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The development of energy harvesters based on inexpensive inorganic materials has attracted considerable attention to envisage
next-generation self-powered electronic devices. In this work, we presented surface modification of ZnO nanorods (NRs) by
thermochemical reaction using photoresist (PR) as an etching source. The morphological and microstructural properties of
surface-etched ZnO NRs (M: ZnO) were systematically studied in detail through SEM and HRTEM. The morphological results
show that the surface-etched NRs possess nanofiber-like porous structures and are penetrated throughout the NRs with high
surface area. We fabricated triboelectric nanogenerators (TENG) using M: ZnO NRs with poly (dimethylsiloxane) (PDMS) as
negative triboelectric material and mica as positive triboelectric material. The prepared M: ZnO NR TENG successfully
delivered an output voltage of up to 20V and a current density of 3.2 μAcm−2, which is ∼1.5 times higher than those observed
for smooth ZnO NRs, respectively. The prepared M: ZnO NR TENG device can be able to lit 24 red light-emitting diodes
(LEDs) as the power source. Finally, to demonstrate the practical applications of M: ZnO NR TENG, it was attached to the
human body (elbow, knee, wrist, and heel) and efficiently harvested the energy from daily human activities.

1. Introduction

In recent years, developing and searching for renewable, sus-
tainable, and green energy has become one of the vital tasks
for researchers and scientists to address the rapidly increas-
ing global warming and energy crises [1–3]. The energy har-
vesting devices from our living environment is an effective
approach such as air, solar, wind, chemical, thermal, and
mechanical energy and has attracted lots of research inter-
ests in the scientific community [4]. Among them, mechan-
ical energy is one of the efficient approaches to provide a
sustainable, green power source for self-powered devices
such as portable/wearable electronics and wireless sensor
network [5–10]. Up to now, a variety of approaches have
been explored to convert mechanical energy to electrical
energy utilizing electromagnetic [11], electrostatic [12],

piezoelectric [13, 14], pyroelectric [15], and triboelectric
effects [16–18].

Recently, triboelectric nanogenerators (TENGs) are con-
sidered a potential approach to generate electricity from
mechanical energy via electrostatic induction and triboelec-
tric charging [19–21]. Owing to its easy fabrication, cost-
effectiveness, high output voltage, and high performance, it
has broad potential applications, including self-powered
sensors, health care monitoring, and portable electronic
devices [22–25]. Although a variety of materials have been
studied as active materials in TENG, it still has its limita-
tions. So far, numerous approaches have been explored in
TENG to achieve higher output performance, by choosing
and varying the surface morphology of the materials. On
the other hand, unique coupling of the piezoelectric mate-
rials with TENG is one of the promising approaches to
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greatly improve the electrical output performance [26–29].
However, identifying the piezoelectric materials with high
relative permittivity and high piezoelectric coefficients is
the key factor to increase the electrical performance of nano-
generators. Therefore, strenuous efforts have been devoted
to fabricate and design a high-performance TENG for
powering electronic systems.

Among various piezoelectric materials, ZnO has been
considered a promising material for energy harvesting func-
tions due to its relatively large piezoelectric coefficient, non-
toxicity, and easy synthesis [30, 31]. The ZnO nanorods
(NRs) proposed in this study have high utility due to their
advantages of high optical properties, good reliability, and
human-friendly stability [32]. Additionally, discrete surfaces
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Figure 1: (a) Schematic representation process for the surface modification of ZnO nanorods. High- and low-magnification SEM images of
(b–d) smooth ZnO NRs and (e–g) M: ZnO NRs.
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of ZnO NRs would be desirable for triboelectric nanogenera-
tors which require an efficient contact and interface to the
surface of triboelectric polymer materials.

Herein, we will first elucidate a simple method to intro-
duce surface modification in ZnO nanorods (M: ZnO NRs)
to porous nanofiber-like structures. The surface modification
of ZnO nanorods to porous nanofibers is created by nanoetch-
ing the nanorods using a photoresist (PR) at 800°C. M: ZnO
NR-based piezoelectric nanogenerators (PENG) were initially
fabricated to verify the practical ability of the device for
converting mechanical energy into electrical energy. Then,
we fabricated triboelectric nanogenerators (TENG) using M:
ZnO NRs encapsulated with poly (dimethylsiloxane) (PDMS)
as negative triboelectric material and mica as positive tribo-
electric material. A strongly enhanced output voltage and cur-
rent density are achieved in the case of M: ZnO NRs, when
compared to smooth ZnO nanorods. We noted that the
obtained output power was capable of lighting 24 commercial
red emission light-emitting diodes (LEDs) connected in series
without using any energy storage systems.

2. Experimental Section

2.1. Materials. Zn metal (99.999%), oxygen gas (99.999%),
nitrogen gas (99.999%), and PR S-1813G® were purchased
from Sigma-Aldrich.

2.2. Synthesis of ZnO and M: ZnO Nanorods. ZnO nanorods
were grown via chemical vapor deposition (CVD) system
used in previous studies [33]. In a typical ZnO nanorod
growth experiment, high-purity zinc (Zn) metal contained
in a quartz boat is placed in the center zone of the CVD
chamber. Then, oxygen (200 sccm) was used as a source
and carrier gas for the deposition of ZnO nanorods. The
growth temperature of ZnO nanorods was set at 750°C for
40min. For the production of surface-modified ZnO nano-
rods, PR S-1813G® and photoresist thinner were used. The
equal ratio of photoresist (10mL) and thinner was mixed
thoroughly to make diluted PR. Then, the diluted PR was
spin-coated on the ZnO NRs and heated up to 800°C for
30min. The schematic representation of the surface modifi-
cation of ZnO nanorods is illustrated in Figure 1(a). The
details about the characterization, piezo, and triboelectric
measurements are presented in the supporting information
(SI (available here)).

3. Results and Discussions

The morphological characteristics of the as-prepared and
surface-etched ZnO NRs were investigated by scanning elec-
tron microscope (SEM). Figures 1(b)–1(d) display the typi-
cal SEM images of as-prepared ZnO NRs on Si substrate
using the CVD technique. As seen from the images, ZnO
NRs appear to have a smooth surface with flattened hexago-
nal corners. The mean diameter of the ZnO NRs is about
1.5μm and length up to 40μm. Figures 1(e)–1(g) display
the morphology change of the ZnO NRs after surface etch-
ing with PR for 800°C at 30min. As can be seen from
Figures 1(e)–1(g), the ZnO NRs with a hexagonal shape were

found to possess nanofiber-like morphology after the ther-
mal treatment. The surface etching of ZnO with PR results
in strong texturing of the NRs. The morphology of ZnO
NRs is strongly changed, and the smooth surface of ZnO
NRs becomes coarse and rough. In order to understand the
morphological change of ZnO NRs, we performed system-
atic studies by varying thermal treatment on PR-coated
ZnO NRs at different temperatures. Figure 2 depicts SEM
images of ZnO NRs after thermal treatment at different tem-
peratures (700–900°C). Here, thermal treatment at 700°C
has very little effect on the morphology of NRs with the side
surface still smooth with little etching on the top of NRs
(Figure 2(a)). When the temperature was elevated to
750°C, a change of surface texture on ZnO NR sidewalls
was noticed, and a nanofiber-like structure appeared on
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Figure 2: SEM image showing the etching dependence on thermal
treatment of PR-coated ZnO NRs at (a) 700°C, (b) 750°C, (c) 800°C,
(d) 850°C, and (e) 900°C.
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Figure 3: (a) TEM and (b) HRTEM image of M: ZnO NRs (inset
shows FFT pattern).
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the top of NRs indicating the beginning of a chemical attack
(Figure 2(b)). The thermal treatment at 800°C caused major
etching characteristics, with apparent change to the surface
of ZnO NRs (Figure 2(c)). A nanofiber-like morphology

with sharp tips was observed on the top and sidewalls of
the NRs. The nanofibers appear to penetrate almost through
the whole NRs making it highly porous. These porous struc-
tures with defects thereby produce strain and enhance the
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Figure 4: (a) XRD pattern of smooth ZnO NRs and M: ZnO NRs. (b) Raman spectrum of smooth ZnO NRs and M: ZnO NRs. (c) Low-
temperature PL spectrum of smooth ZnO NRs and M: ZnO NRs. (d) XPS spectra of Zn 2p of smooth ZnO NRs and M: ZnO NRs. (e, f) XPS
spectra of O 1s of smooth ZnO NRs and M: ZnO NRs.
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piezoelectric properties in surface-modified ZnO NRs
(M: ZnO NRs). When the thermal treatment is prolonged
above 850°C, there is more etching rate, and it brings significant
morphological changes and damages the NRs (Figures 2(d)
and 2(e)). Hence, we can conclude that nanofibers of ZnO
NRs occur at 800°C under 30min etching time.

To investigate the microstructure of M: ZnO NRs, high-
resolution transmission electron microscopy (HRTEM) was
employed. Figure 3(a) displays the typical TEM image of
M: ZnO NRs. It should be noted here that fiber-like mor-
phology becomes apparent, which agrees with SEM results.
Figure 3(b) depicts an HRTEM image of M: ZnO NRs,
where clear lattice fringes with a spacing of 0.51 nm corre-
spond to (0001) planes of hexagonal ZnO. Furthermore,
the fast Fourier transform (FFT) pattern (inset Figure 3(b))
confirms the good crystalline nature of M: ZnO NRs.

Additionally, the EDX spectrum was measured for both
ZnO NRs and M: ZnO NRs (Figure S1), which confirms
the peaks of Zn and oxygen elements in ZnO NRs.

The crystalline structures of the as-grown ZnO NRs and
M: ZnO NRs were investigated using X-ray diffraction
(XRD) and Raman spectroscopy. Figure 4(a) shows the cor-
responding diffraction patterns of ZnO NRs and M: ZnO
NRs. The XRD patterns show a sharp peak at approximately
34.54°, corresponding to the (002) plane, indicating good
alignment in the c-axis direction. Figure 4(b) displays the
typical Raman spectra of smooth ZnO NRs and M: ZnO
NR films. As seen from Figure 4(b), a dominant sharp peak
positioned at 438 cm-1 was observed for smooth ZnO NRs,
which is assigned to E2 (high) vibration mode of wurtzite
ZnO and is associated with the vibration of oxygen atoms
[34, 35]. The presence of the strong intense E2 (high) mode
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Figure 5: Peak-to-peak output voltage of (a–c) smooth ZnO NRs and (d, f) M: ZnO NRs under various compressive forces.

5International Journal of Energy Research



confirms the good crystallinity of the as-prepared smooth
NRs. The Raman spectra of M: ZnO NRs were similar to that
of smooth NRs. However, the peak intensity of the E2 (high)
mode decreased for M: ZnO NRs. This indicates that surface
etching induces stress in ZnO NRs and decreases the inten-
sities which was mainly caused by the chemical reaction of
photoresist.

Low-temperature photoluminescence (PL) was then
employed to study the optical properties of smooth ZnO
NRs and M: ZnO NR films. Figure 4(c) illustrates PL results
of smooth ZnO NRs and M: ZnO NR films obtained at 10K.

As shown in the PL spectra, smooth ZnO NRs exhibit an
emission band located at 3.378 eV (attributed to free exciton
(FX) emission), which is consistent with other reports [36].
The emission centered at 3.36 eV is assigned to donor-
bound exciton (D0X), which dominates the NBE of smooth
ZnO NRs. The emission centered at 3.310 and 3.238 eV is
related with longitudinal optical (LO) phonon replicas of
FX-1LO and FX-2LO, respectively. The energy difference
between these two replicas is close to 72meV, corresponding
to the LO-phonon energy of ZnO [37]. Additionally, the
shoulder peaks centered at 3.292 and 3.220 eV correspond
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Figure 6: (a) Schematic illustration of the M: ZnO NR-based TENGs. (b) Photographic image of the output voltage generated from M: ZnO
NR TENG during the external pushing force. (c) The output voltage and (d) current density of smooth ZnO NRs and M: ZnO NRs.
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to phonon replicas of D0X–1LO and D0X–2LO. The PL of
M: ZnO NR films at 10K is quite similar to that of smooth
ZnO NRs. However, the PL intensity of M: ZnO NRs
increases as compared to smooth ZnO NRs. The enhance-
ment of PL intensity could be related with the reduction of
dislocation and extraction of strong luminescence by light
scattering from the sidewalls of the porous ZnO NRs [38].

XPS measurements were further carried out to study the
surface states and chemical composition in ZnO NRs and M:
ZnO NRs. The core level spectra of Zn 2p, for ZnO NRs and
M: ZnO NRs, are displayed in Figure 4(d). The binding ener-
gies at 1020.24 eV (Zn 2p3/2) and 1044.07 eV (Zn 2p1/2)
reveal the Zn2+ valence state in ZnO NRs and M: ZnO
NRs [39]. Similarly, the spectra of O 1s were found to be
deconvoluted into two peaks at 530.1 eV and 531.8 eV
(Figures 4(e) and 4(f)). The peak at 530.1 eV is ascribed to
O2− ion on the wurtzite structure of ZnO, and the peak at
531.8 eV is ascribed to the loosely bound O2− ions on ZnO
surface such as hydroxyl OH groups [40].

Initially, we prepared the piezoelectric nanogenerator
PENG devices on smooth ZnO NRs and M: ZnO NR film,
to investigate their electrical properties under a periodic
pushing force. We compared the peak-to-peak output
voltage for the smooth ZnO NRs and M: ZnO NR film under
different pushing forces (1, 3, and 5N). As seen in Figure 5,

the output voltage for smooth ZnO NRs and M: ZnO NR
film device increased gradually with the mechanical pushing
force varying from 1 to 5N. We observed that the effective
output voltage measured for M: ZnO NR device (with a ver-
tical force of 5N) is 2 times higher than those obtained for
smooth ZnO NR device (Figure 5(b)). The enhanced output
voltage is due to the highly porous structure of NRs, which
produces strain and enhances the piezoelectric potential in
M: ZnO NRs [41, 42]. Additionally, the higher specific sur-
face area of porous ZnO NRs is also significant in enhancing
their piezoelectric response [43, 44].

A schematic representation of the M: ZnO NR-based
TENG device is depicted in Figure 6(a). The typical process
involved in the fabrication of TENG is described below. In
the triboelectric series, mica and PDMS are excellent positive
and negative materials, respectively [45]. For the positive
layer, an Au electrode was deposited by e-beam evaporation
on the backside of mica films prepared with dimensions of
1 5 cm × 1 5 cm. As for the negative layer, PDMS (SYL-
GARD® 184, Dow Corning) was spin-coated (300 rpm) on
M: ZnO nanorods, and Au electrodes were deposited on
the backside. For comparison, a negative layer using bare
ZnO nanorods was also fabricated. Each of the two layers
was attached to two acrylic substrates, respectively, and fixed
between the two layers with a spring. The fabricated TENG

Time (s)

0.5 Hz 1 Hz 2 Hz 3 Hz 4 Hz 5 Hz

V
ol

ta
ge

 (V
)

0 5 10 15 20 25 30 35 40

30

20

10

0

–10

–20

(a)

Cycle times

V
ol

ta
ge

 (V
)

0 100 200 300 400 500 600

30

20

10

0

–10

–20

–30

(b)

Figure 7: (a) Open-circuit voltages of M: ZnO NR TENG under different frequencies. (b) Stability of the proposed M: ZnO NR TENG
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performed a contact-non-contact cycle by fixing a force
gauge and a linear motor to both sides of the device for
triboelectric generation. Figure 6(b) represents the photo-
graphic image of the output voltage generated from M:
ZnO NR TENG during the external pushing force. The out-
put voltage and current density of smooth ZnO NRs and M:
ZnO NR TENG devices were systematically studied under a
constant vertical force of 5N. Figures 6(c) and 6(d) display
the output voltage and current densities of smooth ZnO
NRs and M: ZnO NRs. Here, the maximum output voltage
and current density obtained for smooth ZnO NR TENG
are noted to be 12V and 2.5μAcm−2. However, the output
voltage and current density for M: ZnO NR TENG increased
to be 20V and 3.2μAcm−2, which is higher than that of
smooth ZnO NRs.

Besides, the output performances of M: ZnO NR TENG
under the application of different frequencies were also
investigated. The output voltage of the M: ZnO NR TENG
measured at different applied frequencies ranging from 0.5
to 5Hz at a constant applied external force of 5N is shown
in Figure 7(a). The measured output voltage of the M:
ZnO NR TENG was slightly enhanced while increasing the
frequency from 0.5 to 5Hz. This improvement is mainly
attributed to the faster compression cycles with an increase
in frequency, which can lead to an increase in charge trans-

fer rate across the external load [29, 46]. To demonstrate the
durability of the M: ZnO NR TENG device, continuous test-
ing was carried out over 600 cycles (Figure 7(b)). The TENG
device shows no noticeable degradation in the performance
over 600 cycles demonstrating the excellent durability of
our M: ZnO NR TENG device.

The plausible mechanism of the fabricated M: ZnO NR
TENG is schematically depicted in Figure 8. At the initial
stage, when there is no contact between the top (Au/mica)
and the bottom (PDMS/M: ZnO NRs) surfaces, there is no
electric output, and no charges are generated (Figure 8(a)).
Under the application of mechanical force on the top elec-
trode, the top (mica) and bottom (PDMS/M: ZnO NRs)
surfaces come in contact with each other (Figure 8(b))
generating positive and negative triboelectric charges on
mica and PDMS surface. Due to the triboelectric effect, elec-
trons from the mica surface can be induced to migrate into
the PDMS/M: ZnO NRs, resulting in positive triboelectric
charges along the surface of the mica layer. At the same time,
due to the porous structure, a piezoelectric potential is
generated in the M: ZnO NRs when the device is compressed
by this mechanical force. This piezoelectric potential estab-
lished on the PDMS/M: ZnO NRs could then extract more
electrons from the mica layer (Figure 8(c)). When releasing
the mechanical force, both the electrode surfaces are
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separated from each other, which results in a potential dif-
ference between the two electrodes. This existing potential
difference between the top and bottom electrodes drives
the electrons to migrate from the bottom to top electrode
via the external circuit (Figure 8(d)). This process results
in the generation of positive peaks in current and voltage
measurement. Once the mechanical force is processed again
in the top electrode, the electrons will migrate back in the
reverse direction to the bottom electrode, due to piezoelec-
tric potential induced by the deformation of PDMS/M:
ZnO NRs, which influences the triboelectric charges of the
top electrode. This process generates negative peaks in cur-
rent and voltage measurements (Figure 8(e)).

For practical applications of TENG, it is relevant to
investigate the effective output power that the device can
provide with a load. Therefore, the output voltage, current,
and instantaneous power generated from the M: ZnO NR
device were evaluated under several load resistances and
are shown in Figure 9(a). The output voltage increases with
an increasing load resistance while the output current
decreases. The corresponding output power was calculated,
and the maximum output power density of 21.3μW/cm2

was achieved with a 3MΩ load resistance (Figure 9(b)).
Finally, to demonstrate the practical applications of our as-
prepared TENG device, we attempted to lit up multiple red
emission LEDs. For this purpose, 24 LEDs constituting the

letter LED were connected to the TENG in series to a com-
mercial bridge circuit. The output electrical power generated
by the M: ZnO NRs is an alternating current (AC) signal and
cannot be supplied directly to function electronic devices.
Therefore, the AC signals generated were converted into
direct current (DC) by utilizing a bridge rectifier. The output
voltage generated from the M: ZnO NR TENG using a
bridge rectifier is shown in Figure 8(c). Further, upon apply-
ing the external force by pressing, the prepared M: ZnO NR
TENG device instantaneously and simultaneously powered
24 LEDs displaying the letters LED as shown in the inset
of Figure 9(c). The corresponding equivalent circuit of the
M: ZnO NR TENG-based self-charging system is shown in
Figure 9(d).

We fabricated a TENG for actual testing and checked the
voltage that can be spontaneously generated during the run-
ning process. Figure 10(a) shows a test TENG with a 1 5 ×
1 5 cm size. The mica positive layer and the PDMS+M:
ZnO negative layer were fabricated to enable contact and
noncontact cycles without a spring by using a PET substrate
with strong flexibility. Figures 10(b)–10(e) and the photo-
graphic image (Figure S2 Supporting Information) display
the results of experiments by attaching TENG to the
elbow, knee, wrist, and heel, respectively. Since the joint
part of the human body that folds receives relatively little
force, a small voltage of about 5 to 7V is generated, and
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(e) heel, respectively, during the running process.

9International Journal of Energy Research



the results of the heel test that can be used with self-powered
shoes are similar to those using a linear motor. The above
experimental results clearly demonstrate the excellent
performance of M: ZnO NR TENG for their potential
application for energy harvesting structure for self-powered
devices.

4. Conclusions

In summary, we successfully modified the surface of the
single-crystal hexagonal ZnO nanorods using PR as an etching
source. The structural analysis shows that the surface-
modified ZnO NRs exhibited nanofiber-like porous structure
and possessed high surface-to-volume ratios. To clearly exam-
ine the advantage of the surface modification, TENG devices
were fabricated onM: ZnONRs. The devices exhibit an output
voltage of 20V and a current density of 3.2μAcm−2 under a
constant vertical force of 5N. The M: ZnO NR TENG device
can be able to lit 24 red LEDs as a power source. The practical
application of M: ZnO NR TENG was also verified by fixing it
onto the shoes, and the electrical output performances by
various human activities were observed, verifying that the pro-
posed device can efficiently harvest these energies. The results
highlight the potential of M: ZnO NR TENG devices for
energy harvesting structure for self-powered devices.
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