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Gas reservoir development and the estimation of rock properties heavily rely on lithology classification, which can be difficult,
time-consuming, and prone to errors. In this study, a novel deep learning-based approach has been developed for the rapid,
accurate, and efficient prediction of lithology in a gas field from conventional well-log data. The well-logs, referred to as
numerical well-logs (NWLs), are transformed into two-dimensional images through two proposed approaches: shallow images
(SIs) and deep images (DIs). In these images, the pixels effectively represent the relationships between different logs. For this
purpose, we developed residual convolutional neural networks (ResCNN) named SIs-ResCNN 2D and DIs-ResCNN 2D. The
feed data for DIs-ResCNN 2D are images created and referred to as DIs, which are initially formed from a vector in which the
order of logs is somehow repeated, ensuring that each pairwise combination occurs only once. This resulted in the
incorporation of the connection between the logs within the pixels of the generated images, alongside the integration of unique
binary combinations of the logs. We compared the proposed models, including DIs-ResCNN 2D, DIs-ResCNN 2D, and
NWLs-ResCNN 1D with baseline methods such as random forest (RF), K-nearest neighbor (KNN), and support vector
machine (SVM). Based on the evaluation metrics, DIs-ResCNN 2D outperformed the other proposed and baseline methods on
the test dataset. A balanced DIs-ResCNN 2D model achieved 93% accuracy and F1-score of 80% on a test well, highlighting
the importance of data balancing during CNN model training.

1. Introduction

Identifying the sedimentary rock that forms a reservoir is vital
in the oil and gas industry, since dolomite and carbonate con-
tain more petroleum resources. Lithological analyses can be
used to estimate resources based on a variety of petrophysical
characteristics. The classification of lithology has traditionally
been accomplished by analyzing well-logs, which can be chal-
lenging, time-consuming, and difficult [1–3]. Reliable lithol-
ogy interpretation in mining plays a crucial role in the
identification and characterization of geological formations,
thereby aiding in exploration and mineral extraction pro-
cesses. This enables targeted exploration efforts, leading to
increased efficiency in recognizing areas with high mineral
content. An accurate evaluation of lithology assists in well-

informed decision-making for mining operations, ultimately
optimizing the extraction of valuable resources [4–6].

The need to develop classification models of lithology in
the oil and gas industry is felt for many reasons, especially
that (i) correct and quick diagnosis of lithology plays an
important role in economic issues due to the high daily cost
of the oil and gas industry and reduces costs and time. It also
aids petroleum engineers in making better decisions on
issues such as well perforation location selection, which
leads to maximum and optimal production. (ii) The correct
classification of lithology leads to a more accurate determi-
nation of reservoir petrophysical properties such as porosity,
permeability, and saturation. A correct assessment of these
properties is vital because they have a direct impact on res-
ervoir productivity, development, and production [4, 7, 8].
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There are three common approaches for classifying
facies using artificial intelligence:

(1) Images extracted from geological core plugs contain-
ing valuable and rich geological information are uti-
lized. Various studies have employed computer
vision and deep learning (DL) techniques to discern
significant features and patterns within images. For
example, according to Faria et al. [9], a multilayer
feed-forward neural network was used to determine
lithology by taking core images as input to the net-
work and also for determining model hyperpara-
meters. Bayesian optimization was employed,
resulting in an accuracy of 83% on the test data. In
other studies [10, 11], machine vision has been used
for facies classification. However, due to the high
cost of core sampling in the oil and gas industry, col-
lecting images from the entire wellbore column is
not economical, which is considered a limitation of
this approach

(2) Seismic data, which are measurements of ground
vibrations generated by seismic sources and recorded
by detectors, serve as features for the classification
process. Chaki et al. [12] utilize five attributes to
classify different types of rock formations and intro-
duce a probabilistic neural network (PNN) frame-
work. The PNN framework is considered effective
due to its ability to handle scenarios and process data
quickly. By analyzing well-log data, the researchers
categorize lithology into four classes and evaluate
their findings using seismic data collected from an
Indian hydrocarbon field. The seismic-based classifi-
cation has also been developed [13] to identify litho-
facies, where hidden Markov models (HMMs) are
utilized for seismic-based lithofacies classification.
HMMs consider conditional probabilities and verti-
cal transitions, yielding accurate predictions for most
lithologies, including thin layers. Comparisons with
independent methods highlight the spatial correla-
tion advantage of HMMs, while a real case study
reveals the need for further research on lateral geo-
logical relationships

(3) Conventional well-logs collected after the comple-
tion of drilling are often used in the oil and gas
industry in various fields to relate these logs to
dependent variables. By analyzing well-logs, gamma
ray, resistivity, and sonic experts can gain insights
into reservoir properties and formation characteris-
tics. He et al.’s [14] work centers on improving reser-
voir lithology identification using well-logging data.
They introduce LSTM-FCN, a hybrid model that
outperforms conventional methods, and enhance it
with particle swarm optimization. Also, these con-
ventional well reports are used in other fields such
as predicting porosity [15], permeability [16, 17],
and water saturation [18]. Among the methods dis-
cussed, utilizing well-logs proves to be a more prac-

tical and cost-effective approach in the oil and gas
industry compared to relying on seismic data and
core images

Machine learning (ML), one of the subbranches of artifi-
cial intelligence and data science, involves the possibility of
training without the need for manual programming and
the definition of precise rules. In Zhang et al. [19], multiple
machine learning models were evaluated to automatically
interpret well-log data, employing techniques like cross-
validation and Bayesian optimization to fine-tune hyper-
parameters. The outcomes indicated a preference for ensem-
ble methods, specifically XGBoost and random forest (RF)
standing out due to the highest overall accuracy of 0.882
and AUC of 0.947 in the classification of lithologies. In Deng
et al. [20], support vector machines (SVM) were improved
using synthetic data techniques (SMOTE and Borderline-
SMOTE) to tackle imbalanced data, surpassing neural net-
works in predicting lithology. In Yin et al. [21], a Class-
Rebalancing Self-Training (CReST) framework is presented,
leveraging well-logging data and limited labels to attain resil-
ient lithology classification. Four high-performing algo-
rithms, namely, Bagging, Extra Trees, RF, and SVM
Classifier are selected from 25 options for constructing
CReST models. CReST is shown through experimental
results to effectively handle challenges associated with label
scarcity and class imbalance, leading to a considerable
increase in accuracy, especially for categories with limited
data samples. Also, other studies have been done including
XGBoost [22, 23], SVM [24], and RF [25, 26]. However,
ML in complex and difficult problems usually has weaker
performance than deep learning. The main reason behind
this is the ability of deep learning models to capture complex
patterns and dependencies in the data by leveraging the hier-
archical structure of multiple layers.

DL has been more successful in extracting complex rela-
tionships in various fields, especially when dealing with big
data. Imamverdiyev and Sukhostat [27] aim to develop an
effective DL model for classifying geological facies in wells.
They propose a new 1D-CNN model trained on various
optimization algorithms using input data such as photoelec-
tric effect, gamma ray, resistivity logging, and more. Jiang
et al. [28] address the challenge of lithology identification
in reservoir characterization. They observe three key charac-
teristics in previous studies: the limited consideration of
stratigraphic sequence information, the neglect of neighbor-
ing formation influence, and the lack of publicly available
well-log data for comparison. The experiments demonstrate
that the inclusion of geologic constraints significantly
improves model performance, with RNN-based networks
exhibiting better and more consistent results. Some other
DL studies for rock facies classification using conventional
well-log data include 1D-CNN [29–31] and RNN [32–34].
These studies have employed one-dimensional layers to
learn the model. However, in this study, a unique approach
has been taken to process numerical well-logs (NWLs).
Instead of analyzing the numerical data directly, these well-
logs have been transformed into image data. This transfor-
mation involves representing the numerical values as pixels
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in an image grid, effectively converting numerical informa-
tion into visual data.

The core of the workflow design in this research is the
CRoss Industry Standard Process for Data Mining (CRISP-
DM), which is a methodology utilized for conducting data min-
ing across various industries. This process encompasses six
phases including understanding the business background, pre-
paring the data, evaluating performance, and ultimately imple-
menting them [35–37]. The utilization of the CRISP-DM
methodology in rock classification brings several benefits. It aids
researchers in ensuring the reliability and repeatability of their
classification models, allowing for more accurate and consistent
results. Additionally, the emphasis on cost-effectiveness and fas-
ter project completion enhances the efficiency of rock classifica-
tion projects, making them more practical and feasible.

The reviewed studies failed to explore the relationships
between different features. This study introduces a novel
method aimed at incorporating these relationships into image
generation for individual samples. Specifically, the approach
integrates these feature relationships into the pixels of shallow
images (SIs) and deep images (DIs). Two-dimensional images,
namely, SIs and DIs, are generated using NWLs. These resul-
tant images serve as inputs for the SIs-ResCNN 2D and DIs-
ResCNN 2D models, enhancing the classification accuracy of
lithology. This improvement is achieved through the utiliza-
tion of residual blocks with regular and reduced shortcuts.
The proposed methods of generating images offer notable
benefits, including faster learning and better performance.
The research highlights the significance of employing log-
derived images with physical meaning in training CNN
models. Additionally, it demonstrates the vital contribution
of modified architectures, such as residual architectures to
improving the accuracy and overall performance of the model.

2. Study Pipeline and Materials

As shown in Figure 1, this paper can be divided into three
general parts: (i) data collection and preparation, (ii) image
creation methods (SIs and DIs) and modified convolutional
neural network (CNN) architecture, and (iii) classification
evaluation. The continuation of this section focuses on data
collection and preparation, where the data and its statistical
properties are explored in Section 2.1. Additionally, the pre-
processing steps applied to the data are described in Section
2.2.

Moving on to the methodology, the creation of SIs and
DIs is explored in Section 3.1. Section 3.2 covers the residual
structure, while Section 3.3 presents the suggested modified
CNN architecture. Section 4 of the study addresses classifica-
tion evaluation methods. The results are presented and ana-
lyzed in Section 5. Finally, Section 6 concludes the paper.

2.1. Dataset. The gas field under investigation is located near
Asaluyeh, Tabnak, Varavi, and Shanoul in Iran. The esti-
mated recoverable gas reserves in the field amount to 200
billion cubic meters (BCM) [38]. The field’s specific location
is indicated by marker X in Figure 2. Geological data were
obtained from well-logs, core samples, and petrophysical
charts. Logging data were recorded at 0.1-meter intervals
within the wells. The geological formations within the gas
field exhibit distinct layers. The Aghar shale section is char-
acterized by reddish-brown shale interspersed with dolomite
layers. The upper part of the Dalan formation consists of
brownish limestone and cream-colored dolomite, occasionally
accompanied by traces of anhydrite. In the lower segment of
the Dalan formation, white limestone predominates with light
brown dolomite and small amounts of anhydrite. Transitioning
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Figure 1: The visual process includes important steps, beginning with collecting and organizing the data. Afterward, images are generated
from well-logs, and then, the models are trained. Lastly, the performance of these models is assessed.
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to the Nahr section, the composition shifts to light brown to
light grayish-brown dolomite and anhydrite. The lithology
composition of the different layers of the reservoir has a con-
stant and uniform distribution along the layer and in the extent
of the reservoir. For example, the alternation of anhydrite and
dolomite layers throughout the Dashtak formation is constant.
Only in one well due to a fault or folding has the thickness of
the Dashtak formation increased. The lithology of the Kangan
formation is also constant throughout the reservoir and consists
of limestone.

Evaluatable information was found in 9 of the 14 pro-
duction wells in this field, resulting in 44,521 recorded
depths which include well-logs. Among these 9 wells, one
well containing all four types of rock facies was identified
as a test well and excluded from the training stage. The data
from the remaining 8 wells was selected as training data for
learning the model. The training dataset consisted of four
rock facies, including ANHYDR (anhydrite), CALCITE (cal-
cite), DOLOM (dolomite), and ILLITE (illite) with 9,643,
15,923, 15,071, and 1,043 instances, respectively. The test
dataset consists of all four rock facies, and the test-to-train
dataset ratio is six percent.

The collection of data comprises nine specifically chosen
well-log characteristics: CGR (capture gamma ray), DFL
(deep induction resistivity log), DT (sonic log), GR (gamma
ray), HDRS (deep resistivity), HMRS (medium resistivity),

NPHI (neutron porosity), PEF (photoelectric effect), and
RHOB (bulk density). The calculation of total porosity
(PHIT, ϕt) and effective porosity (PHIE, ϕe) from well-logs
was carried out through the utilization of mathematical
equations. The formulas for calculating PHIE and PHIT
are as follows:

ϕt =
ρma − ρb

ρma − ρf

, 1

ϕe = ϕt × 1 − Sw = ϕt × 1 −V sh 2

where ρma is matrix density, ρb is bulk density, ρf is the den-
sity of the fluid in the pore space, Sw is water saturation, and
V sh is shale volume.

A comprehensive explanation of the well-logging data
and calculated porosity (ϕt and ϕe) is presented in Table 1.

These statistics offer valuable insights into the distribu-
tion and range of the data. For example, the mean CGR is
18.14 with a standard deviation of 19.63, indicating a mod-
erate spread of values around the mean. Similarly, other var-
iables exhibit varying levels of dispersion as captured by
their respective standard deviations. These statistical mea-
sures provide a comprehensive summary of the input well-
log data enabling a detailed analysis and interpretation of
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Figure 2: The gas field under study is located near Asaluyeh, Tabnak, Varavi, and Shanoul in Iran. This gas field was discovered in August 2000.
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Figure 3: The heat map of the correlation matrix displays Pearson’s correlation coefficient values for the examined parameters. The size of
the circles and the color yellow to purple show the amount of positive and negative correlation.

Table 1: The description of input well-log data and statistical properties of original data including mean, standard deviation, minimum,
25th/50th/75th percentile, and maximum.

No. Variable Mean std Min 25% 50% 75% Max

1 CGR 18.14 19.63 -7.25 6.40 12.45 20.84 150.65

2 DFL 373.56 1055.87 0.00 45.75 115.77 290.60 20000.00

3 DT 58.76 14.93 35.77 50.70 53.61 60.36 214.88

4 GR 31.52 21.12 1.10 18.19 26.16 38.89 169.62

5 HDRS 553.99 777.66 0.00 26.51 104.21 853.05 2000.00

6 HMRS 306.84 646.24 0.26 23.38 64.59 176.22 20000.00

7 NPHI 0.07 0.09 -0.04 0.02 0.04 0.09 1.10

8 PEF 4.34 0.81 0.00 3.80 4.42 4.87 11.34

9 PHIT 0.06 0.06 0.00 0.02 0.03 0.07 0.30

10 PHIE 0.03 0.04 0.00 0.00 0.01 0.05 0.22

11 RHOB 2.72 0.21 0.96 2.66 2.73 2.84 3.23
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the dataset. Moreover, a visual representation in the form of
a heat map correlation plot enhances our understanding of
the relationships between different variables. The correla-
tions between the features are shown in Figure 3.

The positive Pearson correlation coefficients indicate
strong linear relationships between variables, enhancing
the predictive power of measurements. For instance, the
positive correlation between GR and CGR (0.72) and NPHI
and CGR (0.60) suggests a strong association between these
parameters. Conversely, negative correlations, such as
RHOB and PHIT (-0.79) and PEF and NPHI (-0.39), signify
inverse relationships. These correlations play a crucial role
in understanding subsurface conditions and optimizing
decision-making in resource exploration.

2.2. Preprocessing. Preprocessing is pivotal for ensuring the
quality and reliability of the collected NWLs dataset. A series
of steps is performed to prepare the data for analysis; each
step is described briefly:

(1) The dataset is carefully examined for missing values.
To address this issue, imputation is used, where
missing values are replaced with the corresponding
feature’s value. This preserves the overall structure
of the data while minimizing the impact of missing
values on the analysis

(2) Normalization techniques are applied to standardize
the scales of all features within the dataset, ensuring

V3550

S3550 ST
3550 Selement-wise

3550

Figure 4: This image illustrates the process of generating shallow images. Initially, the transformation from a vector to a matrix occurs,
followed by the creation of shallow images through element-wise multiplication of arrays. This is the shallow image for a depth of 3550
training data where the well-logs have been converted into an image.

V3550

S3550 ST
3550 Selement-wise

3550

Figure 5: The process of generating deep images encompasses multiple steps. First, a vector is generated utilizing the described algorithm.
Subsequently, this vector undergoes conversion into a matrix, and deep images are produced by performing element-wise multiplication of
the arrays.
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equal contribution to the analysis. The chosen
method, StandardScaler, adjusts each feature’s values
to have an average of 0 and a standard deviation of 1.
This prevents any single feature from dominating
the analysis due to its magnitude

(3) The local outlier factor (LOF) method was selected
for data processing due to its higher test accuracy
of 87% compared to other methods, such as isola-
tion forest and elliptic envelope based on the K-
nearest neighbor (KNN) base model. LOF evaluates
the clustering pattern of data points and identifies
outliers based on their deviation from this pattern.
By eliminating outliers, the analysis is less influ-
enced by extreme values, thereby enhancing the
model’s reliability. The removal of outliers from
the training data resulted in the exclusion of 4168
samples

With the completion of these preprocessing steps, the
NWL dataset is now primed for analysis. Missing values
have been addressed, the data has been normalized using
StandardScaler, and outliers have been identified and
removed using LOF. Consequently, the dataset’s quality
and reliability are assured, facilitating accurate and robust
analysis.

3. Methodology

In this section, the proposed method for classifying lithology
will be discussed. Our approach relies on two key compo-
nents: SIs and DIs, as outlined in Section 3.1. The concepts
of bottleneck structures are introduced in Section 3.2. Then,
in Section 3.3, the core elements of our approach, namely,
NWLs-ResCNN 1D, SIs-ResCNN 2D, and DIs-ResCNN
2D, are presented. These components form the foundation
of our methodology and enable effective lithology
classification.

3.1. Generate Images. Before feeding well-log data into a
two-dimensional CNN, it needs to be preprocessed.
Well-logs typically consist of NWLs recorded at various
depths. To create images, these well-logs need to be con-
verted into a 2D format. This section provides an explana-
tion of how to generate shallow and deep images from
well-logs.

3.1.1. Shallow Images (SIs). The process begins by extracting
the values of the selected features, which are then used to
form a vector V of length 11 (representing the number of
selected columns). Next, a matrix S is generated by vertically
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Figure 6: Schematic of creating two-dimensional images in order to use a convolutional neural network. (a) Data shows a table that contains
logs recorded for different depths. (b) SIs are created using eleven existing well-logs (each represented as a vector with 11 dimensions). (c)
DIs are created using the described algorithm resulting in a vector with 44 dimensions.
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Figure 7: In neural network, a residual connection is a technique
that enhances the flow of information during training by
combining the original input with the output of a processing block.
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Figure 8: Network with a skip connection. The signal X is transmitted through the shortcut path and then combined with the main path’s
output, f x . Afterward, the relu activation function is applied to the sum of main path and shortcut path. (a) Bottleneck residual block with
reduce shortcut. In order to decrease the input’s dimensionality, a bottleneck layer consisting of an N ×N convolutional layer and batch
normalization is introduced to the shortcut path. This configuration is referred to as the reduce shortcut. (b) Bottleneck residual block
with regular shortcut. The main pathway’s output is combined with the input value via the shortcut before being passed into the relu
activation function.
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Figure 9: To enhance the learning process, reduced and regular shortcuts have been employed instead of the standard convolutional layers.
In the original models, the convolutional layer with 64 filters, a kernel size of 2, and relu activation function was replaced with regular and
reduce shortcuts. The modified model architectures are illustrated in Section 3.3.

Add both
paths

SIs: shape (11×11×1)

BNBN Re
lu

Re
lu

C
on

v2
D

C
on

v2
D

BN
C

on
v2

D

BN Re
lu

C
on

v2
D

BN Re
lu

F2
, K

2

F1
, K

1

F3
, K

3

F2
, K

2
F2

, K
2

F1
, K

1

C
on

v1
:

16
@

11
×1

1

F3
, K

3

x 1 x 2x 0

x′
1

x′
2

Re
lu++

Fl
at

te
n

F

Add both
paths

D
en

se
, s

of
tm

ax
, 4

O
ut

pu
t

C
on

v2
D

BN
C

on
v2

D

BN Re
lu

C
on

v2
D

BN Re
lu

M
ax

Po
ol

2D

C
on

v2
D

Figure 10: The SIs-ResCNN 2D employs bottleneck residual blocks with a regular shortcut and reduced shortcut, designed for input data
with dimensions (11 × 11 × 1). Here, F1, F2, and F3 represent the number of filters, while K1, K2, and K3 denote the kernel size of the
convolutional layers. These specific values are determined and set in the hyperparameter tuning section, as detailed in Section 5.1.

8 International Journal of Energy Research



stacking vector V 11 times. As a result, matrix S will have
dimensions (N , N), where N = 11. This process can be
expressed as
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Figure 11: The DIs-ResCNN 2D employs bottleneck residual blocks with a regular shortcut and reduced shortcut, designed for input data
with dimensions (44 × 44 × 1). Here, F1, F2, and F3 represent the number of filters, while K1, K2, and K3 denote the kernel size of the
convolutional layers. These specific values are determined and set in the hyperparameter tuning section, as detailed in Section 5.1.

Add both
paths

NWLs: shape (11×1)

BNBN Re
lu

Re
lu

C
on

v2
D

C
on

v2
D

F2
, K

2

F1
, K

1

C
on

v1
:

16
@

11
×1

F3
, K

3

x 1

x 0

x′
1

+

Fl
at

te
n

F

D
en

se
, s

of
tm

ax
, 4

O
ut

pu
t

BN Re
lu

C
on

v2
D

BN Re
lu

M
ax

Po
ol

1D

C
on

v1
D

Figure 12: The NWLs-ResCNN 1D employs bottleneck residual blocks with a regular shortcut, designed for input data with dimensions
(11 × 1). Here, F1, F2, and F3 represent the number of filters, while K1, K2, and K3 denote the kernel size of the convolutional layers.
These specific values are determined and set in the hyperparameter tuning section, as detailed in Section 5.1.
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The final symmetric matrix is obtained by performing
element-wise multiplication between the matrix S and its
transpose (ST) resulting in a symmetric matrix with dimen-
sions (N , N). The element-wise multiplication Selement‐wise is
calculated as

ST11×11 =

aCGR aCGR ⋯ aCGR

aDFL aDFL ⋯ aDFL

⋮ ⋮ ⋱ ⋮

aRHOB aRHOB ⋯ aRHOB

, 5

Selement‐wise i, j = S i, j × ST i, j , 6

where S i, j and ST i, j represent the elements at row i and
column j in matrices S11×11 and ST11×11, respectively. The
resulting matrix Selement‐wise will also be of size 11 × 11.

This multiplication ensures that the interaction between
feature i and feature j is the same as between feature j and
feature i, resulting in a matrix that is symmetrical. This
method allows us to represent relationships among the
selected features in matrices which can provide valuable
insights into geological and petrophysical measurements
for analysis. Figure 4 illustrates the process of creating the
shallow image (SI) at a depth of 3550.

3.1.2. Deep Images (DIs). The algorithm provided by Jiang
and Yin [39] was employed to generate a series of numbers.
It starts with a value of 1 and checks each pair of consecutive
numbers. The two numbers have not been paired before the
second number is added to the sequence. This process con-
tinues until the first and second numbers become the same.
Throughout each iteration, the algorithm maintains a list to
keep track of all the generated numbers.

The algorithm confines the sequence within the range of
1 to 11, each number denoting a distinct well-log. If the sec-
ond number in a pair exceeds this range, it loops back to 1.
Moreover, the algorithm avoids including pairs of numbers
that have already been incorporated in the sequence. By iter-
ating through these steps, the algorithm generates a unique

sequence of numbers characterized by alternating incre-
ments and specific skips. The resulting sequence is as fol-
lows: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 1, 3, 5, 7, 9, 11, 2, 4, 6,
8, 10, 2, 5, 8, 11, 4, 7, 10, 3, 6, 9, 2, 6, 10, 4, 8, 2, 7, 11, 5, 9,
3, and 7. The generated sequence adheres to a pattern of
alternating ascending numbers, punctuated by specific skips
before repeating. In the context of the well-log data, the
sequence is represented as a column vector as illustrated in

V44×1 = a1 a2 a3 ⋯ a3 a7 7

Here, V44×1 is a column vector with 44 rows and 1 col-
umn, composed of coefficients a1 through a11.

Equations (8)–(10) define square matrices S44×44, S
T
44×44,

and Selement−wise44×44 , respectively. These matrices involve var-
ious combinations of coefficients a1 through a11, both
element-wise and transposed. The structures of these matri-
ces are described as follows:

S44×44 =

a1 a2 a3 ⋯ a3 a7

a1 a2 a3 ⋯ a3 a7

a1 a2 a3 ⋯ a3 a7

⋮ ⋮ ⋱ ⋮    

a1 a2 a3 ⋯ a3 a7

a1 a2 a3 ⋯ a3 a7

, 8

ST44×44 =

a1 a1 a1 ⋯ a1 a1

a2 a2 a2 ⋯ a2 a2

a3 a3 a3 ⋯ a3 a3

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

a3 a3 a3 ⋯ a3 a3

a7 a7 a7 ⋯ a7 a7

, 9

Selement‐wise44×44 =

a1 · a1 a2 · a1 a3 · a1 ⋯ a3 · a1 a7 · a1
a1 · a2 a2 · a2 a3 · a2 ⋯ a3 · a2 a7 · a2
a1 · a3 a2 · a3 a3 · a3 ⋯ a3 · a3 a7 · a3
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

a1 · a3 a2 · a3 a3 · a3 ⋯ a3 · a3 a7 · a3
a1 · a7 a2 · a7 a3 · a7 ⋯ a3 · a7 a7 · a7

10

The presented content combines mathematical equa-
tions representing matrix operations with an algorithm that
dynamically generates a sequence of indices based on spe-
cific rules. This integration serves as an illustrative example
of theoretical concepts being translated into practical com-
putational implementation. The element-wise equations
show matrix structures involving coefficients, while the algo-
rithm demonstrates a systematic approach to index

Table 2: The parameters and search range during Bayesian
optimization.

Hyperparameter Search space

F1 [8, 16, 32, 64, 128]

F2 [8, 16, 32, 64, 128]

F3 [8, 16, 32, 64, 128]

K1 [1–4]

K2 [1–4]

K3 [1–4]

Optimizer [Adam, SGD, RMSprop]

Learning rate [0.00001, 0.0001, 0.001, 0.01, 0.1]

A 70-30 ratio was employed for fine-tuning the hyperparameters. These
hyperparameters include filter sizes (F1, F2, and F3), kernel sizes (K1, K2,
and K3), optimizer choices, and learning rate options.

10 International Journal of Energy Research



selection. Together, these elements provide a comprehensive
understanding of both the mathematical and computational
aspects presented. Figure 5 illustrates the procedure for gen-
erating the deep image (DI) at a depth of 3550.

Both SIs and DIs for all depths were created by combin-
ing the previously mentioned methods. In Figure 6(a), a data
table containing logs recorded at various depths is shown.
SIs, depicted in Figure 6(b), are generated using eleven
well-logs, resulting in an 11-by-11-dimensional image.
Additionally, DIs, as shown in Figure 6(c), were constructed
using the described algorithm, resulting in a 44-by-44-
dimensional image.

3.2. Residual Bottleneck. The layered structure of CNNs
enables them to automatically recognize features and pat-
terns in images, resulting in more effective learning, for
example, in image classification [40, 41], transfer learning
[42], object detection [43], segmentation [44–46], and a vari-

ety of other visual applications. In the fields of surveillance
systems, as well as facial recognition and medical imaging,
CNNs have demonstrated their impact. MRI and CT scans
can be analyzed to identify and diagnose diseases using these
images [47, 48].

He et al. [49] introduced a technique in which gradi-
ents can be directly backpropagated to earlier layers. This
method involves using skip connections, which enable
the flow of information from early layers to later ones,
creating an alternative path for the gradient to traverse.
An additional advantage of skip connections is that they
enable the model to learn an identity function by directly
passing the input, ensuring that a layer performs as effec-
tively as the preceding layer and then combines both sig-
nals, namely, the skip connection and the main path, as
shown in Figure 7. The direct path ensures a straightfor-
ward flow of information to the output. On the other
hand, the second path passes through the block to enable
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Figure 14: Display bar charts for accuracy and F1-score for both original and proposed models on the training and testing data. It is evident
that the DI method has led to an improvement in performance compared to the other methods.

Table 4: Showing the precision, recall, and F1-score for both the original and proposed models.

Method Model
Train Test

Precision Recall F1-score Precision Recall F1-score
Original NWls-CNN 1D 84 93 87 62 74 65

Proposed NWls-ResCNN 1D 81 92 84 64 82 67

Original SIs-CNN 2D 77 85 80 62 63 62

Proposed SIs-ResCNN 2D 83 90 86 65 73 68

Original DIs-CNN 2D 86 94 89 71 86 74

Proposed DIs-ResCNN 2D 93 98 95 78 81 79

Table 3: Bayesian optimized values for hyperparameters of NWLs-ResCNN 1D, SIs-ResCNN 2D, and DIs-ResCNN 2D.

Model F1 F2 F3 K1 K2 K3 Optimizer Learning rate Max trials

NWLs-ResCNN 1D 16 32 16 1 1 1 SGD 0.0001 30

SIs-ResCNN 2D 16 16 16 1 2 1 Adam 0.001 30

DIs-ResCNN 2D 32 64 32 1 2 1 SGD 0.0001 30
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the extraction and integration of additional features. This
enhances the model’s ability to capture complex patterns
and improves overall performance [50].

The combination of the skip connection and convolu-
tional layers is called a residual block. A residual module
consists of two branches: a shortcut path and a main path.
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Figure 16: Displaying the DT, RG, HDRS, HMRS, and NPHI well-log test well, real facies predicted by the DIs-ResCNN 2D are found,
respectively. It is evident that in most of the classifications for these facies, the DIs-ResCNN 2D model has performed well.
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Figure 15: Displaying the DT, RG, HDRS, HMRS, and NPHI well-log test well, real facies predicted by the NWLs-ResCNN 1D are found,
respectively. The sections marked with dashed lines highlight where this model makes the most significant errors in classifying ANHYDR
and ILLITE facies.
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The main path consists of three convolutional layers with
relu activations. Batch normalization was added to each con-
volutional layer to reduce overfitting and accelerate training.
The main path architecture looks like this: CONV⇒ BN
⇒ relu × 3. A bottleneck layer (N ×N convolutional layer
+ batch normalization) was added to the shortcut path as
depicted in Figure 8(a) which is called the reduce shortcut.
On the other hand, if the short path does not include the
bottleneck layer, the output in add both path will be f + x
according to Figure 8(b) which is called the regular shortcut.

Modifications were applied to the original CNN struc-
ture by incorporating a residual connection (Figure 9) to
enhance its efficiency in addressing the specific problem of
lithology classification.

3.3. Proposed Residual Convolutional Neural Networks. The
proposed models, illustrated in Figures 10–12, have been
enhanced through the integration of residual structures. In
SIs-ResCNN 2D, the X0 signal is passed along the shortcut
path and then added to the main path, f X0 . Then, the relu
activation is applied to f X0 + X0 + K2 × K2CONV + BN to
generate the output signal: relu f X0 + X0 + K2 × K2 
CONV + BN (The resulting output is denoted as X′1).

The output in the second add both path becomes relu f X
′1 + X′1 , as illustrated in the architecture shown with X′2.

The DIs-ResCNN model receives DIs as input, as shown
in Figure 11. The features of these images after applying
reduce shortcut and the relu activation function can be rep-
resented as

DIs‐ResCNN 2D X1′ = relu f X0 + X0 + K2 × K2 CONV + BN

11

Finally, by applying the regular shortcut, the features are
flattened according to

DIs‐ResCNN 2D F = relu f X1′ + X1′ 12

The NWLs-ResCNN 1D model receives NWL data as
input, as shown in Figure 12. The features after applying reg-
ular shortcut and the relu activation function can be repre-
sented as

NWLs‐ResCNN 1D F = relu f X0 + X0 13
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Figure 17: Error plot of training data for original models: NWLs-CNN 1D, SIs-CNN 2D, and DIs-CNN 2D. Each bar is segmented to
represent the proportion of predictions assigned to each class.
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These flattened features denoted as F are then fed into a
dense layer. This layer consists of four neurons with the soft-
max activation function, which outputs probabilistic values.
These values represent the probabilities of each class for each
sample. To determine the most probable class for each sam-
ple, the Argmax function is applied based on these features
(Argmax is a mathematical operation that identifies the
argument or input value that results in the maximum value
from a given target function).

In these proposed architectures, focus was placed on two
hyperparameters in the model’s architecture: the number of
filters (F1, F2, and F3) and the kernel size (K1, K2, and K3).
These hyperparameters were tuned in Section 5.1 to obtain
their respective values.

4. Model Evaluation

4.1. Metrics. Precision and recall are two metrics used to
evaluate the performance of a classifier for individual classes.

Precision refers to the probability that a sample truly belongs
to a particular class given the classification result, while
recall is the probability that a sample is correctly classified
for a given class. The F1-score is a combined measure of
accuracy and precision, providing a single measure of the
relevance of classifier results [51]. The metrics for evaluating
a model’s performance are precision and recall, which are
defined as

Precision =
TP

TP + FP
, 14

Recall =
TP

TP + FN
15

The abbreviations TP, TN, FP, and FN stand for true
positive, true negative, false positive, and false negative,
respectively. Here are the equations for calculating the F1
-score and accuracy:
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Figure 18: Error plot of testing data for original models: NWLs-CNN 1D, SIs-CNN 2D, and DIs-CNN 2D. Each bar is segmented to
represent the proportion of predictions assigned to each class.
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Accuracy = TP + TN
TP + TN + FP + FN

, 16

F1 = 2 ×
Precision × Recall
Precision + Recall

17

4.2. Class Prediction Error Plot. Figure 13 visual representa-
tion uses a bar graph to show the support for each class in
a classification model. Each bar is divided to indicate the
percentage of predictions assigned to each class including
negatives and false positives (similar to a confusion matrix).
This plot assists us in comprehending both the strengths and
weaknesses of models as well as specific challenges present in
the dataset. Additionally, the class prediction error plot pro-
vides a way to assess how accurately the classifier predicts
relevant classes. It is like a version of a confusion matrix that
clearly highlights prediction errors. The error plot is partic-
ularly useful in classification problems allowing us to have
a better understanding of the classification errors made by

the model. As depicted in Figure 13, changes in recall and
precision for faces CALCITE and DOLOM can be easily
tracked. Additionally, the overall model performance can
be evaluated in comparison to other models.

5. Results and Discussions

In this section, hyperparameters are initially considered, and
their tuning process is explained. Subsequently, the results of
the original and proposed models are compared. Following
this, the best model is compared with baseline models such
as support vector machine (SVM), K-nearest neighbor
(KNN), and decision tree (DT). Additionally, the stability
of the model and the impact of data balancing are investi-
gated. Finally, the assessment of feature importance on
NWL data is conducted.

5.1. Hyperparameter Tuning. An objective of hyperpara-
meter tuning is to maximize the validation set’s evaluation
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Figure 19: Error plot of training data for proposed models: NWLs-ResCNN 1D, SIs-ResCNN 2D, and DIs-ResCNN 2D. Each bar is
segmented to represent the proportion of predictions assigned to each class.

15International Journal of Energy Research



score without overfitting [52]. The optimal selection of filters
(F) and kernel size (K) significantly influences deep learning
model performance. Filters extract features by capturing
intricate details which in turn requires greater computation.
Kernel size affects feature extraction; larger kernels encom-
pass more context but require more computation. A careful
balance is crucial because excessive filters/kernels can lead to
overfitting, while insufficient filters can result in underfitting.
For the three proposed models, the hyperparameters were
tuned by dividing the training data into a 70-30 ratio to
determine these parameters. Subsequently, the model was
trained on the entire dataset and evaluated using the test
data that had been excluded. The hyperparameters and their
corresponding tuned values for each model are detailed in
Table 2 and Table 3, respectively.

Bayesian optimization is an important technique that
differs from grid search or random search methods because
it adapts the search process based on previous trials. This
assists the tuner in making choices about which hyperpara-

meters to test next, focusing on configurations that seem
promising for better performance. By doing this, it signifi-
cantly cuts down on the number of trials required to find
the hyperparameters, which saves both time and computa-
tional resources. Bayesian optimization is employed to
improve the efficiency of hyperparameter tuning. By setting
max trials to 30, it means that Keras Tuner will explore and
evaluate 30 different combinations of hyperparameters to
find the best configuration (Table 3). The tuner will perform
multiple training runs, adjusting various hyperparameters
like the learning rate and the number of filters for each trial.
Then, it will compare the performance of these models based
on a specified evaluation metric (e.g., validation accuracy).

5.2. Overall Performance. Table 4 provides a comparative
overview of model performance using SIs and DIs in the
context of well-log data analysis. SIs involve a process of
extracting specific features, creating a vector and generating
a corresponding matrix. On the other hand, DIs ensure a
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Figure 20: Error plot of testing data for proposed models: NWLs-ResCNN 1D, SIs-ResCNN 2D, and DIs-ResCNN 2D. Each bar is
segmented to represent the proportion of predictions assigned to each class.
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sequence of numbers between 1 and 11 with unique patterns
formed by alternating and skipping steps.

The different models are evaluated based on precision,
recall, and F1-score metrics for both training and testing
datasets. The baseline models, NWls-CNN 1D, SIs-CNN
2D, and DIs-CNN 2D, represent the original approaches
while the proposed models, NWls-ResCNN 1D, SIs-
ResCNN 2D, and DIs-ResCNN 2D, incorporate refinements
and enhancements. Comparing the original and proposed
models, it is clear that the residual convolutional neural net-
work (ResCNN) architecture significantly improves the per-
formance across all methods. Notably, the DIs-ResCNN 2D
model achieves remarkable precision, recall, and F1-score
values on both training and testing datasets, indicating its
effectiveness in handling the complexities of the well-log
data. These findings highlight the importance of utilizing
structured and DIs in combination with advanced deep
learning architectures such as ResCNN to enhance the accu-
racy and reliability of well-log data analysis. The distinct pat-
terns generated by DIs contribute to the improved
performance of the models demonstrating the potential of
this approach in the field of geological data processing and
interpretation. The proposed DIs-ResCNN 2D model had
the highest metrics among all the models on both the train-
ing and test sets. The training set had a precision of 93%,

recall of 98%, and F1-score of 95%. The test set also showed
strong results with a precision of 78%, recall of 81%, and F1
-score of 79%.

Figure 14 illustrates bar charts comparing the original
models with the proposed models in terms of accuracy and
F1-score evaluation metrics on both training and testing
datasets. The utilization of the DIs technique has clearly
resulted in improved performance for the DIs-CNN 2D
and DIs-ResCNN 2D models in comparison to the other
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Figure 21: The training loss and accuracy of three proposed models, namely, DIs-ResCNN 2D, SIs-ResCNN 2D, and NWLs-ResCNN 1D.
Loss and accuracy have been examined for the proposed models over 100 epochs. The plot on (a) displays the model’s accuracy, while the
plot on (b) illustrates the model’s loss.

Table 5: The precision, recall, and F1-score metrics were
calculated for five baseline classifiers: support vector machines
(SVM), K-nearest neighbor (KNN), decision tree (DT), random
forest (RF), and extra trees.

Model
Train Test

Precision Recall
F1

-score
Precision Recall

F1
-score

SVM 95 92 94 65 68 67

KNN 97 96 96 75 64 63

DT 98 97 97 62 67 63

RF 99 97 98 72 68 64

Extra
trees

89 80 83 64 64 63
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models. This highlights the effectiveness of generating
images using the proposed DI method.

In Figures 15 and 16, for NWLs-ResCNN 1D and DIs-
ResCNN 2D models, the visual display of their quality and
accuracy in determining the facies for the well that was not
included in the training (test well) can be seen. As is clear,
especially considering the parts marked with a dashed line,
using the presented approach to convert NWLs to DIs and
using the generated images as input to CNN have resulted
in a significant improvement in the determination of
ANHYDR and ILLITE facies.

Figures 17 and 18 show the class prediction error plots
for the original models, and Figures 19 and 20 show the pro-
posed models. As mentioned earlier, these plots provide bet-
ter insights into the model’s performance compared to the
confusion matrix. They also offer a simpler analysis, partic-
ularly when dealing with multiple classification problems.
In error plot visualizations, the horizontal axis represents
the actual lithological facies. The accompanying legend
enables a clear distinction between accurately identified
and misclassified facies by the model. These insights are
imperative for refining the model and enhancing its predic-
tive capabilities, thereby ensuring more accurate facies pre-
dictions in complex geological scenarios.

In Figures 17 and 18, the DIs-CNN 2D model has a
higher recall in predicting illite than the other two models,
namely, NWLs-CNN 1D and SIs-CNN 2D. On the other
hand, it can be seen that this model exhibits higher precision
and recall in determining the dolomite facies. By comparing
Figures 18(c) and 20(c), the most obvious change is the
trade-off between precision and recall, which, according to
Table 4, has improved the F1-score value. The rest of the

models are comparable with the same process in terms of
precision, recall, F1-score, and accuracy.

In Figure 21, the presented models, namely, DIs-
ResCNN 2D, SIs-ResCNN 2D, and NWLs-ResCNN 1D,
depict the values of loss and accuracy on the training data
during 100 epochs. As is evident, accuracy values exhibit a
gradual increase, while loss values decrease for all three
models. The model trained with DIs demonstrates the effec-
tiveness of DIs in enhancing the performance of the pro-
posed model. Additionally, the learning process of the DIs-
ResCNN 2D and SIs-ResCNN 2D occurs more rapidly in
the initial epochs indicating an enhancement in the models’
ability to recognize patterns.

5.3. Comparison to Baseline Models. In this study, a method
for generating SIs and DIs, as well as residual convolutional
neural networks, was introduced. The performance of the
proposed model was evaluated by comparing it to estab-
lished baseline models in this section (Table 5). The primary
objective was to assess the effectiveness and superiority of
our approach in addressing the problem under investigation.

Baseline models serve as applied algorithms that act as ref-
erence points when evaluating approaches. By comparing our
model to these baseline models, the aim is to demonstrate its
ability to surpass or at least match the existing state of tech-
niques. The analysis results highlight the strengths of our pro-
posed model and identify any possible limitations and areas,
for further improvement. The DIs-CNN 2D model has dem-
onstrated improvements over the baseline models in terms
of test accuracy as well as F1-score (Figure 22).

The DIs-ResCNN 2D outperformed other models and
achieved a train accuracy of 97% and a test accuracy of
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Figure 22: The accuracy and F1-score plots for the baseline models compared to the DIs-CNN 2D and DIs-ResCNN 2D models show that
both proposed models outperformed the baseline models. The DIs-ResCNN 2D model achieved an accuracy of 92% and an F1-score of 79%.
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92%. Additionally, it obtained a test F1-score of 79% indi-
cating its proficiency in handling both precision and recall.
The incorporation of connections (residual block), in the
architecture, likely contributed to efficient training and
improved generalization. Both DIs-CNN 2D and DIs-
ResCNN 2D models exhibit better performance compared
to other proposed and baseline models. The application of
images obtained from data and the incorporation of residual
connections have shown to be successful techniques for this
specific lithology classification assignment. Using DIs and
residual CNNs provides improved accuracy and F1-score,
which are measures for ensuring accurate predictions and
managing imbalanced categories.

5.4. Model Robustness. Incorporating the Gaussian noise
technique into the model design enhances the robustness
and performance of the system. This technique serves as a
regularization method by adding controlled noise to the
input data during training real-world variations and enhanc-
ing our model to handle unexpected inputs. By integrating
Gaussian noise within the layers of our network using Keras

[53], we introduce an element of controlled randomness that
encourages the model to learn resilient and adaptable fea-
tures. This approach prevents overfitting and also equips
our model with the ability to make accurate predictions on
unseen data ultimately resulting in improved overall perfor-
mance and reliability. Figure 23 illustrates the impact of
Gaussian noise on the DI at different levels. In order to eval-
uate the robustness of the proposed approach, Gaussian
noise was deliberately introduced to the original data with
standard deviations ranging from 0 to 0.10. This variation
in standard deviations represents diverse intensities of noise,
facilitating a comprehensive assessment of the model’s per-
formance across varying degrees of noise interference.

Controlled randomness is encouraged by incorporating
Gaussian noise into the input, promoting the learning of fea-
tures, preventing overfitting, and enabling predictions on
new noisy datasets. Increased model resilience in challenging
scenarios has been observed through validation. Although
there is a decrease in accuracy with levels of noise, the model
still performs well overall indicating improved generaliza-
tion (Figure 24).

(a) Orginal (b) Noisy (σ = 0 01)

(c) Noisy (σ = 0 03) (d) Noisy (σ = 0 05)

(e) Noisy (σ = 0 08) (f) Noisy (σ = 0 10)

Figure 23: The effect of Gaussian noise on DIs has been investigated. (a) The first image is without any noise, while (b–f) the rest of the
images depict different levels of noise being applied.
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5.5. Effect of Data Balancing. Data balancing is a crucial
technique that involves redistributing data in a dataset to
achieve a balanced representation across various classes.
This is especially important when dealing with imbalanced
data [54]. In supervised learning, it is crucial to train a model
using balanced data to ensure that the model is equally
informed about all classes [55].

The investigated data is unbalanced; in other words, the
number of facies is unequal. Thus, another aspect to be con-
sidered is balancing the data. SMOTE proves to be a tech-
nique for dealing with imbalanced datasets when it comes
to machine learning tasks. Particularly, it works when one
class has more samples compared to the others. The number
of samples for the minority classes was increased by utilizing
SMOTE to balance the dataset. This led to an improvement
in F1-score for classes as shown in Table 6, before using
SMOTE, and in Table 7, after using SMOTE.
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Figure 24: Loss and accuracy have been examined for the DIs-ResCNN 2D model under various levels of Gaussian noise applied to the DIs.
The plot on (a) displays the model’s accuracy across different noise levels, while the plot on (b) illustrates the model’s loss across various
noise levels.

Table 6: Classification report before using SMOTE.

Precision Recall F1-score Support

0 0.72 0.76 0.74 153

1 0.99 0.92 0.95 1591

2 0.88 0.96 0.92 1073

3 0.52 0.58 0.55 24

Accuracy 0.92 2841

Macro avg 0.78 0.81 0.79 2841

Weighted avg 0.93 0.92 0.92 2841

A classification report provides precision, recall, F1-score, and support
values for each class in a classification model’s evaluation. Classes zero,
one, two, and three correspond to the ANHYDR, CALCITE, DOLOM,
and ILLITE facies, respectively.
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Table 7: Classification report after using SMOTE.

Precision Recall F1-score Support

0 0.68 0.78 0.73 153

1 0.99 0.93 0.96 1591

2 0.91 0.96 0.93 1073

3 0.44 0.83 0.58 24

Accuracy 0.93 2841

Macro avg 0.76 0.88 0.80 2841

Weighted avg 0.94 0.93 0.93 2841

A classification report provides precision, recall, F1-score, and support values for each class in a classification model’s evaluation. Classes zero, one, two, and
three correspond to the ANHYDR, CALCITE, DOLOM, and ILLITE facies, respectively.

Table 8: Classification report after using attention mechanism.

Precision Recall F1-score Support

0 0.71 0.79 0.75 153

1 0.98 0.92 0.95 1591

2 0.89 0.95 0.92 1073

3 0.54 0.79 0.64 24

Accuracy 0.92 2841

Macro avg 0.78 0.86 0.82 2841

Weighted avg 0.93 0.92 0.93 2841

A classification report provides precision, recall, F1-score, and support values for each class in a classification model’s evaluation. Classes zero, one, two, and
three correspond to the ANHYDR, CALCITE, DOLOM, and ILLITE facies, respectively.
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Figure 25: The bar chart displays the prioritization of eleven NWL variables’ importance determined by the average absolute SHAP values.
The classes zero, one, two, and three correspond to the ANHYDR, CALCITE, DOLOM, and ILLITE facies, respectively.
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The improvement in F1-scores for all classes demon-
strates the positive impact of SMOTE on the learning process.
However, SMOTE impact on model performance can vary
depending on the dataset and classification problem. While
similar improvements cannot always be assumed, it has been
beneficial in this case. It is essential to evaluate its effectiveness
on a case-by-case basis. The integration of SMOTE into this
lithology classification task has effectively resolved the prob-
lem of class imbalance leading to improved performancemet-
rics for individual classes as well as overall accuracy.

5.6. Impact of Attention Mechanism. Attention is a mecha-
nism in neural networks that enables the model to focus
on specific parts of the input sequence when making predic-
tions [56]. The key principle behind attention is to allocate
different levels of importance or weights to different ele-
ments in the input sequence, which allows the model to
weigh the contributions of each element differently. In the
context of image classification or computer vision, attention
mechanisms can be employed spatially to focus on specific
pixels of an image [57, 58].

Table 6 provides insights into the performance of the
DIs-ResCNN 2D model before the implementation of an
attention mechanism. The effect of the attention mechanism
on the DIs-ResCNN 2D model has been investigated, and its
results are shown in Table 8.

Before using the attention mechanism, the model
achieved a F1-score of 0.74 for class 0 (ANHYDR) and
0.55 for class 3 (ILLITE). After implementing the attention
mechanism, there is an improvement, particularly in classes
0 and 3. The F1-score for class 0 increased to 0.75, and for
class 3, it has improved significantly to 0.64. The macro F1
-score also showed an enhancement by rising from 0.79 to
0.82 after incorporating the attention mechanism. This
improvement in macro F1-score indicates a better balance
in the model’s ability to correctly classify all classes, empha-
sizing a reduction in the bias towards specific classes.

5.7. Feature Importance. The SHapley Additive exPlanations
(SHAP) technique is used to assess the importance of fea-
tures in ML and DL models. One of its advantages is that
it provides a comprehensive framework to interpret different
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Figure 26: SHapley Additive exPlanation values (SHAP) are provided for each class, ranking the most important features from top to
bottom. Blue dots represent small variable values, while red data points represent large variable values.
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types of models [59]. It effectively handles interactions
between variables and provides accurate estimates of feature
importance. Unlike methods like permutation importance,
which struggle with complexity, SHAP is particularly useful
for tree-based models and neural networks. It can evaluate
both the importance of features across the entire dataset
and their specific contributions, in individual cases. An
interesting aspect of SHAP is that it assigns scores to indi-
cate how features impact predictions [60, 61].

Figure 25 presents a bar chart that showcases the priori-
tization of the importance of eleven well-logs related to
NWLs. The significance of these variables is determined
based on their SHAP values. This bar chart allows us to eas-
ily identify features, across the entire dataset. According to
the SHAP values, the two most crucial features for lithology
classification based on well-logs are RHOB and PEF. These
features play a role in identifying the lithology and mineral-
ogy of rocks which holds importance in the oil and gas
industry.

Figure 26 displays the SHAP values for each class in
lithology classification based on well-logs. These SHAP
values represent the contribution of each feature across all
combinations of features. The features are ranked from top
to bottom in this visualization. In this representation, blue
dots represent low values, while red data points indicate high
variable values. Analyzing this information enables us to
gain an understanding of how the model behaves and
responds to combinations of features for each class in lithol-
ogy classification. This knowledge is extremely valuable
when developing models for lithology classification based
on well-logs. For example, in Figure 26(c), the impact of
model features on class 2 (DOLOM) is highlighted. The
PEF and PHIT features have a significant impact, while the
HDRS feature has a small influence. It is interesting to note
that as the PEF increases, the SHAP value decreases, but
when the PEF decreases, the SHAP value increases.

6. Conclusion

In this comprehensive research, we have designed an
advanced deep learning framework specifically developed
for the accurate identification of rock facies in the oil and
gas industry. Our distinctive methodology utilizes well-log
data obtained during logging operations, significantly
improving the accuracy and efficiency of rock facies
classification.

The main elements of our framework include the use of
imaging techniques, namely, shallow images and deep
images, which expertly transform sensor data into synthetic
images. These transformed data visualizations serve as feeds
for our deep learning models, assisting them to identify
complex patterns during the learning stage. This leads to a
more successful classification of rock facies compared to tra-
ditional methods as well as approaches devised by human
engineers. The following outlines the key discoveries from
our study:

(i) SI and DI methods were used to convert NWLs into
images that capture the complex relationships

between well-log features, improving our under-
standing of subsurface geology

(ii) Incorporating residual and bottleneck structures
significantly improved the performance of our
lithology classification model. We have demon-
strated the potential of the DIs-ResCNN 2D archi-
tecture with balanced data in geological
applications by outperforming other models (SIs-
ResCNN 2D and NWLs-ResCNN 1D) in terms of
accuracy, achieving an impressive accuracy of 93%.
Furthermore, our model excelled in precision and
recall, resulting in an F1-score of 80%, highlighting
its robustness and suitability for challenging geolog-
ical classification tasks

(iii) The SHAP method provided valuable insight into
feature importance and model interpretability by
identifying RHOB and PEF as the most influential
input features of NWLs in CNN predictions

(iv) The DIs-ResCNN 2D demonstrates a good level of
stability and robustness against Gaussian noise at
different noise levels

(v) As part of future research, we will explore genera-
tive adversarial networks (GANs) to generate realis-
tic well-logs and use transfer learning methods to
enhance model training and generalization. These
efforts are aimed at improving the capabilities of
DL in addressing complex geological challenges
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