MODE MOGWO
hMOPSO-

HS

Cost ($) 6269 6235 6234 6230 6203

1/VSI
(p.u.)

1.321 1.287 1.287 1.282 1.274
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To assess the optimization outcomes, the S-metric index
is computed to gauge the dispersion of the dominating par-
ticles, and its representation can be observed in Figure 14. A
smaller amount of the mean metric distance signifies that
the Pareto particles are more scattered, and zero values of
the S-metric distance mean that all the dominant particles
are distributed at the same Pareto distance.

The best result is selected from the dominant particles.
Also, the fuzzy mechanism is used for the best results selec-
tion. The optimal outcomes for the optimization algorithms
are presented in Table 6.

Based on the findings presented in Table 6, it can be
observed that the hMOPSO-HS algorithm outperformed
other metaheuristic algorithms in terms of performance.
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The final cost for the hMOPSO-HS is $6203 and the voltage
stability index in the MG is 1.274 p.u. Figure 15 shows the
operating cost of the MG separately.

To better analyze the performance of the hMOPSO-HS
optimization algorithm on MG operation costs, the share
of each component in the final cost is shown as a percentage
in Figure 16. About 48% of the MG operation cost is allo-
cated to the purchase of electricity from the upstream net-
work, while the share of distributed generation and
parking lots from the final cost of operation is 16% and
22%, respectively. The DR share is equal to 8%, and the
ENS fine share is about 6% of the final cost.

Figure 17 shows the generation capacity of each part of
the MG components for 24 hours after optimization by the
proposed hMOPSO-HS algorithm.

In this case, the MG voltage profile in 24 hours is shown
in Figure 18. The voltage amplitude in all buses for 24 hours
is more than 0.94 p.u.

6.3. Third Section of the Simulation Results (considering
Uncertainty). In the second section of the simulations,
demand and generation uncertainties as well as parking lot
uncertainties are considered. Fifteen scenarios are chosen
by the MCS, and the per-unit values of wind power, PVs
and charge in these scenarios are shown in Figure 19.

The Pareto fronts for the optimization algorithms in the
second part are shown in Figure 20.

Similar to the first section, for better evaluation, the S-
metric index is calculated for the algorithms which is shown
in Figure 21.

Considering the uncertainty, the S-metric index results
reveal an increase in the dispersion of the outcomes com-
pared to the first section. A lower mean value of the S-
metric index means scattering with a uniform distribution
of dominant particles of the proposed hMOPSO-HS. The

MG cost and the voltage stability function for the selected
particles are given in Table 7.

In this section, the MG operation cost and 1/VSI index
are the lowest when the proposed hMOPSO-HS is used for
MG energy management. The operation cost is $6605, and
1/VSI is 1.367 p.u. for the MG optimized by the hMOPSO-
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Table 7: The optimal results in the second section.

NSGAII MOPSO MODE MOGWO
hMOPSO-

HS

Cost ($) 6684 6673 6623 6646 6605

1/VSI
(p.u.)

1.412 1.388 1.391 1.371 1.367
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HS. In Figure 22, the MG component cost is shown as a sep-
arate bar chart. The results show that considering the uncer-
tainty in MG, it increases the purchasing energy cost from
the power grid and the penalty for not supplying energy.
Also, the demand response program has played an impor-
tant role in reducing operation costs.

In Figure 23, the share of each part in the final cost is
shown by percentage.

In this part of the simulation, the percentage of the cost
from a power system is about 50% and it has increased by
2% compared to conditions without considering uncertainty.
Also, the share of ENS and DR has increased. The DR share
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of total cost is 12%, and the ENS share is 9% for this section.
But, the share of PL costs and DG production costs has
decreased to 18% and 11%, respectively. The MG voltage is
shown in Figure 24.

The voltage profile shows that in the case of uncer-
tainties, the voltage amplitude has decreased compared to
the conditions of the previous section. The minimum volt-
age amplitude is 0.93 p.u.

7. Conclusion

In this paper, a novel energy management system based on
uncertainty for MG energy management is proposed. The
MG selected for the simulation consists of PV and wind
sources along with EV parking lots. The renewable source
generation powers, PL, and load consumption uncertainties
are considered in the simulation and other sources of uncer-
tainty are omitted. The operation cost and voltage stability
index (VSI) are considered objective functions, and an inno-
vative hybrid algorithm called hMOPSO-HS is proposed for
solving the optimization problem. The hMOPSO-HS algo-
rithm is a combination of the mutant version of MOPSO
and harmony search (HS) algorithms. Simulations are done
in two different cases. In the first case, the uncertainty is
neglected and, in the second part of the simulation, the
uncertainty is considered. The optimization results of the
proposed hMOPSO-HS algorithms are compared with sev-
eral multiobjective algorithms for two cases of simulations
and also the S-metric index is calculated for all of them.
The simulation results indicate better performance of the
hMOPSO-HS algorithm than all other algorithms. The sim-
ulation results also showed that if uncertainty is considered,
the cost of the demand response program and the cost of
purchasing energy from the upstream network will increase
to reduce the impact of uncertainty on the sources of distrib-
uted generation and parking of EVs. For future studies, new
electrical energy storage technologies such as compressed air
storage (CAS) or power to gas (PtG) can be added to the
microgrid and the impact of the presence of these storages
can be investigated. Indeed, the studies presented in this
paper can be replicated and applied to real-world systems.
By conducting similar experiments on real systems,
researchers can verify the effectiveness and applicability of
the proposed approaches in practical scenarios.

Nomenclature

Abbreviations

DG: Distributed generation
DR: Demand response
DRP: Demand response program
ENS: Energy not supply
EMS: Energy management system
EV: Electric vehicles
hMOPSO-HS: Hybrid MOPSO-HS algorithm
HSA: Harmony search algorithm
MCS: Monte Carlo simulation
MG: Microgrid

MOPSO: Multiobjective particle swarm optimization
NLP: Nonlinear programming
PDF: Probability density functions
PL: Parking lot
PV: Photovoltaic
RTP: Real-time pricing
SOC: The state of charge
VSI: Voltage stability index
TOU: Time of use
WT: Wind turbine.

Parameters

α, β, and γ: Constant values for the DG

Bcharge
j : Charging cost

Bdischarge
t,h,j : Discharging cost

PLPSP
t,h : Loss of supply probability

PUW
t,h : Unwanted power interruption punishment

πh: Probability of each sample
Nh: Number of random samples of operation

conditions
PPV
t,h : PV generated power

PWT
t,h : WT generated power

PDG‐max: Maximum production capacity of DG
PDG‐min: Minimum production capacity of DG
u: Binary variable
Bt,n: Binary variables that show discharge mode
Pcharge‐max
n : Maximum charge rate of nth EV

Pdischarge‐max
n : Maximum discharge rate of nth EV

ES
t,h,n: EV remaining energy

Etrip
t,h,n: EV traveling energy consumption

ηchargen : Charging efficiency

ηdischargen : Discharging efficiency

μP
Load

: Mean of load power

σPLoad : Variance of load power
si: Radiation intensity
Apv : Size of the PV panel
ηpv: Efficiency of the PV panel
Gt,h: Solar irradiation
GSTC: Standard irradiation
Tt,h: Panel temperature
TSTC: Standard temperature
Pr : WT rated power
sit ,h: A random variable representing the intensity
μυ: Mean of wind data
συ: Variance of wind data
υ t : Wind speed
υcut‐in: Cut-in speed
υcut‐out: Cut-off speed
υr : Nominal speed
νk: Velocity of particle
Dd : Damping coefficient
w: Weighting factor
Rep: Repository
PM: Percent of mutation
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HM: Harmony memory

Pgrid
t,h : The energy exchanged to the network

Pgrid‐max: Maximum power exchanged with the network
At,n: Binary variables that show charge mode.

Data Availability

The data used to support the findings of this study are
included within the article.
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