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Focusing on mitigating global challenges arising from hydrocarbon-based sources, the integration of cogeneration power plants
with solar photovoltaics offers a viable solution. The intermittent nature of renewable resources presents a challenge to the
consistent performance of cogeneration systems. To address these issues, this work introduces a novel framework for
integrating cogeneration power plants (CGPPs) with solar photovoltaic systems. The key innovation of this research lies in its
dual-algorithm approach that seamlessly blends cogeneration power plants with solar photovoltaic. This study proposed an
integrated approach, employing the Derivative Log Sigmoid-Woodpecker Mating Algorithm (DLS-WMA) and Optimized
Artificial Neural Networks (O-ANN), to combine cogeneration power plants with solar photovoltaics in industrial distribution
systems. The methodology is aimed at achieving a cost-effective, efficient system design, enhancing the efficiency of
cogeneration power plants, and introducing energy storage batteries for uninterrupted power generation under diverse
atmospheric conditions and loads. Additionally, the proposed system includes rechargeable batteries for energy storage to
support critical services when the solar plant is offline and the CGPP cannot meet the power demand. The industrial system’s
photovoltaic component is tuned using the DLS-WMA for cost minimization and O-ANN for solar irradiance prediction,
ensuring continuous power flow by optimizing both the photovoltaic system and the cogeneration power plant (CGPP) system.
Real-time datasets are used to compare the results obtained by this new approach with those of the previous state-of-the-art
algorithms. The error with O-ANN prediction is 1.2%, compared to 4.1% with the existing WMA-ANN technique, while the
cost-benefit with DLS-WMA shows a 9% improvement over the WMA-ANN technique. The experimental outcomes
demonstrate the efficiency of this new approach. Collaboration with industry stakeholders and policymakers is crucial for the
large-scale deployment of this system, facilitating the adoption of sustainable energy practices in industrial distribution systems.

1. Introduction

In recent years, electricity demand has steadily increased due
to industrialization and urbanization [1]. Most countries
rely on complex hydrocarbon energy sources such as natural
gas, oil, and coal in their energy generation units, which
leads to global challenges such as global warming, climatic

changes, ozone depletion, and fossil resources depletion
[2]. Hence, using renewable energy resources, including
wind, solar, thermal, and tidal, can minimize the consump-
tion of fossil resources and CO2 emissions and produce
much less environmental contamination, thus effectively
easing the above issues [3]. Therefore, implementing cogen-
eration and renewable energy systems may lower energy loss
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and raise resource utilization efficiency [4]. Cogeneration is
the system generating both electricity and heat from the same
source and has better efficiency than traditional power plants.

The renewable energy cogeneration (hybrid) system
offers an affordable and reliable energy supply system [5],
which also enhances operational efficiency, lowers overhead
costs, reduces energy waste, and ensures uninterrupted
power supply [6]. Most hybrid systems rely on solar and
wind resources, but their intermittent nature poses chal-
lenges [7]. Moreover, this intermittency may also lead to a
decline in battery life [8]. Hybrid systems might use a con-
tinuous energy source such as geothermal, biomass, or ocean
thermal to alleviate this issue [9]. However, hybridization of
multienergies is inevitable for future development [10].
Compared to an uncoupled power or heat system, the
CHP plant has much greater energy efficiency [11]. How-
ever, the CHP system has significant difficulties, including
stringent operational restrictions posed by the coupled con-
nection between the production of heat and power, a slow
ramp rate of the power cycle, and the use of fossil fuels
[12]. Numerous studies have shown that the water-type pho-
tovoltaic/thermal (PV/T) system has improved energy per-
formance, but because of its restricted heat transfer
performance and water heat storage capacity, its cooling
impact and energy performance are still only modest [13].
The majority of the current integration systems maintain
the cogeneration power plant’s low stability, voltage, profile,
and efficiency while using irregular PV power [14]. How-
ever, the gap exists in the existing technology/literature
regarding predictions and optimal use of energy resources
with respect to cogeneration power plants with renewable
energy systems.

Therefore, to address the aforementioned problems, this
work proposes the integration of cogeneration power plants
with solar photovoltaics in industrial distribution systems
using Derivative Log Sigmoid-Woodpecker Mating Algo-
rithm (DLS-WMA) and Optimized ANN. The contributions
of the proposed work are listed below:

(i) To propose a low-cost system design for continuous
power generation under fluctuating atmospheric
conditions

(ii) To design an efficient optimization algorithm for
cost minimization and rapid convergence

(iii) Energy storage batteries are introduced to enhance
the efficiency of the cogeneration power plant

(iv) To analyze the system performance under changing
weather conditions and different loads

This research adopts a comprehensive methodology
designed to integrate cogeneration power plants with solar
photovoltaics (PV) systems, aimed at enhancing system effi-
ciency and sustainability in industrial distribution networks,
employing the Derivative Log Sigmoid-Woodpecker Mating
Algorithm (DLS-WMA) for cost minimization and system
optimization and Optimized Artificial Neural Networks
(O-ANN) employed for precise solar irradiance forecasting,

crucial for planning and managing energy production and
storage. Unlike previous studies, which primarily focus on
either cogeneration efficiency improvement or solar photovol-
taic optimization in isolation, our work proposes a synergistic
approach that optimizes both components as a unified system.
This holistic methodology addresses both energy efficiency
and cost-effectiveness, setting a new precedent in the field.
The methodology’s effectiveness is evaluated using MATLAB
Simulink, a powerful environment for simulation and
model-based design, which allows for the detailed analysis of
system performance under various scenarios under a range
of atmospheric conditions, including varying levels of sunlight
and temperature, to assess system adaptability and reliability.

The subsequent sections of this article are organized as fol-
lows: Section 2 presents an examination of expert opinions
regarding the proposed method. In Section 3, the details of
the case study industry are explained, and an in-depth explo-
ration of the proposed methodology is provided, while Section
4 succinctly details the application of battery technology. Sec-
tion 5 encompasses the results based on performance metrics.
Meanwhile, Section 6 delves into the prediction of irradiance
using the O-ANN technique, with a subsequent discussion
of the results in Section 7. Section 8 discusses the sensitivity
analysis of the proposed work. The report is concluded by con-
templating future research prospects.

2. Literature Survey

In [15], Radwan and Mohamed proposed a new topology for
a wind-photovoltaic (PV) cogeneration system that maxi-
mized system efficiency by directly connecting a PV solar
generator with a dc-link capacitor of the BtB VSCs and using
B2B (back-to-back) VSCs (voltage-source converters) to
interface a full-scale wind turbine with the utility grid with
a permanent magnet synchronous generator. In [16], Tey-
mouri et al. developed a biomass cogeneration/hybrid solar
system that employed PV/T (photovoltaic/thermal) compo-
nents to capture solar energy, hydrogen was created by water
electrolysis, and the fuel was utilized as an additive in the CC
(combustion chamber) of a GT (gas turbine) cycle. In [17],
Chen et al. investigated a decentralized electricity/water
cogeneration system that integrated vacuum multieffect
membrane distillation with concentrated photovoltaic/ther-
mal collectors for increased thermodynamic efficiency and
high compactness. In [18], Wang et al. provided energy sav-
ings for internal loads and helped in the efficient functioning
of traditional units through an integrated system that com-
bines a combined power and heat unit, a concentrated solar
power plant, and structures combined with phase change
materials for heating and cooling storage.

He et al. described a wind-photovoltaic-thermal energy
storage-electric heater cogeneration model [19], which effec-
tively regulated the fluctuating wind and photovoltaic output
by converting excess electricity to thermal energy using an
electric heater. Various researchers used the woodpecker
mating algorithm [20] and global neighbourhood algorithm
[21] for solving energy and optimization problems. Also,
solar irradiance prediction is made by numerous researchers
[22, 23] with certain limitations of lower accuracy. Also,
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while going for integrating of PV system into an existing dis-
tribution network, there are many technical challenges, such
as reactive power, fault currents, protection systems [24],
frequency regulation [25], and communication and control
[26]. Also, much research is on the cards towards optimal
integration and operation of hybrid power systems [27],
similar to that of the case study industry.

2.1. Research Gap. Following our comprehensive review of
existing literature, it is evident that while significant
advancements have been made in integrating cogeneration
power plants with solar photovoltaics, challenges remain in
optimizing these hybrid systems for enhanced efficiency
and cost-effectiveness. Specifically, the literature reveals a
gap in the application of advanced optimization algorithms
and predictive models that can dynamically adapt to fluctu-
ating environmental conditions and load demands. This gap
underscores the need for innovative approaches to improve
the integration and operation of cogeneration and solar pho-
tovoltaic systems within industrial settings.

2.2. Research Questions. In light of the identified research gap,
this study seeks to answer the following research questions:

(i) How can the integration of cogeneration power
plants with solar photovoltaics be optimized to
enhance system efficiency and reduce operational
costs in industrial distribution systems?

(ii) What role can advanced algorithms, such as the
Derivative Log Sigmoid-Woodpecker Mating Algo-
rithm (DLS-WMA) and Optimized Artificial Neural
Networks (O-ANN), play in improving the predict-
ability and adaptability of hybrid power systems
under variable environmental conditions?

(iii) To what extent can the proposed integrated
approach contribute to sustainable energy manage-
ment practices in the industrial sector by reducing
reliance on fossil fuels and minimizing environmen-
tal impact?

2.3. Objectives of the Study. The primary objectives of this
study are as follows:

(i) To develop an integrated framework: design a novel
framework that employs DLS-WMA and O-ANN
for the efficient integration of cogeneration power
plants with solar photovoltaics in industrial distri-
bution systems

(ii) To optimize system design for efficiency and cost-
effectiveness: utilize advanced optimization algo-
rithms to achieve a cost-effective, efficient system
design that enhances the operational efficiency of
cogeneration power plants and leverages solar pho-
tovoltaics for sustainable energy production

(iii) To evaluate the performance of the proposed frame-
work: conduct a comprehensive analysis using real-
time datasets to compare the performance of the

proposed framework against existing state-of-the-
art algorithms, focusing on system efficiency, cost-
benefit, and adaptability to fluctuating conditions

(iv) To contribute to sustainable industrial energy man-
agement: demonstrate the potential of the proposed
integrated approach in facilitating the large-scale
deployment of hybrid power systems, thereby pro-
moting sustainable energy practices in the industrial
sector

3. Case Study Industry and
Proposed Methodology

3.1. Details about the Industry. This study introduces the
idea of an integrated energy system for industrial uses. This
work is aimed at maintaining a continuous flow of current.
To meet this objective, the solar PV and CGPP systems are
implemented by taking a continuous process chemical
industry. The capacity of SPP is 12MW, which is 33% of
the total load of 36MW; i.e., the industry standard of 33%
rule is used to avoid any technical issues such as load flow
and fault currents. The case study industry has mainly two
load types: a production load of 30MW and a base load of
6MW. In this study, some of the auxiliary loads such as
township and security lighting are not considered in model-
ling. When the plant is in operation, the total load will be
36MW, and when it is off, the base load of 6MW will be
served. The capacitor is installed for reactive power compen-
sation in fixed steps but not continuously varying injection
of reactive power.

It is assumed that the capacitors are always off and to be
taken into service as and when required. The power architec-
ture with cost optimization using DLS-WMA and irradiance
prediction using O-ANN is shown in Figure 1. Given the
operational issues faced by SPP and CGPP, for sectors that
need power evacuation at the 6.6 kV level, an ideal solution
must be found.

3.2. Solar Photovoltaic System. A photovoltaic cell is a device
that uses the photoelectric effect to transform solar energy into
electrical energy [28]. A single solar cell is referred to as a part of
an electrical circuit in a PV system. A photocurrent generator,
which manages current production from light, a diode (a p-n
junction), and two resistors (one in parallel and the other in
series) that characterize the recombination losses and Joule
effect are also included. Consequently, this setup is known as
a single-diode solar cell model. The circuit schematic for the
PV cell is shown in Figure 2. With a current source IPH parallel
to the diode, the solar PV cell is shown as an ideal solar cell. The
output current of an ideal solar cell is thus defined by Kirchh-
off’s first rule as in the following equation [29].

I = IPH − I d , 1

where I d signifies the dark current and IPH is the parallel
source current.

Shockley’s diode current equation, which is defined as
(2) [29], is the basic form that defines the I-V property of
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the ideal photovoltaic cell mathematically. It comes from the
theoretical operation of semiconductors.

I d = I s Exp
bVc

PS z B Tc
− 1 , 2

where I s defines the saturation diode current, Vc is the
cell voltage, b represents the charge of an electron, Ps is
the cell series number, z is the diode quality constant, B
is the Boltzmann’s constant, and Tc is cell temperature. I
d value is substituted in equation (1), which renders
the output current I of an ideal solar cell illustrated as
in the following equation.

I = IPH − I s Exp
bVc

PSzBTc
− 1 3

The single-diode model with series SR and parallel
resistance PR is integrated with the PV system to
increase a PV Cell’s output in real-time applications. The

current path series resistance SR deemed the losses by
the Joule effect. Consequently, when SR is taken into
account and PR is regarded as infinite, the diode current
is adjusted as in the following equation [29].

I d = I s Exp
b Vc + ISR
PSzBTc

− 1 4

When SR is considered, then equation (3) is modified
as follows.

I = IPH − I s Exp
b Vc + ISR
PSz B Tc

− 1 5

When the output current I is calculated with the PV
cells fixed in a series-parallel configuration, it is given in
the following equation.

I = PC ∗ IPH − PC ∗ I s Exp
b V + ISR
PSzBTc

− 1 , 6

where PC defines the number of parallel cells. IPH, i.e.,
according to equation (7) [30], photocurrent, relies linearly
on solar radiation and is impacted by temperature. This
photocurrent is proportionate to incident flux or solar
irradiance and independent of V and ISR.

IPH = ISC + CK Tc0 − Tcr ∗
q
qR

, 7

where Isc defines the short circuit current; CK is the short
circuit current temperature coefficient of the cell; Tc0 and
Tcr define the effective and reference temperature, respec-
tively; q and qR define the effective and reference solar
irradiance, respectively. Then, the saturation current I Sc
and reverse saturation current I Rs are determined using
the following expressions [28].

I Rs =
I Sc

Exp bVc/PSzBTc − 1
,

I Sc = ISR
Tc0
Tcr

3
Exp

bE
zB

1
Tcr

−
1
Tc0

,
8

where E signifies the energy band gap.
The P-V and I-V curves of one 255 watts, 30.8 volts PV

module for irradiances of 1 kW/m2, 0.1 kW/m2, and 0.5 kW/
m2 are shown in Figure 3. Also, the P-V and I-V curves of a
total 12MW PV system (2241 parallel strings of each string
having 21 PV modules in series) for irradiance of 1 kW/m2

at STC (standard test conditions) temperatures of 25°C and
NOCT (normal operating cell temperature) of 45°C are
shown in Figure 4. The I-V and P-V curves are shown for
different solar irradiance conditions.

3.3. Cogeneration Power Plant. Cogeneration power plants
(CGPP), which concurrently create two or more types of
energy from a single fuel source, are often referred to as

Solar PV

Capacitor

Base load

CGPP Process load

Storage battery

Cost minimization

DLS-WMA O-ANN

Utility grid

Irradiance prediction

Figure 1: Architecture of the proposed framework.

IPH I (d) Ip

SR I

PR V

+

–

Figure 2: Single-diode PV cell circuit diagram.
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CHP plants. It involves generating electricity as well as heat
in a single unit, and this uses less energy than producing
them in two independent units. This combined approach
reduces energy consumption compared to generating elec-
tricity and heat separately, with cogeneration facilities
achieving efficiency rates significantly higher than single-
generation units, often reaching 50% to 70%. According to
Figure 5, the CGPP typically comprises a prime mover, gen-
erator, and some sort of heat recovery system. Here, the
available surplus heat from the manufacturing process will
be used to generate steam. This steam will be fed to a steam
turbine-alternator unit to get electricity. The utility grid is
linked to the CGPP. If the CGPP’s power source fails, the
industry may still function with the help of the utility grid
and, if available, the SPP. Furthermore, when these CGPP
and SPP systems are off, the UG supplies the basic loads in

the industry either with the assistance of a storage battery
or alone if the battery is unavailable.

4. Rechargeable Battery

The rechargeable battery is then used to store some of the
excess energy generated from the solar PV and CGPP sys-
tems. The extra power generated by the solar panels and
the CGPP is stored in a rechargeable battery. This stored
energy acts as a backup, providing power for essential ser-
vices like lighting, communication, and critical equipment
during periods of insufficient generation from the solar
panels or CGPP, such as at night, on overcast days, or even
during power outages. The mathematical formulation for the
rechargeable battery is given in the following equation.

R Bt ⟵ EPV + ECGPP − PPL – PBL, 9

where R Bt defines the rechargeable battery, EPV represents
the solar panel energy, ECGPP represents the CGPP system
energy, PPL represents the processing load, and PBL repre-
sents the basic loads.

4.1. Sizing of Battery for a 1MW Load. The main parameters
to be considered in the sizing of a battery are voltage rating
of the system and the load duty. Other points to be consid-
ered in selecting a battery for a particular application are
capital cost, physical size, place and ventilation requirement,
recharge time, charging power requirement, etc.

(i) Voltage rating: depending on the system voltage and
its standard permissible limits, the battery voltage
will be estimated based on number of cells (n) to be
connected in series or a string, as follows.

Vmin
Vc

≤ n ≤
Vmax
Vd

, 10

where n is the number of cells in a string, Vmax is the permis-
sible highest system voltage (=1 10 ×Vnominal), Vmin is the
permissible lowest system voltage (=0 95 ×Vnominal), Vd is
the max. charge voltage (= 2.35V for lead acid, 4.2V for
Li-ion, and 1.4V for Ni-Cd), Vc is the discharge voltage
(= 1.85V for lead acid, 3V for Li-ion, and 1.1V for Ni-Cd
cells), and Vnominal is the nominal cell voltage (= 2 for lead
acid, 3.7V for Li-ion, and 1.2V for Ni-Cd)

(ii) Load duty: depending on the duty cycle and load rat-
ing, the ampere-hour rating of the battery will be
decided

Example: estimation of lead-acid battery rating for a sta-
tion duty of 1000 kW, 220V load with a backup time of 10
hours considering Ah efficiency as 75% and depth of dis-
charge (DOD) of 80%.

ηAh given = 75% with a backup time of hour
Rated energy = 1000 × 1 = 1000 kWh
Proposed DC voltage = 220V

Array type: user-defined;
21 series modules; 2241 parallel strings
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Load Ah rating = 1000000/220 = 4540 Ah
Battery maximum rating = Ah/ ηAh × DOD = 4540/ 0 75

× 0 8 = 7570Ah
Battery minimum rating = Ah/ ηAh = 4540/0 75 = 6050

Ah
Average of minimum and maximum = 7570 + 6050 /2 =

6810Ah, rounded to 7000Ah

5. Cost Minimization Using DLS-WMA

This phase focuses on minimizing the overall costs of the
CGPP system. The proposed work utilizes the Derivative
Log Sigmoid-Woodpecker Mating Algorithm (DLS-WMA)
for cost optimization. DLS-WMA considers various CGPP
system-related parameters like steam extraction rate, load,
heat rate, and temperature as inputs to achieve significant
cost reductions. Hence, these parameters are inputted into
the DLS-WMA, which significantly optimizes the costs of
the CGPP system. The WMA is an optimization algorithm
that takes its inspiration from red-bellied woodpeckers’
insightful mating behaviour. The woodpecker birds in
WMA are segregated into male and female categories, and
during the mating season, they employ a distinctive tactic
known as drumming or pecking on tree trunks to entice
potential partners. The conventional WMA easily falls into
the local optimum and has a premature phenomenon.
Hence, it takes more time for convergence. So, to handle
these shortcomings, the proposed work uses the DLS func-
tion instead of the tangent sigmoid function. Hence, this
improvisation drastically increases the convergence rate
and improves the optimization capability. The algorithmic
steps of DLS-WMA are explained as follows.

Initially, the woodpecker populations are initialized ran-
domly. Here, the woodpeckers define the parameters of the
CGPP system. Thus, the initialization process is mathemati-
cally defined as in the following equation [31].

λi = λ1, λ2, λ3, ⋯ ⋯ , λn 11

The woodpecker population is organized at every itera-
tion based on fitness value under the objective function.
Thus, the woodpecker’s motion is calculated by using the
following equations [31],

λ n y+1 = λny + Rd ∗ Δk,

Δk = βBest ∗
λyBest − λik

2
+ Smy ,

12

where λny defines the woodpecker’s position, βBest denotes the
position of the best male bird, Rd signifies the randomnumber
within the interval of (0, 1), and random coefficients of the
woodpecker are defined by Smy in each iteration. The male
woodpecker influences the female woodpecker by producing
the highest quality of drumming sounds. The female wood-
pecker then revises her position as the best male; this process
is mathematically expressed by the following equation [31].

λ = Rand + Z, 13

where the random distribution number is denoted by Rand
and the parameter by Z.

If λi is greater than 1 λi > 1 , consequently, the female
woodpeckers must have separated from and gone a great
distance from the target woodpecker. As a result, the
updated new search areas have superior solutions. If λi is less
than or equal to 1 λi ≤ 1 , using the expression in (14) [31],
the female woodpeckers go approach the target woodpecker.

X =
1

1 + SInm
, 14

where the male woodpecker is represented X and the sound
intensity of the target bird by SI. When a woodpecker migrates
towards the centralized target, it leads to a more precise calcu-
lation of the optimal solution. Therefore, the parameter effect
is defined by using the following expression [31].

Y = DLS + 1 −
I

IMax
, 15

where DLS defines the derivative log sigmoid function, the
current iteration number is represented by I, and the maxi-
mum iteration number by IMax.

The number of male birds declines in the final iterations,
and the solution’s accuracy is determined by the following
equation [31].

λMale = C
N
2

×
1

IMax
+ 1 16

From the male woodpecker population, the best wood-
pecker is selected by using the following equations [29].

Heat
exchanger Thermal energy

Electrical energyGeneratorPrime moverFluel

Waste heat

Figure 5: Energy generation from CGPP.
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Δk = βBest ∗
λyBest − λik

2
+ Smy ,

Th = 〠
m−1

1

λBest
m − 1

17

The woodpecker’s arbitrary movement away from its loca-
tion is represented by the sound intensity movement, while
the threshold value is denoted by Th. The woodpecker’s new
location and the RRA (random running away) with lower
and upper bounds are stated as follows [31].

RRA = Lb − Lb −Ub ∗ Rd, 18

where Lb defines the lower bound, Ub represents the upper
bound, and Rd signifies random values. The drums were audi-
ble to the woodpecker at an adequate intensity. Hence, it is the
right position. This intensity enabled the woodpeckers to flee
as a result. The GRA (group run away) is mathematically
denoted by the following equation [31].

G = P Rc ∗
I

IMax
, 19

where the probability of runaway coefficient is defined by
P Rc . The problem dimensions are defined by G vector; the
element of G is acquired by using the following equation [31].

G =
1, if h ≤G,

0, else
20

At any random location between the best male wood-
pecker places, the female woodpecker takes up a new position,
and the random woodpecker is stated as follows [31]:

λG = λki +G ∗ λkBest − λh ∗ Rd 21

The new position of the bird is compared to both its prior
position and the position of the best woodpecker in the final
phase. This position is updated if the current one is superior
to the prior one. The best solutions are chosen as the prob-
lem’s optimum solution if the algorithm’s termination condi-
tion is met. Hence, using this DLS-WMA, the optimal
numbers of neurons are generated.

6. Irradiance Prediction Using O-ANN

Finally, the solar PV system irradiance is predicted using O-
ANN. The irradiance of the solar photovoltaic depends on
ambient temperature (Amb. Temp.), relative humidity
(RH), dew point (Dew), wind speed (WS), sky cover, and
precipitation (Preci.). Hence, based on these parameters,
the O-ANN evaluates the solar photovoltaic systems’ solar
irradiance. An input layer and an output layer linked by
one or more layers of hidden nodes make up the ANN.
The input layer transmits the data to the nodes of the hidden
layer [32]. It is worth noting that ANN models are com-

posed of intricately interconnected and nonlinear neurons.
This may affect the classification’s performance and lead to
a higher number of iterations. Due to this, the training time
is also increased. Hence, to offset this problem, in this work,
the number of neurons and layers is optimized with the
DLS-WMA. Because of this optimization process, the classi-
fication algorithm is named O-ANN. Figure 6 illustrates the
O-ANN’s structure. The procedures that are involved in O-
ANN are briefly explained here. The optimal number of
layers and neurons for the ANN is defined in the initial step.
For this, an optimization algorithm called DLS-WMA is
used.

6.1. Input Layer. Data are received by the input layer (α) and
are then presented to the hidden layer. Here, the input data
and corresponding weight values (wg) are represented in the
following equations [33].

αi = α1, α2, α3, ⋯ , αn ,

wgi = wg1, wg2, wg3, ⋯ , wgn
22

6.2. Hidden Layer. The output of the input layer is then
passed into the hidden layer, which aggregates the weight
and bias values and uses the rectified linear activation func-
tion (ReLU) activation function to train the input designs.
Thus, the hidden layer is mathematically planned as in the
following equations [33].

Hi = 〠
n

i=1
wgiαi + Bias,

Hi =IAct 〠
n

i=1
wgiαi + Bias ,

23

where wgi represents the weight values, Bias denotes the bias
values initialized randomly, and IAct signifies the activation
function. Here, the ReLU activation function activates the
planned neurons, as in the following equation [33].

Max 0, α 24

6.3. Output Layer. This layer efficiently predicts the model
efficiency. The weights of the input data are added together
to determine the output unit. This unit is expressed by the
following equation [33].

Oti = Sf 〠Hiwgi + Bias , 25

where Oti signifies the output unit, Hi is the layer value that
comes before the output layer, and Sf denotes the softmax
function. Finally, the loss values of the output are computed
by analyzing the target outcome with the actual outcome.
Hence, the overall loss value is computed as in the following
equation.

Loss = T Ot − A Ot 2, 26
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where Loss denotes the error value and A Ot denotes the
actual outcome and the targeted outcome. If the value of
the error Loss = 0, then the model gives the exact solution,
but if the error value Loss ≠ 0, then the weight values are
updated, and the backpropagation starts. Finally, the classifi-
cation technique significantly predicts the efficiency of solar
photovoltaic systems. The pseudocode for the O-ANN is
shown in Pseudocode 1.

The real-time dataset of 121 readings used in the present
research methodology of different weather conditions and
seasons (summer, rainy, and winter) is shown in Figure 7.
Sample data represents different seasons and varying
weather conditions such as solar irradiance, ambient tem-
perature, relative humidity, dew point, wind speed, sky
cover, and precipitation. The technical parameters of the
case study industry are given in Table 1.

7. Results and Discussion

The result analysis of the suggested approach is explained in
detail in this section. Performance analysis and comparison
analysis are done to quantify the efficacy of the proposed
work. The MATLAB Simulink operating system uses the
suggested technique. To address the need for a critical and
quantitative comparison of the proposed technique with
other reported techniques in this area, we have conducted
a comprehensive analysis focusing on several key perfor-
mance indicators: system efficiency, cost-benefit analysis,
error rates in predictions, and adaptability to environmental
changes. We employed real-time datasets encompassing a
wide range of environmental conditions, including solar
irradiance, temperature fluctuations, and varying load
demands, to test the adaptability and accuracy of our model.
These datasets were sourced from the case study industry,
ensuring they reflect diverse geographical and climatic con-
ditions. To further validate our model, a sensitivity analysis
was performed, examining how changes in key parameters
that affect the optimized utilization of multiple energy
resources affect the performance of the integrated system.
This analysis helped in identifying the robustness of our
model under different operational conditions.

7.1. Dataset Used. The three years’ real-time average data are
collected from the chemical sector for this study, as shown in
Table 1. However, in real-time scenario, the data points may
vary based on weather and other plant operating conditions,
and the present work is limited to the available average data.
Here, PCGPP and QCGPP are reactive and active powers of
CGPP, PUG and QUG are reactive and active powers of
CGPP, PPV and QCGPP are the active SPP, PL and QL are
reactive and active powers of process load, PBL and QBL are
reactive and active powers of base load, and V is the bus
voltage at 6.6 kV level. Here, all the active and reactive pow-
ers of power sources are decision variables with load param-
eters as the constraints.

7.2. Performance Analysis of the Proposed DLS-WMA-ANN.
The effectiveness of the novel DLS-WMA-ANN approach is
rigorously assessed through performance analysis based on
established metrics: root mean squared error (RMSE), mean
absolute error (MAE), mean square error (MSE), R-square,
standard error, and output power. These metrics gauge the
accuracy of the model’s predictions compared to actual
values. The results are then compared with various existing
approaches, like WMA-ANN and ANN. Figure 8 visually
compares the error rates (MAE, MSE, and RMSE) achieved
by the proposed DLS-WMA-ANN with existing approaches
like WMA-ANN and standard ANN. Notably, lower error
values indicate a more robust and accurate model. The pro-
posed DLS-WMA-ANN demonstrates significant improve-
ment over existing methods. It achieves an MAE of 27.39,
MSE of 1313.7, and RMSE of 36.24, while WMA-ANN aver-
ages at 49.72, 6267.18, and 79.16, respectively (see Figure 8).
This substantial reduction in error rates across all metrics
highlights the superior performance of the proposed
approach.

Figure 9 illustrates the comparative analysis of the sug-
gested DLS-WMA-ANN and the current WMA-ANN and
ANN regarding R-square and the standard error, respec-
tively. The R-square is the coefficient that indicates the qual-
itative information of a dataset. Consequently, the proposed
model’s strong efficiency is evidenced by a high R-square
value coupled with a low standard error.. According to this
statement, the proposed O-ANN achieves a 0.977 R-square
value and 21.36 standard error. However, the existing
techniques, such as WMA-ANN and ANN, attain an aver-
age R-square of 0.898 and a standard error of 21.53. As per
the comparison, the proposed method is a less error-free
model that renders a better outcome under various uncer-
tain circumstances.

The suggested method’s performance analysis is shown
in Figure 10 for all three algorithms’ actual and predicted
irradiance levels. This evaluation is done based on the num-
ber of data. The graph shows that for the first 0 to 80 data,
the actual and predicted irradiance is almost similar or
somewhat better with O-ANN. However, the data above 80
have a larger difference. However, the suggested approach
outperforms the current works in terms of efficiency.
Because the existing works indicate a drastic variation
between the predicted and actual irradiance, this proves that

Input layer Hidden layer 1 Hidden layer 2 Output layer

Figure 6: O-ANN structure of the proposed work.
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Input: Amb. Temp., Rel. humidity, Dew point, Wind Speed, Sky Cover, and Precipitation
Output: Solar irradiance prediction
Begin

Initialize the neurons and layers by using,
λG = λki +G ∗ λkBest − λh ∗ Rd

Initialize weight wgi,j , bias, parameters, maxitr
For maxitr = 1ton

Evaluate hidden layers by using,
Hi =IAct ∑

n
i=1wgiαi + Bais

Evaluate the output layer by using,
Oti = Sf ∑Hiwgi + Bais

If T Ot = A Ot
Accurate prediction of solar irradiance

Else
Perform backpropagation by updating weights using,

End if
End for

End

Pseudocode 1: Pseudocode for the O-ANN.
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Figure 7: Different seasonal weather conditions at Hyderabad, India.

Table 1: Technical parameters of the case study.

Parameter Nominal Maximum Minimum Significance

QCGPP (Mvar) 15 18 0 Decision variable

PCGPP (MW) 32 36 32 Decision variable

QUG (Mvar) 15 2.9 0.48 Decision variable

PUG (MW) 1 6 −10 Decision variable

PL (MW) 30 30 0 Constraint

PPV (MW) — 12 0 Decision variable

PBL (MW) 6 6 6 Constraint

QL (Mvar) 15 15 0 Constraint

V (%) 100 105 91 Decision variable

QBL (Mvar) 2.9 2.9 2.9 Constraint
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the proposed system was superior to the existing works. The
irradiance prediction in W/m2 at NOCT (40°C) with various
techniques is shown in Table 2.

The error is found to be lowest for the proposed DLS-
WMA model compared to the other two models. The pro-
posed DLS-WMA-ANN and the current works, including

WMA-ANN and ANN, are graphically analyzed (see
Figure 11), regarding the output power of two PV modules
of 255W rating. According to the data in the graph, the pro-
posed DLS-WMA-ANN yields a smoother and more consis-
tent output power over time. The existing WMA-ANN and
ANN attained lower output power than the proposed work.
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Figure 8: Comparative analysis of the proposed DLS-WMA-ANN in terms of (a) MAE, (b) MSE, and (c) RMSE.
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The power production is highest with the proposed DLS-
WMA model compared with the other two models. Unlike
traditional methods, our integrated system showcases
remarkable adaptability to fluctuating environmental con-
ditions, maintaining optimal performance with a variabil-
ity index of less than 5%. In contrast, the WMA-ANN
and PV/T systems exhibit variability indexes of 10% and
15%, respectively, indicating less stability in response to
environmental changes. This critical analysis highlights
our method’s contributions to the field of sustainable
energy systems, offering a robust solution that addresses
the limitations of the current technologies. The proposed
method achieved a 15% increase in the overall system effi-
ciency, which is evidenced by a 1.2% error rate in solar

irradiance prediction and a 9% improvement in cost-benefit
analysis over the conventional approaches. These improve-
ments are significant, underscoring the method’s capability
to optimize power generation and distribution in cogeneration
systems integrated with solar photovoltaics under variable
conditions.

7.3. Performance Evaluation of the Proposed DLS-WMA.
Our study formulates the problem as follows with the
hypotheses, conditions, and boundaries listed here.

7.3.1. Hypothesis. H1: the DLS-WMA, when applied to the
optimization of cogeneration power plants integrated with
solar photovoltaics, results in a more cost-effective energy
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Figure 10: Prediction plot for irradiance: (a) ANN, (b) WMA-ANN, and (c) O-ANN.

Table 2: Irradiance prediction with various techniques.

Real-time field value
Predicted irradiance

O-ANN WMA-ANN ANN
Value % error Value % error Value % error

614 621.38 -1.2 588.79 4.1 555.54 9.95
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production system compared to the conventional Wood-
pecker Mating Algorithm (WMA). This hypothesis is based
on the assumption that the DLS-WMA’s enhanced search
and optimization capabilities lead to better convergence on
the global minimum of the cost function, thus minimizing
the total energy cost more effectively.

7.3.2. Conditions

(i) Environmental and operational conditions: the
evaluation assumes a variety of environmental con-
ditions that impact solar irradiance and, conse-
quently, the performance of solar photovoltaics.
Additionally, it considers the operational variability
of cogeneration power plants

(ii) Data availability: it is assumed that accurate and
comprehensive data on energy costs (CCGPP

t , CPV
t ,

and CUG
t ) and system performance under different

conditions are available for both the proposed
DLS-WMA and the current WMA

(iii) Technological feasibility: the implementation of
DLS-WMA is presumed to be technologically feasi-
ble within the current infrastructure of cogeneration
and solar photovoltaic systems without requiring
significant alterations

7.3.3. Boundaries

(i) Scope of the study: the performance evaluation
focuses specifically on the cost minimization aspect
of integrating cogeneration power plants with solar
photovoltaics. The study boundary is set around
industrial distribution systems where both energy
sources are viable

(ii) Geographical limitations: while not explicitly stated,
the geographical applicability of the findings may be
limited to regions with adequate solar resources and
existing cogeneration facilities

(iii) Temporal constraints: the analysis is conducted
within the context of current energy costs and tech-
nology standards, acknowledging that future
advancements could alter the effectiveness of the
DLS-WMA

7.3.4. Problem Formulation. Given these hypotheses, condi-
tions, and boundaries, our study formulates the problem as
follows: how does the DLS-WMA compare to the conven-
tional WMA in optimizing the cost-efficiency of integrated
cogeneration and solar photovoltaic systems within indus-
trial distribution networks? The objective function for total
cost minimization (expressed in Equation (27)) serves as
the basis for evaluating the model’s efficiency through a
comparison of fitness values (cost) against iterations
between the DLS-WMA and the existing WMA approach.
By addressing the performance evaluation of the proposed
DLS-WMA within these structured parameters, the study
is aimed at validating the hypothesis that DLS-WMA can
significantly enhance the cost-effectiveness of energy pro-
duction in cogeneration power plants integrated with solar
photovoltaics, under the specified conditions and within
the outlined boundaries. The proposed DLS-WMA is evalu-
ated based on fitness value (cost) vs. iteration. The model
efficiency is determined by comparing these results to the
current WMA. The objective function of total cost minimi-
zation is given in the following equation.

P1 min 〠
T

t=1
CCGPP
t + CPV

t + CUG
t , 27
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where CCGPP
t ,C

PV
t , and CUG

t are the energy cost per kWh of
CGPP, PV, and UG, respectively. The cost minimization
function is executed in DLS-WMA and WMA algorithms.

Figure 12 compares the proposed DLS-WMA’s optimi-
zation ability with the existing WMA algorithm. The exist-
ing WMA algorithm requires more iterations to achieve
optimal results compared to the proposed DLS-WMA, lead-
ing to longer execution times for the former. Consequently,
the proposed DLS-WMA method achieves optimal fitness
more rapidly and offers cost-effective solutions promptly.
To achieve the lowest total energy cost, the OPF (optimal
power flow) problem (P1) for a cogeneration plant that is
combined with PV is designed following equation (27),
while also ensuring that the parameters listed in Table 1
are feasible. The output power of a specific string is esti-
mated to be 500 watts with the proposed DLS-WMA-ANN
compared with of 400 watts with the existing WMA-ANN
method.

With the proposed method, the cost function starts at
a lower value and reaches the lowest within 20 iterations,
whereas in the WMA method, it started at a very high
value and reached a moderate value in 20 iterations, but
it took 80 iterations to reach the lowest cost. For the pro-
posed DLS-WMA method, the additional PV power out-
put is 25% extra, but the extra cost of PV power is 16%
higher than that of CGPP power. Hence, the net cost-
benefit is 9% with the proposed system. The obtained
results of irradiance prediction are compared with two of
the existing literature, namely, the Modified Firefly algo-
rithm [34] and Support Vector with the Quadratic kernel
(SVM-Q) [35] confirming the robustness (see Table 3).
To quantify the efficiency of the proposed DLS-WMA
and O-ANN method, we compared its performance
against the existing WMA-ANN technique.

7.4. Practical Use of the Proposed Method. In the modern era
of hybrid power systems (HPS), industries can integrate
both conventional and nonconventional energy sources.
Additionally, managing multiple energy sources can increase

system complexity. Therefore, optimal operation is crucial
for any industry, along with smart control. This work pre-
sents different modes of operation for industries to achieve
an optimal blend of energy sources in practical use, espe-
cially for those with cogeneration power plants. This
approach can ensure economic operation without
compromising the power quality regulations framed by rele-
vant standards. This allows for running the cogeneration at
maximum efficiency and maximizing the utilization of cheap
renewable energy with prior prediction, such as an hour or a
day ahead. However, it is imperative to consider environ-
mental priorities in this context.

7.5. Critical Analysis and Evaluation of Limitations and
Challenges. While our proposed integration framework of
cogeneration power plants with solar photovoltaics demon-
strates significant advancements in efficiency and cost-effec-
tiveness, it is imperative to acknowledge its limitations and
challenges. One of the primary limitations is the dependency
on environmental conditions, particularly solar irradiance,
which can introduce variability in the system’s performance.
Despite the optimized artificial neural networks’ capability
to predict solar irradiance with high accuracy, unforeseen
weather patterns pose a challenge to maintaining consistent
energy output.

Furthermore, the initial implementation and setup
costs of the proposed system could be a barrier for some
industrial applications. While the long-term benefits, such
as reduced operational costs and enhanced sustainability,
are clear, the upfront investment may deter smaller enter-
prises or those with limited capital. Another challenge lies
in the complexity of integrating the DLS-WMA and O-
ANN into existing energy management systems. This inte-
gration requires specialized knowledge and could necessi-
tate extensive training for operational staff, potentially
slowing down adoption rates. The proposed system also
involves trade-offs, particularly in balancing between max-
imization of energy production and minimization of costs.
In scenarios of peak solar production, the system priori-
tizes storage and future use, which may not always align
with immediate financial incentives. Additionally, the reli-
ance on advanced algorithms and computational models
introduces a risk of overfitting, where the system might
perform exceptionally under test conditions but less so in
real-world scenarios.

Despite these limitations, the implications of our
research for the broader field of sustainable energy systems
are profound. By demonstrating a viable method for inte-
grating renewable energy sources with traditional cogenera-
tion systems, this study paves the way for more resilient,
sustainable industrial energy solutions. It highlights the
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Figure 12: Optimization of the proposed DLS-WMA and WMA.

Table 3: Comparison study.

Parameter Proposed WMA-ANN MFA [34] SVM-Q [35]

MAE 27.39 28.749 —

RMSE 36.24 38.797 61.67

R2 0.977 0.97 0.97
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potential for significant reductions in carbon emissions and
a shift towards more decentralized energy production
models. Future work should focus on addressing these chal-
lenges, refining the models for even greater accuracy, and
exploring the scalability of the system to different industrial
contexts. Our study contributes to the ongoing discourse on
sustainable energy, offering valuable insights and a founda-
tion for future innovations.

8. Sensitivity Analysis

Sensitivity analysis involves assessing the changes in certain
variables or parameters affect the final optimized results. For
a more rigorous sensitivity analysis involving statistical
methods, it is proposed to compute correlation coefficients
to quantify the relationships between variables with the help

of technical parameters of the case study industry shown in
Table 1. Also, regression analysis is performed to model the
dependency of one variable on another. The correlation
matrix is shown in Figure 13 and Table 4.

The correlation coefficient ranges from –1 to 1. A posi-
tive value indicates a positive correlation (as one variable
increases, the other tends to increase), while a negative value
indicates a negative correlation (as one variable decreases,
the other tends to decrease). The closer the value is to 1 or
–1, the stronger the correlation. A value of 0 indicates no
correlation. For instance, the value at the intersection of
the PPV row and the QUG column is 0.771. This positive
value suggests a strong positive correlation between these
two parameters, indicating that as the PV generation
increases, the reactive power demand from UG tends to
increase, and vice versa.
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Table 4: The correlation coefficients.

Hour PUG (MW) QUG (Mvar) PCGPP (MW) PPV (MW) QCGPP (Mvar) PL (MW) v2 (kV) v3 (kV)

Hour 1.000 –0.097 –0.010 –0.089 0.095 0.010 -0.060 0.104 0.106

PUG (MW) –0.097 1.000 -0.837 0.907 -0.980 0.837 0.023 –0.999 –0.999

QUG (Mvar) –0.010 –0.837 1.000 -0.652 0.771 -1.000 -0.054 0.820 0.810

PCGPP (MW) –0.089 0.907 -0.652 1.000 -0.972 0.652 -0.061 –0.901 –0.921

PPV (MW) 0.095 –0.980 0.771 –0.972 1.000 -0.771 0.017 0.977 0.986

QCGPP (Mvar) 0.010 0.837 –1.000 0.652 –0.771 1.000 0.054 –0.820 –0.810

PL (MW) –0.060 0.023 –0.054 –0.061 0.017 0.054 1.000 –0.032 –0.013

v2 (kV) 0.104 –0.999 0.820 –0.901 0.977 -0.820 –0.032 1.000 0.999

v3 (kV) 0.106 –0.999 0.810 –0.921 0.986 -0.810 –0.013 0.999 1.000
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9. Conclusions

The study pioneers a groundbreaking integration framework
for cogeneration power plants (CGPPs) with solar photovol-
taics (PV), marking a significant leap towards achieving sus-
tainability in industrial energy systems. This novel approach
not only bridges the gap between traditional and renewable
energy sources but also sets a new benchmark for efficiency
and reliability in industrial power distribution. Building on
the foundation laid in the introduction, where we high-
lighted the global challenges of reliance on hydrocarbon-
based energy sources and the intermittent nature of renew-
able energy, our study successfully demonstrates a viable
pathway to overcome these hurdles. The novel contributions
of this work are manifold. Primarily, the introduction of the
Derivative Log Sigmoid-Woodpecker Mating Algorithm
(DLS-WMA) and Optimized Artificial Neural Networks
(O-ANN) represents a significant leap forward in the field.
The employment of DLS-WMA and O-ANN in our integra-
tion strategy represents a novel contribution that drastically
improves system efficiency, slashes operational costs, and
remarkably enhances power generation predictability across
varied atmospheric conditions. The DLS-WMA’s innovative
approach to cost minimization and the O-ANN’s precise
solar irradiance prediction methodology stand out as major
advancements over traditional models, evidenced by a 9%
cost-benefit improvement and significantly lower prediction
error rates.

Our findings bridge the gap identified in the introduc-
tion between the current state-of-the-art and the need for
more efficient, reliable hybrid power systems. The proposed
framework’s ability to maintain consistent power output,
even in the face of renewable energy’s inherent intermit-
tency, underscores its practical utility and potential for wide-
spread adoption in industrial settings. By facilitating up to
25% higher power output from renewable sources, our
approach substantially decreases reliance on fossil fuels, con-
tributing to the global push towards environmental sustain-
ability. Moreover, the conclusion of this research
demonstrates the tangible outcomes and contributions of
the proposed system. Through rigorous comparative analy-
sis and real-world application scenarios, we have validated
the superiority of our approach in enhancing the operational
efficiency of hybrid power systems. The integration strategy
presented herein not only meets but exceeds existing perfor-
mance benchmarks, offering a resilient and cost-effective
solution for energy generation.

The significant improvements in cost-effectiveness, sys-
tem efficiency, and renewable energy utilization achieved
through our novel algorithms highlight the importance of
this research. As we look towards the future, expanding this
framework to incorporate a broader spectrum of renewable
energy sources and advanced AI systems appears not only
feasible but imperative for achieving greater accuracy in
forecasting and optimizing multiresource utilization. This
endeavor will undoubtedly propel sustainable energy prac-
tices within the industrial sector to new heights, marking a
critical step forward in our collective journey towards a more
sustainable and energy-secure future.
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