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In this paper, a new simultaneous framework of distribution network operation is proposed based on the scheduling of
photovoltaic/wind/battery multi-microgrids with network reconfiguration considering self-healing. The objective function is
considered to minimize the energy losses, and multi-microgrids cost and improve the reliability indices including minimization
of energy not-supplied (ENS) and minimizing system average interruption duration (SAIDI) and system average interruption
frequency (SAIFI) indices. The optimization variables are defined as the situation of the distribution network switches to find
the network’s optimal configuration with the installation location and size of renewable resources and battery energy storage
during 24 hours. An improved beluga whale optimization (IBWO) based on a nonlinearly diminishing inertia weight (NDIW)
approach is used to find the optimal variable set of the problem. The recommended methodology is implemented on 33-bus
and real 59-bus distribution networks. The results demonstrated that by obtaining an optimal state of the network switches in
the event of a fault, as well as the optimal scheduling of the two microgrids, the energy losses have decreased and the reliability
indices have improved. The outcomes of the proposed methodology based on the hybrid multi-microgrid allocation and
network reconfiguration are stated that the losses, ENS, SAIDI, and SAIFI are reduced by 66.39%, 54.00%, 50.24%, and
33.61%, respectively, for 33-bus network and are declined by 65.29%, 57.44%, 48.63%, and 62.33%, respectively, for the real 59-
bus Ahvaz network in comparison with the base network. The obtained results illustrated that in the condition of the network
line outage, by simultaneously implementing the reconfiguration with the change of network switches and the optimal
allocation and scheduling of HMGs in the network, self-healing is provided to prevent a significant weakening of the network
performance so that the resilience is improved in addition to minimizing the energy losses and the cost of HMG energy
injection compared to the base network. The findings revealed that the objectives including losses, ENS, SAIFI, and SAIDI are
increased by 78.29%, 33.00%, 83.33%, and 35.11%, respectively, due to outage of line 22 of the 33-bus network and these
objectives are increased by 52.32%, 10.30%, 32.29%, and 79.66%, respectively, due to outage of line 12 of the 59-bus network
compared with not considering the line outage. Moreover, the superior capability of the recommended NDIW-based IBWO
has been confirmed in comparison with the well-known particle swarm optimizer (PSO) and ant lion optimizer (ALO) in
solving the problem to achieve better objective value.

1. Introduction

1.1. Motivation and Backgrounds. The improvement of dis-
tribution network reliability is one of the key objectives in
today’s operational planning of distribution networks. The
duty of distribution networks in meeting subscriber needs
is growing increasingly important, and other traditional dis-

tribution networks are no longer responsive to subscriber
needs due to the increasing consumption of electrical energy,
changing customer behavior and demographics, and
expanding subscriber numbers [1]. Although distribution
networks are responsible for the bulk of consumer outages,
many subscriber outages are also caused by distribution net-
work problems, which can lead to component failures, line
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outages, and subscription outages [2]. Due to a lack of auto-
mation and reliance on manual processes for conventional
distribution networks, there are more subscribers and longer
outages as a result of a variety of factors and lax monitoring.
As a result, the network’s level of reliability declines [3, 4].
Also, the concern over climatic and environmental alterations,
as well as the rise in emissions of greenhouse gases, has
prompted researchers to consider alternatives to conventional
production sources for power systems that utilize fossil fuels.
As a result, renewable energy sources play a significant role
in smart distribution networks. Network operators have
become interested in microgrids because they can improve
the reliability of the network by including renewable energy
sources and storage components [5]. On the other hand, via
microgrids based on energy from renewable sources, it is pos-
sible to increase self-healing [6] and reliability in the event of a
mistake or outage of network lines based on the automation of
the distribution network based on reconfiguration, by chang-
ing the state of the network switches.

1.2. Literature Review and Research Gap. Numerous
researches have been done in the area of operating distribu-
tion networks according to the planning of renewable energy
sources, particularly hybrid energy microgrids (HMGs). To
minimize costs, simultaneous installation of remote control
switches and manual control is a challenge that is addressed
in [7]. To solve this problem, reliability indices and HMGs
are utilized in this study. To assess the kind and condition
of automation technology concurrently, as well as to reduce
costs and boost reliability metrics, integer linear program-
ming is provided in [8]. HMG and its impact on enhancing
reliability are not taken into account in this study. To cut
costs and boost reliability indices, self-healing has been
improved by employing electric vehicle parking planning
ability in Ref. [9]. The effectiveness of reconfiguring based
on network switches to increase reliability has not been
assessed in this research. In [10], the evolutionary algorithm
is used to develop the best option for distributed generation
allocation to increase reliability in a distribution network.
The use of HMGs and network reconfiguration was not
attempted in this study to increase resilience. In [11], the
optimum functioning of electric vehicles and energy sources
is implemented in a smart network with the capability to
inject electricity into the grid to minimize the cost of bought
power from the primary electrical system and the penalty of
weakening resilience. It is discovered where to install and
how big to make these components so as to maximize prof-
itability. In [12], an advantageous approach for allocating
electric parking lots to enhance network dependability and
cost minimization is performed in distribution networks.
According to various degrees of vehicle adoption and resil-
ience, Landi et al. [13] present distributing the electric park-
ing lots for minimizing operational costs, the cost of
charging and discharging vehicles, and the cost of obtaining
electricity from the main grid. The impact of reconfiguration
and energy multi-HMGs on reliability measures is not
assessed in [11–13]. In [14], the augmented genetic optimi-
zation technique is examined for the static reconfiguration
of balanced networks to reduce losses and increase resil-

ience. In [15], a combination of the exchange market algo-
rithm and the wild goat algorithm is presented for
dynamic multi-criterion reconfiguration of balanced distri-
bution networks to identify the best network configuration
for reliability improvement and loss minimization. The
impact of energy multi-HMGs on reliability metrics is not
examined in [14, 15]. In [16], it allocates the PVs and WTs
in a balanced network using a hybrid teaching-learning-
gray wolf optimizer method to reduce losses and improve
dependability. In [17], the bat algorithm is used to schedule
wind and solar resources while taking resilience. According
to [18], network reconfiguration and PV and WT allocation
in a balanced network are recommended for lowering losses
and voltage variations and enhancing voltage stability and
dependability with the use of a moth flame optimizer. The
impact of reconfiguration on reliability metrics is not
assessed in [17, 18]. In [19], a method for dynamic reconfig-
uration is presented that minimizes losses and voltage varia-
tions to increase network resilience. Using particle swarm
optimization, Sannigrahi et al. [20] develops an allocation
of integrated energy resources with regulated network
reconfiguration to increase voltage stability and resilience,
lower pollution, and maximize net savings. The improve-
ment in self-healing under fault incidence in the network is
not assessed in this study. A line hardening and DG setup
technique is provided in [21] with the goal of improving dis-
tribution network reliability while reducing load reduction
across the board using updated column and restriction-
producing algorithms. In [22], a mixed-integer program-
ming model is used for carrying out restoration scheduling
for grid-enabled electric vehicles in the distribution network
in an effort to reduce the overall cost of system functionality
loss. To reduce the investment cost, Hou et al. [23] proposes
a distribution network reliability upgrade that is structured as
a mixed-integer linear programming model with the installa-
tion of DGs, the allocation of mobile backup generators, and
the deployment of switches. In [24], the resilient distribution
network operation is evaluated in the presence of smart park-
ing lots and renewable energy sources. Demand response
applications, battery energy storage devices, and standby diesel
generators are recommended to enhance the network’s resil-
iency. In [25], a mixed-integer linear programming frame-
work is developed for the best placement of backup DGs and
sectionalizing switches to increase reliability in emergency sit-
uations while taking into account energy unnerved. In [26],
the distribution network’s robustness is improved to both
the direct and indirect effects of strong winds by taking into
account the wide range of batteries. The objective function of
the reduced vital loads achieves the optimal quantity of power
and energy for batteries for different technologies. In [27], an
operational structure that utilizes mobile energy hubs and
the shortest path algorithm is presented to enhance distribu-
tion network resilience. Tomaximize the restoration of impor-
tant loads, an efficient management solution is also offered to
improve the performance of electrical distribution networks.
The impact of energy multi-HMGs, network reconfiguration,
and self-healing is not examined or assessed in [23–27] for
reliability metrics. The literature review summary is presented
in Table 1.
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Following an assessment of the literature, the following
research gaps are listed:

(i) Reviewing the studies revealed that the utilization of
electric parking lots, distributed production
resources, renewable energy sources, network
reconfiguration by identifying the open and closed
switches of the network, and the best allocation of
resources have all been done in order to improve
the self-healing of the network and increase resil-
ience. The impact of choosing the installation site
and the ideal capacity of renewable resources on
enhancing the network’s dependability has been
examined in some research. Studies have revealed
that simultaneous employment of integrated
approaches to increase reliability and self-healing
improvement is less common

(ii) The issue of enhancing self-healing brought on by
fault-related conditions by applying network auto-
mation based on reconfiguration as well as multi-
HMGs based on storage element has not been
addressed in the studies that have been undertaken.
The absence of a multi-objective planning opera-
tion to achieve the best configuration of the net-
work, locate the placement of the energy HMGs
within the network, and plan their energy distri-
bution over the study horizon is consequently
simultaneously felt

(iii) The operation of renewable energy HMGs simulta-
neously with storage components in distribution
networks and network reconfiguration presents a
number of difficulties, among them the most impor-
tant of which is figuring out where to place HMGs
in the network, where to plan for resources and
storage, and how to best configure the network. If
these factors are wrongly determined, the perfor-
mance of the network will suffer. However, due to
their early convergence problems, particularly in
the case of multi-HMGs, conventional approaches
are unable to overcome this problem. On the other
hand, in order to optimally determine the open
and closed switches of the network, the best location
for installation, and the capacity of the energy
multi-HMG components during the study period,
it is essential to set up a metaheuristic method with
high exploration and exploitation power

1.3. Contributions. According to the existing research gaps,
the contributions of this research are presented as follows:

(i) This study presents the operation of 33-bus and a
real 59-bus distribution network allocation and
scheduling using the multi-HMG structure of
energy with network reconfiguration to improve
reliability while taking self-healing into account

(ii) The reliability of the network has been increased based
on the scheduling of multi-microgrids, including

Table 1: The literature review summary.

Ref. Reconfiguration
HMG Objective function Self-healing Improved

PV WT Battery Loss Reliability Cost Solver

[7] Yes No No No Yes Yes Yes No No

[8] Yes No No No Yes Yes No No No

[9] No No No No No Yes No Yes No

[10] No Yes No No Yes Yes Yes No No

[11] No Yes Yes Yes No No Yes No No

[12] No Yes Yes Yes No No Yes No No

[13] No No No Yes Yes No Yes No No

[14] Yes No No No Yes Yes No No No

[15] Yes No No No Yes Yes No No No

[16] No Yes Yes No Yes Yes No No Yes

[17] No Yes Yes No Yes Yes Yes No No

[18] Yes Yes Yes No Yes Yes No No No

[19] Yes No No No Yes Yes No No No

[20] Yes Yes Yes No Yes Yes No No Yes

[21] No Yes No No Yes Yes No No No

[22] No No No Yes Yes No Yes No No

[23] No Yes No No Yes Yes Yes No No

[24] No Yes Yes No Yes Yes Yes No No

[25] Yes Yes No No Yes Yes No No No

[26] No No Yes No No No Yes No No

[27] No Yes No No Yes No Yes No Yes

This paper Yes Yes Yes Yes Yes Yes Yes Yes Yes
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photovoltaic and wind energy sources integrated with
battery storage, and simultaneously adjusting the state
of the network switches in the event of a fault and
injecting its planned power into the distribution
network

(iii) A multi-objective function is defined, which includes
minimizing energy loss; improving reliability indices
like ENS (energy not-supplied), SAIDI (system aver-
age interruption duration index), and SAIFI (system
average interruption frequency index); and minimiz-
ing the cost of multiple HMGs

(iv) The optimal state of network switches or optimal
network configuration, as well as the ideal location
for installing multi-HMGs and their optimal sched-
uling, has all been found via an improved metaheur-
istic algorithm. The conventional beluga whale
optimization (BWO) is inspired according to behav-
iors of pair swim, prey, and whale fall [28]. In this
paper, conventional BWO is improved based on
the nonlinearly diminishing inertia weight approach
[29] to overcome the premature convergence and
the improved version named IBWO

1.4. Paper Structure. The HMG component modeling is
given in Section 2. The problem objective function and the
constraints are formulated in Section 3. The proposed opti-
mization approach and its steps for problem solving are pre-
sented in Section 4. In Section 5, simulation results in
different scenarios are given. Finally, the outcomes of the
study are concluded in Section 6.

2. HMG System Modeling

An HMG made up of solar (PV) energy sources, wind tur-
bine (WT) energy sources, and battery (BA) storage is taken
into consideration in this study according to Figure 1. The
DC/AC converter is the last piece of apparatus before the
load in the HMG system, and its job is to convert DC power
to AC power. Battery storage is used in HMG to equalize
power oscillations and provide continuous power with the
necessary level of dependability to the load on the distribu-
tion network.

2.1. PV Model. The PV array’s power output is determined
using its surface temperature, rated power, and radiation
intensity as follows [30, 31].

PPV = PPV−Rated ×
∂

∂Ref
1 + γTC TEMC − TEMR ,

PT
PV = nPV × PPV,

1

where ∂ is the radiation perpendicular to the surface of the
array (W/m2), nPV is the number of panels, PPV−Rated is the
rated power of each PV panel, ∂Ref is the amount of standard
radiation (i.e., 1000W/m2), γTC is the temperature coeffi-
cient of the PV panel (-0.0037 per degree Celsius), TEMR
is the temperature of the PV in the reference condition,
and TEMC represents the temperature of the cell.

2.2. WT Model. This nonlinear relationship between the
power WT extracts and changes in wind speed is shown in
the following charts [30, 31]:

Battery bank

Distribution
networkWind resources

PV resources
DC bus

DC/DC

AC/DC

AC bus

Inverter

Figure 1: Schematic of the HMG system connected to the radial distribution network.

PWT =

0 WS ≤WSCut−in and WS ≥WSCut−out,

PWT−Rated ×
WS −WSCut−in

WSRated −WSCut−in
WSCut−in ≤WS ≤WSRated,

PWT−Rated WSRated ≤WS ≤WSCut−out,

PT
WT = nWT × PWT,

2
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where PWT is the output power of WT, the rated power of
each turbine, v is the wind speed. WSCut−in, WSCut−out, and
WSRated are the cut-in speed, cut-out speed, and rated wind
speed, and nWT indicate the number of WTs.

2.3. Battery Charge and Discharge Models

(i) Charging model: the battery is put into a charging
state when PT

PV t + PT
WT t /γINV > PNET t , and the

extra electricity of the HMG is supplied into it. The
energy content of the batteries at time t is computed
in the following way [30, 31]:

EBA t = 1 − ϖ × EBA t − 1 + PT
PV t + PT

WT t −
PNET t
γINV

× Δt × γBA,
3

where EBA t and EBA t − 1 are the battery energy values at
hours t and t − 1, PNET t is the load demand at time t, γINV
is the inverter efficiency, ϖ is self-discharge, Δt is time steps
(1 hour), and γBA refers to the battery charging yield.

(ii) Discharge model: the batteries are in discharge mode
when PT

PV t + PT
WT t /γINV < PNET t , to make up

for the network load power deficiency (PNET), and
the batteries can make up for an HMG lack of
power. The energy of the batteries at time t is com-
puted as follows [30, 31]:

EBA t = 1 − ϖ × EBA t − 1 −
PNET t
γINV

− PT
PV t + PT

WT t × Δt

4

2.4. Inverter Model. The transferred power from the inverter
to the load demand is computed by

PInv−Load = PBA−INV + PRES−INV × γINV, 5

where PBA−INV is the battery power injected to the inverter
and also PRES−INV denotes renewable energy source power
transmitted to the inverter.

3. Problem Formulation

This study uses the improved beluga whale optimization algo-
rithm (IBWO) based on the inertia weight method to tackle
the problem of operating 33- and real 59-bus distribution net-
works based on HMG scheduling and network reconfigura-
tion while taking the self-healing improvement approach
into consideration. The objective function of the issue and
restrictions, the suggested method of optimization, and how
it was used to resolve the issue are all provided in this part.

3.1. Objective Function

3.1.1. Power Losses. According to the current flowing
through the network lines and accounting for their ohmic

resistance and reactance, the network’s total active power
loss (PT

L ) is represented as follows [14, 16]:

PT
L = 〠

∅

k=1
RESk × Cu2k,

Cuk =
VOLi −VOLj

RESk + jRECk
,

6

where RESk and RECk are the ohmic resistance and reac-
tance of the line k, ∅ is the number of network lines, Cuk
is the current passing through the line k, and VOLi and
VOL j are the voltage of buses i and j.

3.1.2. ENS. As a statement of the network subscribers’ dis-
rupted energy owing to the outage of the network lines, the
reliability index in the form of energy not-supplied (ENS)
can be described as follows [14, 16].

ENSTNET = 〠
∅

i=1
〠
NLL

j=1
RLOi × LLi × DLRi × ρi, 7

where ENSTNET is the total energy not-supplied of network
subscribers, NLL is number of lost loads due to line outages
or fault, RLOi is the rate of line i outages, LLi is the length of
line i, DLRi is the duration of line i repair, and ρi is the
amount of lost load due to line i outages.

3.1.3. SAIDI. Another reliability index is the system average
interruption duration index (SAIDI), which represents the
average total duration of power outages per customer, which
is computed as follows [14, 16]:

SAIFI =
∑ λi ×Ni

∑Ni
, 8

where Ni represents the number of subscribers at load point
i, λi represents the failure rate of load point i, and U = λ × r,
where r represents the outage time.

3.1.4. SAIFI. Another reliability index, the system average
interruption frequency index (SAIFI) indicates the average
number of power outages per customer, which is defined
as follows [14, 16]:

SAIDI =
∑ Ui ×Ni

∑Ni
9

3.1.5. HMG Cost. Minimizing the present value cost (NPC)
of the HMG system, which includes investment costs
(CINV) and maintenance cost (COP&M) over the system’s use-
ful life, is another goal. CINV is the price of WTs, PVs, batte-
ries, inverters, and COP&M related to WTs, PVs, and
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batteries. The NPC is formulated as follows [30–32]:

NPCHMG = CINV + COP&M,

CINV = CPV × nPV + CWT × nWT

+ CBA × nBA + CINV × nINV ,

COP&M = CPV,OP&M × nPV + CWT,OP&M × nWT

+ CBA,OP&M × nBA ,

10

where CPV, CWT, CBA, and CINV represent the purchase cost
of each PV array, WT, battery, and inverter. nPV, nWT, nWT,
and nINV indicate the number of PV arrays, WTs, batteries,
and inverters. CPV,OP&M, CWT,OP&M, and CBA,OP&M also refer
to the annual maintenance cost of PV arrays, WT, and
batteries.

3.1.6. Multi-objective Optimization. The power loss minimi-
zation, enhancement of reliability indices, and reduction of
HMG cost are all components of the problem’s objective
function. The weighting coefficient approach is formulated
in this study to solve the total objective function with various
dimensions as follows [33]:

F = φ1 ×
PT
L

PT
L,max

+ φ2 ×
ENSTNET

ENSTNET,max
+ φ3

×
SAIFI

SAIFImax
+ φ4 ×

SAIDI
SAIDImax

+ φ5

×
NPCHMG

NPCHMG,max
,

11

where φ1, φ2, φ3, φ4, and φ5 are the weighting coefficients of
losses, ENS, SAIFI, SAIDI, and HMG cost functions, respec-
tively, such that the absolute value of their sum must be
equal to 1. PT

L,max, ENSTNET,max, SAIFImax, SAIDImax, and
NPCHMG,max refers to the maximum value of losses, ENS,
SAIFI, SAIDI, and HMG cost.

3.2. Constraints. The prior subsection’s objective function F
should be optimized under the subsequent equality and
inequality constraints [14, 16].

3.2.1. Power Balance.

PPost + 〠
NHMG

i=1
PHMG i = 〠

∅

i=1
PL i + 〠

ϑ

q=1
PDmd q , 12

QPost + 〠
NHMG

i=1
QHMG i = 〠

∅

i=1
QL i + 〠

ϑ

q=1
QDmd q , 13

where PPost and QPost refer to the active and reactive power
injected into the grid from the substation, PHMG and QHMG
refer to the active and reactive power transferred from the
hybrid system into the grid, NHMG indicates the number of
hybrid systems (2 in this study), PL and QL denote the active

and reactive losses of the grid lines, and PDmd and QDmd are
the active and reactive load of the distribution network.

3.2.2. Bus Voltage. Bus i’s voltage range must fall within the
permitted range, which is as follows:

VOLimin ≤VOLi ≤VOLimax, 14

where VOLimin and VOLimax represent the lower and upper
network bus voltages.

3.2.3. Maximum Allowable Currents. Line i’s current must be
below its limit to cross through:

Cui ≤ Cuimax, 15

where Smax
i is the upper current passing through the lines.

3.2.4. HMG Components. Equipment for HMG systems
must have the following maximum and minimum ranges
[30–32]:

nmin
PV ≤ nPV ≤ nmax

PV , 16

nmin
WT ≤ nWT ≤ nmax

WT , 17

nmin
BA ≤ nBA ≤ nmax

BA , 18

Emin
BA ≤ EBA ≤ Emax

BA , 19

where nmin
PV and nmax

PV are the lower and upper numbers of PV
panels, nmin

WT and nmax
WT refer to the minimum and upper num-

bers of WTs, nmin
BA and nmax

BA represent the lower and upper
numbers of batteries, Emin

BA and Emax
BA indicate the lower and

upper energies of the battery as Emin
BA = 1 −DOD × Emax

BA ,
and DOD indicates the depth of battery discharge.

3.2.5. Network Radiality. The distribution network’s radial
state should be preserved as follows during network recon-
figuration. In order to verify the network’s radiality, an inci-
dence matrix is first defined. There are m network lines and
n network buses in this matrix, which is a m by n matrix. If
the determinant of this matrix decreases to zero after it is
formed, the network is not a radial network; if it means
det A = 1 or − 1, the network is a radial network [34].

4. Optimization Method and Implementation

The operation of a 33- and 59-bus distribution networks
based on multi-HMG scheduling and network reconfigura-
tion taking self-healing into account is discussed in this part.
It is solved using the enhanced beluga whale optimization
(BWO) algorithm based on the inertia weight method
(IBWO) [28]. Beluga whale actions like swimming, hunting,
and falling are the inspiration for the BWO.

4.1. Inspiration. The beluga whale, a marine mammal, is
identified based on its white pigmentation and diversified
utterances. Several belugas are maintained in aquariums in
which they exhibit an energetic look and smooth motion.
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Some belugas are maintained in aquariums, as depicted in
Figure 2(a), and they have a cheerful appearance and grace-
ful movement. The social-sexual behaviors of beluga whales
under human care include lateral and vertical swimming,
synchronized submersion, and synchronized milling. More-
over, they may explode bubbles, open their mouths to eat,
and swim rapidly towards or away from other creatures.
Beluga whales are interested in humans and demonstrate
activities such as frolicking, swimming, and vocalization.
Beluga whales are social animals that can congregate in
groups of two to twenty-five individuals, on average ten
individuals. They consume a variety of prey, such as crusta-
ceans, nematodes, codfish, trout, and salmon (Figure 2(b)).
Due to the dense population density in estuaries, killer
whales, polar bears, and humans pose a threat to these ani-
mals. Over immigration, whales perish and sink to the ocean
floor, providing sustenance for many different things
(Figure 2(c)) [28].

The beluga whale optimization (BWO) is affected by
beluga whales’ swimming, foraging, and falling actions. This
is how the BWO mathematical model is created.

4.2. Mathematical Model. The BWO mimics the swimming
and other actions of beluga whales and foraging. Similar to
other metaheuristics, BWO is comprised of the exploration
and exploitation phases. Through the arbitrary choice of
beluga whales, the discovery phase enables global looking
in the layout space, whereas the exploitation phase governs
local searching. For modeling the actions of beluga whales,
it is assumed that they are search agents that can move in
search space by modifying their position vectors. More-
over, BWO incorporates the chance of whale collapse,
which adjusts the corresponding positions of beluga
whales [28].

Because of BWO’s population-centered methodology,
beluga whales are seen as searching agents, and each one
represents a potential solution that has undergone overopti-

mization. The following is the layout of the agent location
discovery matrix [28]:

X =

x1,1 x1,2 ⋯ x1,d

x2,1 x2,2 ⋯ x2,d

⋮ ⋮   ⋮

xn,1 xn,2 ⋯ xn,d

, 20

where d is the dimension of design variables and n is the
beluga whale population size. Several physiological parame-
ters have been collected for every living beluga whale [28]:

FX =

f x1,1, x1,2,⋯, x1,d
f x2,1, x2,2,⋯, x2,d

⋮⋮⋮

f xn,1, xn,2,⋯, xn,d

21

Based on the equilibrium factor Bf , the BWO algorithm
is capable of switching within both discovery and extraction
by [28]

Bf = B0 ×
1 − T

2 × Tmax
22

At each iteration, where T denotes the present iteration
and Tmax refers to the maximum number of iterations, B0
varies arbitrarily between 0 and 1. Discovery happens when
Bf is greater than 0.5, whereas exploitation happens when Bf

is less than 0.5. Rising iteration T decreases the fluctuation
range of Bf from (0, 1) to (0, 0.5), indicating an important
change in likelihood for both the exploration and the exploi-
tation phases, whereas growing iteration T raises the proba-
bility of the discovery phase.

Sea Balance factor
Note: Attack

Beluga whale

Swim

Food

Bf < Wf

Bf ≤ 0.5

0 0.5

(a) Exploration(a)

(b)

(c)

(b) Exploitation

(c) Whale fall

1

Bf > 0.5

Figure 2: Beluga whale behaviors: (a)—swimming, corresponding to the exploration phase; (b)—feeding, responding to the exploitation phase;
(c)—whale fall, corresponding to the whale fall phase [28].
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4.2.1. Exploration Phase. The BWO exploration phase is
determined by analyzing beluga whales’ swimming activity.
According to documented habits of beluga whales in human
care, beluga whales may participate in social-sexual behav-
iors from a variety of positions, such as the coordinated or
reversed pair swim portrayed in Figure 1. Thus, the precise
positions of investigators are established by the tandem
swim of beluga whales, and the geographic coordinates of
beluga whales are altered to reflect this [28]:

XT+1
i,j = XT

i,j + XT+1
r,p1

− XT
i,pj

1 + r1 sin 2πr2 , j = even,

XT+1
i,j = XT

i,j + XT+1
r,p1

− XT
i,pj

1 + r1 sin 2πr2 , j = even,

23

where T represents the iteration quantity, XT+1
i,j indicates the

new positioning of the ith beluga whale in the jth dimension,
pj (j = 1, 2,⋯, d) is a number chosen at random represent-

ing the d-dimension, and XT
i,pj is the new positioning of the

ith beluga whale in the pj dimension. T is the position of

the ith beluga whale on the pj dimension, XT
i,pj and XT

r,p1 refer
to the current coordinates of the ith and rth beluga whales (r
is a beluga whale selected at random), and T is the place of
the ith beluga whale on the pj dimension. r1 and r2 are arbi-
trary integers between 0 and 1, and the functions sin 2πr2
and cos 2πr2 show that the beluga whales’ flippers are fac-
ing upwards. The revised positioning reflects the coordi-
nated or mirror-like swimming and diving behaviors of
beluga whales depending on the dimension chosen via an
odd and even quantity. Two random integers, r1 and r2,
are used to enhance randomized operators during the
exploratory stage.

4.2.2. Exploitation Phase. The BWO exploiting phase is
affected via beluga whales’ predatory tendencies. Beluga
whales have the capability of coordinated eating and loco-
motion when other beluga whales are nearby. Therefore,
beluga whales prey by exchanging information about posi-
tions that are open, while taking into consideration the best
competitor and others as well. During the predatory period
of BWO, the Levy flight [28] method is applied in order to
increase convergence. We postulated that such creatures
could secure their prey by employing the Levy flying tactics,
and the associated framework is presented as follows [28]:

XT+1
i,j = r3X

T
best − r4X

T
i + C1 LF XT

r − XT
i , 24

where T is the present iteration, XT
i is the present loca-

tion of the ith beluga whale, XT
r is the current situation of

an arbitrary beluga whale, XT+1
i is the most recent position

of the ith beluga whale, and XT
best is the present location of

the best beluga whale. r3 and r4 are indeterminate values
between (0 and 1), and C1 = 2r4 1 − T/Tmax is the random-
ized jump power that determines the Levy flight power.

The Levy flight formula is calculated in the following
way [28]:

LF = 0 05 ×
u × σ

v 1/β ,

σ =
Γ 1 + β × sin πβ/2

Γ 1 + β /2 × β × 2 β−1 /2

1/β
,

25

where u and v are random quantities with a normal distribu-
tion and β equates to the fixed 1.5.

4.2.3. Whale Fall. Beluga whales are threatened by predators
such as killer whales, polar bears, and humans throughout
passage and feeding. The majority of beluga whales are
clever and are able to prevent peril by sharing information.
Nonetheless, a few beluga whales passed away and fell into
the ocean abyss. The phenomenon is referred to as “whale
fall,” and it provides sustenance for an extensive variety of
animals. Countless predators and invertebrates converge
on whale corpses in search of sustenance, and the fractured
skulls and corpses of dead whales drew an extensive amount
of hairy crabs. The skeleton is gradually destroyed or inhab-
ited for many years by microorganisms and algae [28].

To simulate the actions of whales falling during every
iteration, we arbitrarily select the likelihood of whale decline
from the individuals in the population to simulate minor dif-
ferences in the sets. We believe that these beluga whales
either moved to another spot or received shots and plunged
into the depths of the sea after being wounded. In order to
keep the identical amount of population, the current posi-
tions of beluga whales and the whale fatality step size are
employed to figure out the revised position. This is how
the model is presented as follows [28]:

XT+1
i = r5X

T
i − r6X

T
i + r7Xstep, 26

where r5, r6, and r7 are random integers ranging from 0
to 1 and Xstep is the step dimension of whale descent deter-
mined by [28].

Xstep = ub − lb exp
−C2T
Tmax

, 27

where C2 is the step element related to whale fatality and the
size of the population (C2 = 2Wf × n) and ub and lb are the
upper and lower variable bounds, respectively. The amount
of steps is determined by the maximum number of schedul-
ing variables and iterations.

This model estimates the likelihood of whale stranding
(Wf ) as a function that is linear [28].

Wf = 0 1 −
0 05T
Tmax

28

The reality that the possibility of whale plummet
dropped from 0.1 in the first iteration to 0.05 in the final
iteration indicates that, as beluga whales become closer to
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sources of protein over the optimization process, their vul-
nerability reduces.

4.3. The BWO Procedure. Depending on the previous princi-
ple, BWO consists of three phases: the exploration phase,
which simulates floating behavior; the predatory phase,
which simulates killing behavior; and the whale collapse
phase, which is modified by the beluga whale’s decline. Every
time the optimization procedure is repeated, when the stages
of exploration and extraction draw the conclusion, the whale
decline phase begins to occur. The final section describes the
principal BWO method.

Step 1 (initialization). Establish the BWO specifications,
including the population amount n and the maximum num-
ber of iterations Tmax. The primary locations of every beluga
whale within the search space were chosen at random, and
values for fitness can be calculated using the fitness.

Step 2 (update the exploration and discovery procedure).
The equilibrium factor Bf decides how much a beluga whale
will go through the stage of exploration or utilization phase.
If Bf for a beluga whale is greater than 0.5, the revision
method enters the searching phase, and the beluga whale’s
position is updated. If Bf is less than 0.5, the stage of exploi-
tation governs the revisions, and the exact position of a
beluga whale is updated. Taking this, the fitness ratings of
the newly created positions are obtained and ordered to find
the best one for the present iteration.

Step 3 (updates on the phase of whale lactation). Each itera-
tion estimates the whale descent possibility Wf . Multiple
beluga whales may perish and sink to the ocean floor, and
the whale descent probability Wf is computed with each
iteration. Consequently, update the location of a beluga
whale.

Step 4 (verification of conditioned ending). The BWO ends if
a specific iteration surpasses the maximum number of itera-
tions. Optionally, repeat Step 2.

4.4. Overview of the Improved BWO (IBWO). A nonlinearly
diminishing inertia weight approach [29] is used to improve
both the local and global exploratory results for conven-
tional BWO. Variations in IW value impact the capability
to search. From IWmax to IWmin, the IW declined in a non-
linear manner. Large IW values have been advantageous for
locating global advances, whereas small IW values are suit-
able for locating regional breakthroughs. This approach is
outlined by [29]

IW = IWmin +
1 + cos πt/T

2

pc
IWmax − IWmin , 29

where IWmax and IWmin are the utmost and smallest IW
amounts, respectively. T is the maximum number of itera-
tions, and pc is a positive number (pc = 10 [29]).

The info that follows has been modified:

4.5. The IBWO Implementation. Flowchart of the IBWO
implementation to solve the problem is depicted in
Figure 3. The steps of the problem implementation using
the IBWO are as follows:

Step 1. The program provides details regarding the 33-
bus distribution network, such as ohmic resistance and reac-
tance values for network, active, and reactive demand; the
lowest and highest ratings for PVs, WTs, and batteries; and
the network’s tie-line quantity.

Step 2. Establishing the algorithm’s parameters, such as
the size of population and maximal iteration of the IBWO,
as well as the total amount of beluga whales.

Step 3. For the starting point of the algorithm, the vari-
ables consist of the location and size of the HMG system
devices (the installation location of buses 2 to 33 and the
maximum capacity of the number of PVs, WTs, and batte-
ries 500, 500, and 3000, respectively) in addition to the net-
work open switches (the number of 5 switches to be a

variable among 37 network lines (plus tie-lines) chosen at
random corresponding to the range of v).

Step 4. The decision variable sets for the algorithm pop-
ulation are found, randomly.

Step 5. The backward-forward power flow is done, and
the value of the objective function (Eq. (11)) is computed
for the variable set, taking into consideration the operational
and HMG constraints (Eqs. (12)–(19)) along with the net-
work radial status. This phase identifies the optimum vari-
able set considering the objective function (Eq. (11)) value.

Step 6. Update the BWO population.
Step 7. The computation of the value of the objective

function (Eq. (11)) per revised population in step by step
6, witnessing operation limitations the size of resources
and batteries, and the condition to preserve the radial state
of the network, and changing it with the previous set (step
5) if the new variables have better outcomes (better value
be subject to the objective).

XT+1
i,j = IWmin +

1 + cos πt/T
2

pc
IWmax − IWmin × XT

i,j + XT+1
r,p1

− XT
i,pj

1 + r1 sin 2πr2 , j = even,

XT+1
i,j = IWmin +

1 + cos πt/T
2

pc
IWmax − IWmin × XT

i,j + XT+1
r,p1

− XT
i,pj

1 + r1 sin 2πr2 , j = even
30
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Step 8. In this stage, the traditional BWO population is
updated based on the inertia weight method (IBWO).

Step 9. The objective function (Eq. (11)) value for each
updated set is computed in step 8, and the value of the supe-
rior answer is substituted with the best variable value set
from step 7.

Step 10. Evaluation of convergence requirements (under
the condition of obtaining the best objective function (Eq.
(11)) and performing the greatest number of algorithm iter-
ations). If yes, proceed to step 11; if not, proceed to step 6.

Step 11. Terminate the procedure and print the optimal
variable set, which includes the place of installation and size
of the HMGs’ component as well as open network switches.

5. Simulation Results and Discussion

In this section, the results of the operation and reconfigura-
tion of a 33- and 59-bus distribution networks with HMG
multi-HMG operation and self-healing enhancement via
the improved beluga whale optimization (BWO) algorithm
based on the inertia weight method (IBWO) are presented.
Figure 4 displays the network schematic for the 33-bus net-
work. This network has 37 branches and 5 tie-lines, identi-
fied as lines 33, 34, 35, 36, and 37, with a total active
demand of 3,720 kW and a reactive demand of 2,300 kVAr.
Also, a real 59-bus distribution network is considered to
implement the proposed methodology and is depicted in

Start

Initiate the network data, BWO parameters, and HMG
data

Determination of decision variables set, randomly

Calculating the F (Eq. (16)) satisfying the operational and 
HMG constraints (Eqs. (17)-(24)), and network radiality and 

determine the best beluga with lower F

If convergence criteria met
(Iter = itermax) ?

Update position of the BWO population

Determination of decision variables set for updated
population, randomly

Calculating the F (Eq. (16)) satisfying the all constraints (Eqs. (17)-(24)), find the
best beluga and replace it with the better last beluga with lower objective

function

Save the optimal variables set

Occurrence of a fault in the network line and
disconnection of the line

Implement the nonlinearly diminishing inertia weight
approach

Computing the F (Eq. (16)) satisfying the all constraints (Eqs. (17)-(24)), find the 
best beluga and replace it with old one if the correspond F is lower

End

Selecting the maximum and minimum value of the
decision variables set

Yes

No

Figure 3: Flowchart of the IBWO implementation to solve the problem.
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Figure 4: The 33-bus distribution network.
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Figure 5. This network is a section of the southern Iranian
city of Ahvaz’s distribution network. There are 63 branches,
5 tie-lines identified as lines 59, 60, 61, 62, and 63, and 58
sectionalizing switches in the 59-bus distribution network
with 9,690 kW and 7,318.2 kVAr, respectively, represent
the total active and reactive demands. The bus and line
data of the real 59-bus network is presented in Table 2.
The network loading data from Ref. [35] is displayed in
Figure 6. In addition, meteorological data, such as solar
radiation data, ambient temperature data, and wind speed
data, were extracted based on Ref. [31] and presented in
Figures 7–9. In addition, Table 3 provides data on numer-
ous HMG equipment. To validate the IBWO solver, its
efficacy in solving the operation problem was compared
to that of the traditional BWO method particle swarm
optimization (PSO) and ant lion optimizer (ALO). In all
simulations, the size of population, maximum iteration
number, and number of autonomous executions of each
method are tuned to 50, 200, and 25, correspondingly.
Moreover, the general and regulatory parameters of
BWO, PSO, and ALO have been chosen as per each algo-
rithm’s respective reference paper. The simulation of the
recommended approach was performed in the MATLAB
software using a desktop system with an Intel Core i7,
8GB of memory, and a 1TB hard disk drive.

For the purpose of assessing the efficacy of the proposed
methodology, the following scenarios have been executed:

Scenario #1. Network operation based on scheduling of a
HMG without SH.

Scenario #2. Network operation based on scheduling of
two HMGs without SH.

Scenario #3. Network operation based on reconfigura-
tion without SH.

Scenario #4. Network operation based on the scheduling
of a HMG and reconfiguration without SH.

Scenario #5. Network operation based on scheduling of
two HMGs and reconfiguration without SH.

Scenario #6. Network operation based on scheduling of
two HMGs and reconfiguration with SH.

5.1. The Simulation Results without SH, 33-Bus Network

5.1.1. The Results of Scenario #1. The results of a 33-bus dis-
tribution network with the HMG scheduling without SH
consideration using the IBWO algorithm are given. The effi-
cacy of IBWO to solve the problem is compared to that of
BWO, PSO, and ALO. Evidently, the IBWO procedure has
attained the optimal solution with a faster convergence rate
(Figure 10). On the other hand, it can be seen that enhancing
the capability of the traditional BWO algorithm based on the
inertial weight method improves its discovery achievement
and prevents premature convergence to the extent that the
enhanced version has achieved convergence in fewer conver-
gence iterations than its traditional counterpart.

Table 4 displays the numerical outcomes of the opera-
tion of a 33-bus distribution network based on the schedul-
ing of an HMG without consideration of SH via the IBWO.
Based on backward-forward load flow, the ENS, SAIFI, and
SAIDI values for the base network are obtained
1824.79 kWh, 53.93MWh, 4.10, and 48.65, respectively.
The IBWO has attained a lower objective function value
(better performance) than the BWO, PSO, and ALO tech-
niques. The IBWO method installed 2 PVs, 252 WTs, and
17 batteries in bus 33, as shown in Table 4. The energy
losses, ENS, SAIFI, SAIDI, and HMG costs are
1275.12 kWh, 44.77MWh, 2.06, 32.36, and 65,576.17
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Figure 5: The real 59-bus distribution network.
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dollars, respectively. By obtaining lower values of energy
losses, ENS, SAIFI, and SAIDI, the IBWO method has a bet-
ter performance in network operation according to the
scheduling of an HMG, as a consequence of reducing the
energy of network subscribers, as determined by a compari-
son of the results of various methods. As a result of the
HMG system’s regularly scheduled energy injection, the net-
work’s dependability has been enhanced.

5.1.2. The Results of Scenario #2. The results of a 33-bus net-
work with the scheduling of two HMGs without considering
SH using the IBWO algorithm are given. The capability of
the IBWO method to solve the problem is compared with
the traditional algorithms of BWO, PSO, and ALO. As can
be seen in Figure 11, the IBWO method has achieved the
optimal solution with a higher convergence speed. On the
other hand, it is clear that improving the performance of
the traditional BWO algorithm based on the inertial weight
method strengthens its discovery performance and prevents
premature convergence in such a way that the improved ver-
sion has achieved convergence in fewer repetitions of con-
vergence compared to its traditional version.

The numerical results of the operation of a 33-bus distri-
bution network based on the scheduling of two HMGs with-
out considering SH using the IBWO are presented in
Table 5. As can be seen, the IBWO method has achieved a
lower objective function value compared to the BWO,
PSO, and ALO methods. According to Table 5, the IBWO
method installed one HMG with 1 PV, 180 WTs, and 75 bat-
teries in bus 33 and another HMG in bus 15 with 284 PVs,
395 WTs, and 570 batteries. With the optimal scheduling
of two HMGs, the amount of energy loss, ENS, SAIFI,
SAIDI, and HMG cost is 963.06 kWh, 27.58MWh, 2.75,
37.84, and $155,445.61, respectively. The comparison of
the results of different methods showed that the IBWO
method by achieving lower values of energy losses, ENS,
SAIFI, and SAIDI has a better performance in network

Table 2: The load and line data of real 59-bus distribution network.

Line
Sending
bus

Ending
bus

R
(ohm)

X
(ohm)

P
(kW)

Q
(kVAr)

1 1 2 0.081 0.061 72 54

2 2 3 0.135 0.101 51 38.25

3 3 4 0.027 0.020 50 37.50

4 4 5 0.027 0.020 50 37.50

5 5 6 0.027 0.020 85 63.75

6 6 7 0.027 0.020 108 81

7 7 8 0.540 0.405 0 0

8 8 9 0.540 0.405 80 60

9 9 10 0.270 0.203 320 240

10 10 11 0.540 0.405 288 216

11 11 12 0.540 0.405 125 93.75

12 8 13 0.027 0.020 108 81

13 13 14 0.027 0.020 200 150

14 8 15 0.027 0.020 0 0

15 15 16 0.027 0.020 95 71.25

16 15 17 0.027 0.020 200 150

17 17 18 0.027 0.020 225 168.75

18 18 19 0.027 0.020 100 75

19 19 20 0.027 0.020 231 173.25

20 20 21 0.027 0.020 410 307.50

21 21 22 0.027 0.203 450 337.50

22 22 23 0.027 0.020 230 172.50

23 23 24 0.027 0.020 262 196.50

24 24 25 0.027 0.020 250 187.50

25 25 26 0.027 0.203 400 310.43

26 26 27 0.027 0.020 203 152.25

27 27 28 0.027 0.020 200 150

28 28 29 0.027 0.020 320 240

29 29 30 0.027 0.020 200 150

30 30 31 0.027 0.020 260 199.50

31 31 32 0.027 0.020 240 186.26

32 31 33 0.135 0.101 150 112.50

33 33 34 0.027 0.020 0 0

34 34 35 0.054 0.041 158 118.50

35 35 36 0.027 0.020 40 30

36 36 37 0.027 0.020 190 142.50

37 37 38 0.027 0.020 87 65.25

38 34 39 0.027 0.020 450 337.50

39 39 40 0.027 0.020 0 0

40 40 41 0.054 0.041 420 315

41 40 42 0.054 0.041 100 75

42 42 43 0.027 0.020 0 0

43 43 44 0.027 0.020 199 149.25

44 44 45 0.027 0.020 80 60

45 45 46 0.027 0.020 420 315

46 43 47 0.027 0.203 0 0

47 47 48 0.027 0.020 141 105.75

48 48 49 0.027 0.203 165 123.75

Table 2: Continued.

Line
Sending
bus

Ending
bus

R
(ohm)

X
(ohm)

P
(kW)

Q
(kVAr)

49 47 50 0.027 0.020 0 0

50 50 51 0.027 0.020 300 225

51 51 52 0.027 0.020 0 0

52 52 53 0.027 0.020 100 80.23

53 53 54 0.081 0.061 178 133.50

54 52 55 0.54 0.405 0 0

55 55 56 0.135 0.101 235 176.25

56 56 57 0.054 0.041 154 123.55

57 57 58 0.027 0.020 0 0

58 55 59 0.054 0.041 310 248.71

59 16 26 0.50 0.50 — —

60 14 50 0.50 0.50 — —

61 12 32 0.50 0.50 — —

62 38 57 0.50 0.50 — —

63 41 54 0.50 0.50 — —
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operation based on the scheduling of two HMGs, as it is
caused by reducing the energy of network subscribers. In
the planned energy injection of the microgrid system, it
has also improved the reliability level of the network.

5.1.3. The Results of Scenario #3. In this section, the IBWO
algorithm-based operation results of a 33-bus distribution
network based on reconfiguration are presented without
considering SH. The efficacy of IBWO in solving the prob-
lem was compared to that of BWO, PSO, and ALO. All opti-
mization techniques have converged on the optimal value
according to Figure 12. The IBWO method, on the other
hand, has obtained the optimum solution with the more

convergence rate and faster convergence iteration than other
methods.

In addition, Table 6 presents the numerical results of the
operation of the 33-bus network based on reconfiguration
without consideration of SH using various algorithms. As
can be seen, the energy losses, ENS, and SAIFI values for
each method are 1283.77 kWh, 43.84MWh, 3.38, and
42.89, respectively. In the reconfiguration problem, the
IBWO method has obtained the configuration of the net-
work optimally, by opening switches 7, 10, 14, 28, and 32.

5.1.4. The Results of Scenario #4. Using the IBWO, the out-
comes of operating a 33-bus network according to the
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scheduling of an HMG and network reconfiguration with-
out taking into account SH are presented in this section.
The efficacy of IBWO to solve the problem is contrasted
to that of BWO, PSO, and ALO. Evidently, the IBWO pro-
cedure has attained the optimal solution with a faster con-
vergence rate (Figure 13). On the other hand, it can be
noticed that enhancing the traditional BWO performance
relying on the inertial weight approach improves its discov-
ery profitability and hinders premature convergence, such
that the improved version reached convergence in fewer
convergence iterations than the conventional version.

Table 7 gives the numerical outcomes of the operation of
a 33-bus distribution network determined by the scheduling
of an HMG with network reconfiguration and disregarding
SH with the IBWO. The IBWO identifies the optimum con-
figuration by opening switches 7, 10, 14, 16, and 28 and tak-
ing into account the place of installation of the HMG in bus
17 so that the number of PVs, WTs, and batteries is corre-
spondingly 12, 156, and 80. Energy losses, ENS, SAIFI,
SAIDI, and HMG expenses are 1150.46 kWh, 37.94MWh,
2.07, 32.42, and 42,019.63 dollars, respectively, based on
the IBWO method’s determination of the decision variables.
The results gathered by various methods indicate that each

method succeeded in creating an optimal network configu-
ration that is distinct from the others and has also provided
the implementation location and various capacities of the
HMG. As with previous comparisons, the results demon-
strate the superior performance of the IBWO method in
achieving multiple objectives, such as decreasing energy
losses and increasing reliability metrics.

Figure 14 depicts the variations in the generated power
of PVs and WTs, in addition to the planned power injection
by HMG into the 33-bus network. The HMG, which
depends on the management of battery storage charge and
discharge, proved enabled to inject continuous and predeter-
mined power into the distribution network. The battery
storage system stores extra power to satisfy the load’s
requirements and releases the stored reserve energy in
moments of power deficit from renewable resources in order
to reliably supply the demand.

Figures 15 and 16 depict the variations in network power
loss and ENS before and after HMG scheduling and network
reconfiguration over the course of 24 hours. As demon-
strated in scenario 4, network power losses, particularly peak
load, have dropped based on the planned injection of HMG
power, network reconfiguration, and load flow path modifi-
cations, from 1824.79 kWh to 1150.46 kWh in the base net-
work. Also, in Figure 16, the customer energy not-supplied
is decreased during all hours, which is a result of battery
storage power management in the HMG system. As a result,
the network’s reliability has increased, and the value of ENS
has decreased from 53.93MWh to 37.9MWh.

Figure 17 depicts the voltage profile curve of the 33-bus
network before and after scheduling an HMG and network
reconfiguration. It is evident that after resolving the schedul-
ing problem, the network voltage deviations decreased,
resulting in an enhanced profile of voltages.

5.1.5. The Results of Scenario #5. The outcomes of the net-
work operation based on the scheduling of two HMGs and
network reconfiguration are given without considering SH
using the IBWO algorithm. The IBWO performance is com-
pared with BWO, PSO, and ALO. In Figure 18, it is clear in
this scenario that the IBWO has reached the convergence
and optimal solution sooner than other methods and has
achieved the lower objective function value.
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Figure 9: Wind speed profile during a day.

Table 3: The hybrid HMG system component data [31, 36].

Device Item Value

PV array

Rated power 1 kW

Ref. irradiance 1000W/m2

Ref. temperature 25°c

WT

Nominal power 1 kW

Cut-in wind speed 3m/s

Cut-out wind speed 9m/s

Rated wind speed 20m/s

Battery

Maximum size 1 kWh

Minimum size 0.2 kWh

Charge efficiency 90%

Discharge efficiency 90%

DOD 0.8

Inverter Efficiency 95%
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The scheduling results of two HMGs and network recon-
figuration are presented without considering SH using the
IBWO algorithm in Table 8. The IBWO method determines
the best network configuration by opening switches 7, 10, 14,

16, and 28 and determines the site of the first HMG in bus
33 such that the number of PVs, WTs, and batteries is 14,
174, and 22, respectively, and the location. The installation
of the second HMG is determined in bus 17, as the PV,
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Figure 10: Convergence process of different methods for scenario 1.

Table 4: Numerical results of scenario 1 (one HMG) using different optimization methods.

Base net IBWO BWO PSO ALO

HS location (bus) — Bus 33 @ 13 @ 16 Bus 13

PV size (kW) — 2 0 0 25

WT size (kW) — 252 190 164 171

Battery size (kWh) — 17 100 646 86

Power losses (kW) 1824.79 1275.12 1608.63 1480.04 1531.79

ENS (MWh/yr) 53.93 44.77 46.182 46.537 46.963

SAIFI (failure/customer/yr) 4.10 2.06 2.50 2.39 3.31

SAIDI (hour/customer/yr) 48.65 32.36 35.84 35.01 42.32

HMG cost ($) — 65,576.17 51,390.12 44,328.11 44363.39

OF — 0.5910 0.6493 0.6399 0.6714
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Figure 11: Convergence process of different methods for scenario 2.
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WT, and battery numbers are determined as 149, 381, and
570, respectively. Based on the decision variables determined
by the IBWO, the energy losses, ENS, SAIFI, SAIDI, and
HMG cost are obtained at 613.29 kWh, 24.81MWh, 2.04,
32.30, and $148,625.48, respectively. The results obtained
from different methods show that each of the methods has
achieved an optimal network configuration different from
the other and also provided the installation location and dif-

ferent capacities of the HMGs. The results of proposed
methodology based on the hybrid multi-microgrid alloca-
tion and network reconfiguration are demonstrated that
the losses, ENS, SAIDI, and SAIFI are reduced by 66.39%,
54.00%, 50.24%, and 33.61%, respectively, for 33-bus net-
work in comparison with the base network. The comparison
of the results, like the previous scenarios, shows the better
performance of the IBWO method in further improving

Table 5: Numerical results of scenario 2 (two HMGs) using different optimization methods.

Base net IBWO BWO PSO ALO

HS1 location (bus) — Bus 33 Bus 11 @ 27 Bus 16

PV1 size (kW) — 1 46 144 1

WT1 size (kW) — 180 251 295 163

Battery1 size (kWh) — 75 23 834 10

HS2 location (bus) — Bus 15 Bus 28 @ 16 Bus 2

PV2 size (kW) — 284 494 54 74

WT2 size (kW) — 394 497 342 3

Battery2 size (kWh) — 570 1121 2160 105

Power losses (kW) 1824.79 963.06 808.81 919.57 1640.09

ENS (MWh/yr) 53.93 27.58 30.666 28.156 46.752

SAIFI (failure/customer/yr) 4.10 2.75 3.11 3.15 2.41

SAIDI (hour/customer/yr) 48.65 37.84 40.72 41.05 35.13

HMG cost ($) — 155,445.61 203,196.82 172,812.74 43160.00

OF — 0.5559 0.6122 0.6140 0.6204
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Figure 12: Convergence process of different methods for scenario 3.

Table 6: Numerical results of scenario 3 (Recon) using different optimization methods.

Base net IBWO BWO PSO ALO

Opened switches 33, 34, 35, 36, 37 7, 10, 14, 28, 32 7, 10, 14, 28, 32 7, 10, 14, 28, 32 7, 10, 14, 28, 32

Power losses (kW) 1824.79 1283.77 1283.77 1283.77 1283.77

ENS (MWh/yr) 53.930 43.84 43.84 43.84 43.84

SAIFI (failure/customer/yr) 4.10 3.38 3.38 3.38 3.38

SAIDI (hour/customer/yr) 48.65 42.89 42.89 42.89 42.89

OF — 0.8056 0.8056 0.8056 0.8056
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Table 7: Numerical results of scenario 4 (Recon+one HMG) using different optimization methods.

Base net IBWO BWO PSO ALO

HS1 location (bus) — @ 17 @ 10 @ 29 @ 9

PV1 size (kW) — 12 54 383 246

WT1 size (kW) — 156 306 302 417

Battery1 size (kWh) — 80 137 433 2476

Opened switches — 7, 10, 14, 16, 28 7, 8, 9, 28, 31 7, 9, 14, 27, 32 4, 11, 14, 17, 28

Power losses (kW) 1824.79 1150.46 1157.20 1006.61 1228.82

ENS (MWh/yr) 53.93 37.94 34.69 32.21 26.51

SAIFI (failure/customer/yr) 4.10 2.07 3.22 3.05 3.09

SAIDI (hour/customer/yr) 48.65 32.42 41.63 40.29 40.62

HMG cost ($) — 42,019.63 79655.30 81537.07 113247.62

OF — 0.5432 0.6261 0.6099 0.6569
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various goals, including reducing energy losses and improv-
ing reliability indicators.

In Figure 19, the power variation curve of PV and WT
sources, as well as the injected power of HMG related to
both HMGs to the network, is depicted. The HMG system
with battery storage charge and discharge management has
been able to inject continuous and planned power into the
distribution network. The battery storage system stores
excess power over the load’s needs and discharges the stored
energy to supply the network load in times of power short-
age of renewable resources to supply the load with a high
level of resilience.

In Figures 20 and 21, the curve of changes in network
power losses as well as changes in ENS is shown before and
after the scheduling of two HMGs and network reconfigura-
tion during 24 hours. In scenario 5, in all hours, network
power losses, especially peak load, based on the planned injec-
tion of HMG power, as well as network reconfiguration and

network power flow path changes, have declined from
1824.79 kWh, energy loss in the base network to
613.29kWh. Also, in Figure 21, the ENS of the network sub-
scribers has decreased in all hours, which is an effective prob-
lem of battery reserve power management in the HMG
system, thus enhancing the reliability of the network and
reducing the value of ENS from 53.93MWh to 24.81MWh.

Figure 22 also shows the voltage profile curve of the 33-
bus network before and after the scheduling of two HMGs
and the network reconfiguration, which is found to have
improved significantly network voltage profile.

5.1.6. The Results of Scenario Comparison, 33-Bus Network.
This section compares the efficacy of various scenarios in
Table 9. The scenario with the lowest value of the objective
function (see Figure 23), as well as the quantity of energy loss,
ENS, SAIFI, and SAIDI, has the greatest efficiency, as can be
seen in scenario 5. Scenario 5 is able to further enhance the
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Table 8: Numerical results of scenario 5 (Recon+two HMGs) using different optimization methods.

Base net IBWO BWO PSO ALO

HS1 location (bus) — @ 33 @ 23 @ 28 @ 9

PV1 size (kW) — 14 65 130 224

WT1 size (kW) — 174 214 212 290

Battery1 size (kWh) — 22 53 315 652

HS2 location (bus) — @ 17 @ 33 @ 10 @ 29

PV2 size (kW) — 149 381 313 291

WT2 size (kW) — 381 461 306 161

Battery2 size (kWh) — 570 2654 1604 833

Opened switches — 7, 10, 14, 16, 28 7, 11, 14, 17, 22 7, 9, 14, 17, 26 9, 14, 13, 25, 31

Power losses (kW) 1824.79 613.29 1059.26 1028.01 1266.95

ENS (MWh/yr) 53.93 24.81 32.49 28.45 31.97

SAIFI (failure/customer/yr) 4.10 2.04 2.66 2.89 3.36

SAIDI (hour/customer/yr) 48.65 32.30 37.15 38.96 42.76

HMG cost ($) 148,625.48 180,984.21 140,382.21 121,799.82

OF — 0.4871 0.6000 0.5794 0.6335
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Figure 19: Contribution of the different HMG components in 33-bus network for scenario 5: (a) first HMG; (b) second HMG.
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Table 9: The numerical result comparison of different scenarios using the IBWO for 33-bus network.

Base net Scenario #1 Scenario #2 Scenario #3 Scenario #4 Scenario #5

HS1 location (bus) — Bus 33 Bus 33 — Bus 17 Bus 33

PV1 size (kW) — 2 1 — 12 14

WT1 size (kW) — 252 180 — 156 174

Battery1 size (kWh) — 17 75 — 80 22

HS2 location (Bus) — — Bus 15 — — @ 17

PV2 size (kW) — — 284 — — 149

WT2 size (kW) — — 394 — — 381

Battery2 size (kWh) — — 570 — — 570

Opened switches — 33, 34, 35, 36, 37 33, 34, 35, 36, 37 7, 10, 14, 28, 32 7, 10, 14, 16, 28 7, 10, 14, 16, 28

Power losses (kW) 1824.79 1275.12 963.06 1283.77 1150.46 613.29

ENS (MWh/yr) 53.93 44.77 27.58 43.84 37.94 24.81

SAIFI (failure/customer/yr) 4.10 2.06 2.75 3.38 2.07 2.04

SAIDI (hour/customer/yr) 48.65 32.36 37.84 42.89 32.42 32.30

HMG cost ($) 65,576.17 155,445.61 — 42019.63 148625.48

OF — 0.5910 0.5559 0.8056 0.5432 0.4870
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network’s efficiency by identifying the optimal configuration
of the 33-bus network by opening switches 7, 10, 14, 16, and
28 and placing two HMGs in buses 33 and 17. Scenario 3 with
network reconfiguration has seen the least improvement over
time. Upon analyzing the results, it is determined that the
incorporation of network reconfiguration with HMG or
HMG scheduling (comparing scenarios 1 and 4 and scenarios
2 and 5) enhanced each of the objectives.

5.2. The Simulation Results with SH

5.2.1. The Simulation Results with SH for 33-Bus Network.
The numerical results of the operation of a 33-bus distribu-
tion network based on two HMG scheduling and the net-
work reconfiguration are given considering SH (scenario 6)
using the IBWO algorithm in Table 10. The performance
of scenario 6 in SH conditions with the occurrence of a fault

in lines 18, 22, and 25 of the network in hour 1:00 of simu-
lation has been investigated. The results demonstrated that
in the event of a fault in any of the lines, during 24 hours,
disconnecting and connecting the network switches to
obtain the optimum configuration of the network and also
the scheduling of HMGs was done in such a way that in
addition to minimizing network energy losses and the cost
of energy injection of HMGs into the network, resilience
indicators such as ENS, SAIFI, and SAIDI are minimized
to provide better self-healing. According to Table 10, it is
observed that in the event of a fault in each of lines 18, 22,
and 25 of the network, the recommended method integrates
the optimal scheduling of HMGs well by determining the
optimal configuration of the network with the open and
closed switches of the network, and thus, it has improved
reliability and self-healing. Also, the results demonstrated
that the costs of HMG energy generation and power

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

0.591
0.5559

0.8056

0.5432
0.487

O
F

va
lu

e

00.559911
0.5559

00.8005566

0.5432
00.48877

Figure 23: Comparison of the fitness function in the scenarios for 33-bus network.

Table 10: Numerical results of scenario 6 (Recon+two HMGs) considering SH using IBWO.

Base net Without SH With SH (L18) With SH (L22) With SH (L25)

HS1 location (bus) — @ 33 @ 17 @ 16 @ 13

PV1 size (kW) — 14 1 119 3

WT1 size (kW) — 174 193 219 192

Battery1 size (kWh) — 22 34 349 115

HS2 location (bus) — @ 17 @ 28 @ 23 @ 27

PV2 size (kW) — 149 220 220 68

WT2 size (kW) — 381 489 486 500

Battery2 size (kWh) — 570 1625 1664 988

Opened switches — 7, 10, 14, 16, 28 12, 21, 27, 36 6, 9, 13, 32 7, 9, 12, 36

Power losses (kW) 1824.79 613.29 1117.93 1093.44 626.49

ENS (MWh/yr) 53.930 24.819 33.745 33.010 25.005

SAIFI (failure/customer/yr) 4.10 2.04 3.20 3.74 2.24

SAIDI (hour/customer/yr) 48.65 32.30 40.07 43.64 33.76

HMG cost ($) — 148625.48 183149.31 191177.52 187740.62

OF — 0.4870 0.5870 0.6409 0.4994
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Figure 24: Increasing percentage of the power loss considering line outage of 33-bus network for scenario 6.

0

5

10

15

20

25

30

35

40

Without SH With SH
(L18)

With SH
(L22)

With SH
(L25)

0

35.96
33

0.75

Pe
rc

en
ta

ge
of

EN
S

di
ffe

re
nc

e(
%

)

0

35.96
33

0.75
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Figure 26: Increasing percentage of the SAIFI considering line outage of 33-bus network for scenario 6.
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injection to the network have increased compared to the
conditions before the fault occurred in different lines.

The percentage changes of each of the goals compared to
the base value in scenario 6, considering SH per fault occur-
rence in different network lines, are shown in Figures 24–27.
Based on Figures 24 and 25, the highest deviation of energy
losses and ENS is related to the fault occurrence in line 18
and the lowest value is related to line 25. Also, according to
Figures 26 and 27, the highest deviation of SAIFI and SAIDI
is related to the occurrence of fault in line 22 and its lowest
value is related to line 25. In comparison to scenario 5 without
the line outages, the findings revealed that the network loss
increased by 82.28% ((1117.93-613.29)/613.29∗100) and
2.15% ((626.49-613.29)/613.29∗100)), respectively, when lines
18 and 25 are faulted. Furthermore, when lines are unavail-
able, the ENS, SAIFI, and SAIDI increased by 26.45%,
56.86%, and 24.06% and by 0.75%, 9.80%, and 4.52%, respec-
tively, when compared to scenario 5 without line outages.

5.2.2. The Simulation Results with SH for Real 59-Bus
Network. The outcomes of applying the IBWO algorithm
to a 59-bus distribution network with HMG scheduling
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Figure 27: Increasing percentage of the SAIDI considering line outage of 33-bus network for scenario 6.
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Table 11: Numerical results of scenario #5 (Recon+two HMGs)
using IBWO for real 59-bus network.

Item/value Base net
Without SH

(base scenario 5)

HS1 location (bus) — @ 33

PV1 size (kW) — 69

WT1 size (kW) — 356

Battery1 size (kWh) — 122

HS2 location (bus) — @ 28

PV2 size (kW) — 744

WT2 size (kW) — 428

Battery2 size (kWh) — 897

Opened switches — 19, 29, 32, 53, 62

Power losses (kW) 1651.23 573.12

ENS (MWh/yr) 346.178 147.320

SAIFI (failure/customer/yr) 8.74 4.49

SAIDI (hour/customer/yr) 85.75 32.30

HMG cost ($) — 148,625.48

OF — 0.4927
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and no SH consideration are provided. Convergence process
of IBWO for 59-bus network to solve the scenario 5 using
the IBWO is depicted in Figure 28. The numerical results
of the implementation of scenario 5 on the 59-bus network
using the IBWO algorithm are given in Table 11. It can be
seen that with the optimal allocation and scheduling of two
HMGs in buses 33 and 28 of the network and by opening
lines 19, 29, 32, 53, and 62, the power loss has decreased
from 1,651.23 kW to 573.12 kW. Also, the ENS, SAIFI, and
SAIDI reliability indices are obtained 147.320MWh, 4.49
failure/customer/yr, and 32.30 hour/customer/yr, respec-
tively, which are significantly improved. Therefore, using

two HMGs has reduced power losses, ENS, SAIFI, and
SAIDI by 65.29%, 57.44%, 48.63%, and 62.33%, respectively,
in comparison with the basic network without reconfigura-
tion and also HMG allocation. The results are given that
the losses, ENS, SAIDI, and SAIFI are declined by 65.29%,
57.44%, 48.63%, and 62.33%, respectively, for the real 59-
bus Ahvaz network in comparison with the base network.

The power variations of the PV and WT sources, along
with the injected power of the HMG associated with both
HMGs to the 59-bus network for scenario 5, are shown in
Figure 29. Constant and scheduled power injection into the
distribution network has been made possible by the HMG
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Table 12: Numerical results of scenario 6 (Recon+two HMGs) considering SH using IBWO for real 59-bus network.

Base net Without SH (base scenario 5) With SH (L12) With SH (L14)

HS1 location (bus) — @ 33 @ 34 @ 15

PV1 size (kW) — 69 518 4

WT1 size (kW) — 356 373 291

Battery1 size (kWh) — 122 255 288

HS2 location (bus) — @ 28 @ 28 @ 33

PV2 size (kW) — 744 503 813

WT2 size (kW) — 428 304 348

Battery2 size (kWh) — 897 111 315

Opened switches — 19, 29, 32, 53, 62 24, 30, 37, 51 25, 32, 34, 40

Power losses (kW) 1651.23 573.12 872.97 1017.83

ENS (MWh/yr) 346.178 147.320 162.487 159.702

SAIFI (failure/customer/yr) 8.74 4.49 5.94 4.63

SAIDI (hour/customer/yr) 85.75 32.30 58.03 38.13

HMG cost ($) — 148625.48 184416.39 169763.00

OF — 0.4927 0.6068 0.5460
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system with battery storage charge and discharge manage-
ment. When there is a power deficit of renewable resources,
the battery storage system releases its stored energy to sup-
ply the network load with a high degree of reliability. It also
stores excess power beyond the needs of the load.

Before and after the scheduling of two HMGs and net-
work reconfiguration over a 24 hours period, the curves of
changes in network power losses and ENS are depicted in

Figures 30 and 31, respectively. The power losses have been
reduced from 1651.23 kWh to 573.12 kWh in scenario 5.
This reduction is the result of the intended injection of
HMG power, network reconfiguration, and changes in the
power flow path of the network. Additionally, the ENS of
the network subscribers has exhibited a consistent decrease
throughout the day, as depicted in Figure 31. This diminish-
ing value of ENS from 346.178MWh to 147.320MWh
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Figure 32: Increasing percentage of the power loss considering line outage of 59-bus network for scenario 6.
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effectively addresses an issue with battery reserve power
management in the HMG system, thereby bolstering the
network’s reliability.

The numerical results of the 59-bus network’s operation
in accordance with HMG scheduling and network reconfig-
uration (scenario 6) taking into account the SH via the
IBWO are presented in Table 12. The efficiency of scenario
6 under SH conditions, including disruptions on lines 12
and 14, was assessed during hour 1:00 of the simulations.
The findings indicated that, should a malfunction occur in
these critical lines, the process of reconnecting and disabling
network switches to attain the most efficient network config-
uration, in conjunction with HMG scheduling, reduces net-
work energy losses and expenses associated with HMG
energy injection. This, in turn, aids in the enhancement of
self-healing capabilities by decreasing reliability metrics
including ENS, SAIFI, and SAIDI. The proposed method
integrates the optimal scheduling of HMG, as shown in
Table 12. This is achieved by determining the optimal net-
work configuration using the open and closed switches of
the network. As a result, the proposed method ensures
improved reliability and self-healing capabilities in the event
that a fault occurs in lines 12 and 14. Furthermore, the find-
ings unveiled that the expenses associated with microgrids,
energy generation, and power injection into the grid have
escalated in comparison to the conditions that prevailed
prior to the occurrence of multiple line faults.

The results showed that with the outage of lines 12 and 14,
respectively, the network loss increased by 52.32% ((872.97-
573.12)/573.12∗100) and 77.59% ((1017.83-573.12)/573.12∗
100) compared to the scenario 5 without the outage of lines.
Moreover, considering the outage of line 12, the ENS, SAIFI,
and SAIDI are increased 10.30%, 32.29%, and 79.66%, and
also considering the outage of line 14, these objectives are
increased by 8.40%, 3.12%, and 18.05%, respectively, com-
pared with the scenario 5 without any outages (see
Figures 32–35). By examining the results presented in
Table 12 and Figures 32–35, it can be seen that the network
loss with the outage of line 14 is higher compared to the con-
dition of the outage of line 12. On the other hand, the results
confirm that the outage of line 12 has further weakened the
network reliability compared with the outage of line 14.

6. Conclusion

This study proposed the 33- and 59-bus distribution network
operation by employing simultaneous scheduling of multi-
HMGs integrated with a reconfiguration for reliability
improvement considering self-healing in fault occurrence in
the network lines for minimizing the energy losses, cost of
the multi-HMGs, ENS, SAIDI, and SAIFI indices during 24
hours of the study horizon. The IBWO was applied to find
the decision variable to minimize the multi-objective function
and satisfy the operational and multi-HMG constraints. Seven
scenarios were considered to evaluate the effectiveness of the
proposed method including scheduling of one microgrid,
twomicrogrids, network reconfiguration, simultaneous sched-
uling of one HMG with reconfiguration, and simultaneous
scheduling of two HMGs with reconfiguration, and also, the
last two scenarios were implemented along with self-healing.
The findings of the study were summarized as follows:

(i) The simulation results showed that the scheduling
scenario of two microgrids with reconfiguration in
the condition without self-healing had the highest
performance improvement. In other words, the
greatest reduction in energy losses and reliability
indicators is related to this scenario, and the weak-
est performance was related to the reconfiguration-
only scenario

(ii) The results of HMG scheduling showed that the
battery storage system, by compensating the power
fluctuations of renewable energy sources with
charge and discharge energy management, was
able to inject programmable power into the distri-
bution network, thereby improving the network
performance and reliability indices

(iii) The simulation results have confirmed that by opti-
mally changing the status of network switches in the
event of a fault, the network can be self-healing, and
with optimal HMG scheduling, various network
objectives, especially resilience, had improved signif-
icantly compared to the basic network
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28 International Journal of Energy Research



(iv) The results demonstrated the superiority of the pro-
posed IBWO compared to other algorithms and had
led to lower energy losses and higher reliability
improvement. It was also found that improving the
capability of the conventional BWO with the nonli-
nearly diminishing inertia weight approach had
improved its exploration power and increased the
speed and accuracy of its convergence in reaching
the optimal global solution

(v) The findings indicated that self-healing is achieved
in the event of network line outages through the
concurrent implementation of reconfiguration,
allocation, and optimal scheduling of HMGs in
the distribution network. As a result, reliability
indices have improved while energy losses and
the cost of injecting energy into the network via
HMGs have been reduced

(vi) The findings from the suggested approach, which
combines hybrid multi-microgrid placement and
network reconfiguration, show significant improve-
ments, specifically, losses, ENS, SAIDI, and SAIFI
decreased by 66.39%, 54.00%, 50.24%, and 33.61%,
respectively, for a 33-bus network, and saw reduc-
tions of 65.29%, 57.44%, 48.63%, and 62.33%,
respectively, for the actual 59-bus Ahvaz network
when compared to the base network

(vii) The results showed that with the outage of lines 12
and 14 of the 33-bus network in scenario 5, respec-
tively, the network loss is increased by 82.28% and
2.15%, the ENS is increased by 26.45% and 0.75%,
the SAIFI is increased by 56.86% and 9.80%, and
the SAIDI is raised by 24.06% and 4.52% com-
pared with the scenario 5 without any outages

(viii) The results showed that with the outage of lines 12
and 14 of the real 59-bus network in scenario 5,
respectively, the network loss is increased by
52.32% and 77.59%, the ENS is increased by
10.30% and 8.40%, the SAIFI is increased by
32.29% and 3.12%, and the SAIDI is raised by
79.66% and 18.05% compared with the scenario 5
without any outages

(ix) Distribution network operation based on multi-
microgrids and multi-storage scheduling and
reconfiguration to enhance the reliability consider-
ing self-healing incorporating uncertainty is sug-
gested for future work

Nomenclature

CBA: Purchase cost of each battery
CBA,OP&M: Annual maintenance cost of batteries
CINV: Purchase cost of each inverter
COP&M: Annual maintenance and operation cost
CPV: Purchase cost of each PV
CPV,OP&M: Annual maintenance cost of PV

Cuk: Current passing through the line k
Cuimax: Upper current passing through the line i
CWT: Purchase cost of each WT
CWT,OP&M: Annual maintenance cost of WT
DLRi: Duration of line i repair
DOD: Depth of discharge
EBA t : Battery energy values at hours t
Emin
BA , Emax

BA : Lower and upper energy limit of the battery
ENSTNET: Total network energy not-supplied
LLi: Length of line i
Ni: Number of subscribers at load point i
nBA: Number of batteries
nINV: Inverter efficiency
NLL: Number of lost loads due to line outage
NPCHMG: Net present cost of the HMG
nPV: Number of PVs
nmin
PV , nmax

PV : Minimum and upper number of PVs
nmin
WT, nmax

WT : Minimum and upper number of WTs
nWT: Number of WTs
PBA−INV: Battery power injected to the inverter
PDmd: Active load of the network
PDmd: Active load of the network
PHMG: Active power transferred from the hybrid sys-

tem into the grid
PInv−Load: Transferred power from the inverter to the load
PT
L : Total active power loss

PNET: The network load power
PPost: Active post power
PPV: Power of PV
PT
PV: Total power of PV

PPV−Rated: Rated power of PV
PRES−INV: Renewable energy sources power transmitted to

the inverter
PWT: Power of WT
PT
WT: Total power of WT

PWT−Rated: Rated power of WT
QDmd: Reactive load of the network
QHMG: Reactive power transferred from the hybrid

system into the grid
QPost: Reactive post power
RESk: Ohmic resistance of the line k
RLOi: Rate of line i outage
SAIDI: System average interruption duration index
SAIFI: System average interruption frequency index
TEMC : Temperature of the PV cell
TEMR: Temperature of the PV in the reference

condition
VOLi: Voltage of buses i
VOL j: Voltage of buses j
VOLimax: Upper value of the bus i voltage
VOLimin: Lower value of the bus i voltage
Wf : Whale stranding
WS: Wind speed
WSCut−in: Cut-in wind speed
WSCut−out: Cut-out wind speed
WSRated: Rated wind speed
Xstep: Step dimension of whale descent

29International Journal of Energy Research



XT
i : Resent location of the ith beluga whale

XT+1
i,j : New positioning of the ith beluga whale in the j

th dimension
XT
i,pj: Current coordinates of the ith beluga whales

XT
r : Current situation of an arbitrary beluga whale

XT
r,p1: Current coordinates of the rth beluga whales

φ: Weighting coefficient
ϖ: Self-discharge
λi: Failure rate of load points i
γBA: Battery charging yield
ρi: Lost load due to line i outage
∂: Radiation perpendicular to the PV surface
∂Ref : Standard test condition radiation
γTC : Temperature coefficient of the PV panel.
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The data applied to support the research outcomes are given
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