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Recent experience with the strongest earthquakes greater than magnitude 5.4 in Korea leads to public interest in the safety and
resilience of critical infrastructures. There are many nuclear power plants near the epicenters of the earthquakes. Nuclear power
plants are essential infrastructures that provide stable and enough energy for human life, and simultaneously, control systems for
the safety and security of nuclear power plants are critical due to the risk of nuclear accidents on public health and the
environment. The nuclear area uses probabilistic risk assessment to estimate the risk of structures, systems, and components in
nuclear power plants, and the evaluation of the fragility curve is a key process for probabilistic risk assessment. The challenges of a
seismic fragility analysis lie in estimating the influence of various uncertainties in material, geometry, and earthquake and
improving the existing fragility analysis methods, which require time-consuming nonlinear time history analysis. Thus, this paper
conducts a multivariate seismic fragility analysis using surrogate models for reinforced concrete squat shear walls and proposes a
simplified closed form equation for a chosen surrogate seismic demand model. The surrogate models are trained and validated by
several approaches: response surface method, support vector machine, Gaussian process regression, and neural network. In
addition, a correlation analysis is used to evaluate the relative importance of the variables to the seismic demand to simplify the
surrogate model further. Finally, simplified surrogate models based on the importance of the variables are proposed as closed form
of polynomials, and the performance of these models on the fragility analysis is evaluated.

1. Introduction

The Great East Japan Earthquake severely damaged infra-
structures such as telecommunication facilities, power
plants, bridges, and buildings. On the day of the earthquake,
8.5 million households lost electricity, 1.5 million were still
powerless on March 13, and 0.3 million had no power
supply even a week after the earthquake. Due to the lack of
power, communication service outages were widespread
[1]. Also, Korea has recently experienced the strongest
earthquakes greater than magnitude 5.4 in Gyeongju and
Pohang, which are beyond-design earthquakes, as shown in
Figure 1. They are the largest earthquakes since the begin-
ning of the instrumental earthquake records in 1978. These
earthquakes caused life and property damage: Gyeongju
and Pohang earthquakes resulted in 111 victims, 23 injured

people, and 5,368 damaged properties and 135 injured peo-
ple and 57,000 damaged properties, respectively [2, 3]. In
addition, Korea has the highest density of NPPs, and many
NPPs in Korea are operated on the country’s east coast near
the epicenters of the earthquakes, as shown in Figure 1. In
particular, the Kori NPP is located in Busan metropolitan
city, which is the second largest city with a population of
3.5 million, and the Wolseong NPP in Gyeongju City is
located within around 20 km of Ulsan metropolitan city with
a population of over 1.1 million. As a result, Korean society
pays strong attention to the safety of nuclear power plants
(NPPs). A probabilistic seismic risk assessment of the
structures, components, and systems in an NPP is important
to estimate the seismic fragility of them and the overall risk
of the NPP. The overall risk is estimated by the convolution of
hazard and fragility curves as the probability of occurrence of
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each consequence; therefore, an accurate evaluation of the risk
is necessary to define and quantify the levels of structural
safety and resilience.

Reinforced concrete (RC) squat shear walls are the most
typical structural systems used in NPPs because they effec-
tively resist lateral forces like earthquakes and winds. The
NPPs consist of various types of squat shear walls, as shown
in Figure 1. The squat shear wall has a height-to-length ratio
of less than two, resulting in shear-dominant lateral behav-
iors with small lateral deformation [4]. In the seismic risk
assessment, calculating a fragility curve defined as the condi-
tional probability of a failure exceeding a specific capacity
for a given ground motion intensity measure (IM) is a key
process. The fragility analysis must include all sources of
uncertainties such as ground motions, the geometry, and
material properties of structures. However, there is a lack
of studies on the seismic fragility analysis of the squat shear
wall. Many earlier studies [5–10] mainly focused on experi-
ment and simulation works for investigating and predicting
the nonlinear behavior of squat shear walls under mono-
tonic and cyclic loading. Furthermore, while Syed and Gupta
[11] conducted a fragility analysis for an RC squat shear wall
with uncertainty in ground motions, uncertainties in the
geometry of the shear wall were not included.

Cloud analysis (CA) and multiple stripe analysis (MSA)
are the conventional methods used to develop seismic fragility
curves in many studies [11–16]. Both analyses employ

nonlinear time history analysis (NTHA) to collect the seismic
demands. In the cloud analysis, a single-parameter demand
model is estimated by linear regression between demands
and unscaled ground motions in a lognormal space. In the
MSA, scaled ground motions to IMs of interest are used, and
the probability of a failure at a given IM level is calculated as
a ratio of the number of samples in which the seismic demand
obtained fromNTHA exceeds the capacity to the total number
of samples (pf ,IM =N f ,IM/N). However, recent fragility analysis
studies have shown the need for a multiparameter demand
model using surrogate models because the conventional
single-parameter demand model has limitations [17–19]. In
addition, new NTHAs are repeatedly necessary to reestimate
a fragility curve due to changing or updating the input vari-
ables; however, NTHA is a very time-consuming process. Sev-
eral researchers have attempted to generate multiparameter
surrogate models for a seismic demand model [16–19]. How-
ever, all studies have focused on highway bridges, and few
studies have considered RC squat shear walls. The seismic
demand characteristics of RC squat shear walls are quite dif-
ferent from those of the highway bridge piers, decks, and bear-
ings. Accordingly, it demands that a seismic demandmodel be
efficiently developed for the fragility of the RC squat shear
wall. Also, the current multiparameter surrogatemodel studies
for highway bridges have developed black-box surrogate
models (i.e., implicit functions) with a sole focus on the model
accuracy; thus, such developed models cannot be accessed
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Figure 1: Different type of shear walls in NPPs and response spectra of Gyeongju (O) and Pohang (⋆) earthquakes.
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easily by other engineers and researchers, which hinders utiliz-
ing suchmodels for design and safety assessment in a compre-
hensible manner.

The purposes of this study are to (1) develop multipa-
rameter surrogate models of a box-type RC squat shear wall
for the ultimate shear forces and (2) determine a best-fitting
surrogate model. These models consider the geometric
uncertainty of the shear walls as well as the material and
ground motion uncertainties. Surrogate models are devel-
oped using four different techniques: second-order response
surface method (RSM), support vector machine (SVM),
Gaussian process regression (GPR), and neural Network
(NN). (3) The fragility curves of the box-type shear walls
obtained from the surrogate models are accurately estimated

and compared with the ones obtained from the traditional
approaches mentioned above. (4) Through a correlation
analysis, the relative importance of the variables to the seis-
mic demand is evaluated and reduced parameter surrogate
models are suggested. As a result, the multiparameter surro-
gate models help to efficiently generate the fragility curve for
the box-type RC shear wall and to update the seismic fragil-
ity curve due to the variation of the input variables without
time-consuming simulations.
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Figure 3: Dimensions of the box-type shear wall system.

Table 1: Material properties of shear walls.

Young’s modulus (Eo, MPa) Compressive and tensile strength (f c′ and f t, MPa) Yield strength (f y , MPa)

Concrete 30,700 41.3 and 1.74 —

Rebar 200,000 — 375

Table 2: Concrete damage plasticity parameters.

Dilation angle Eccentricity f b0/f c0 Kc wc wt

30 0.1 1.16 0.67 0.5 0.55

(a) NUPEC experiment [8] (b) Finite element model

Figure 2: Experimental test and finite element model of the box-type shear wall system.
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Figure 4: Comparison between experimental and analytical results.

Table 3: Uncertainties in the material and geometry included in the shear wall model.

Material Distribution Mean (μ) Coefficient of variation Reference

f c′ (MPa) Normal 41.3 0.09 [11]

f y (MPa) Normal 475 0.08 [15]

Geometry Distribution Lower limit Upper limit Reference

L (mm) Uniform 600 3000 [36]

H/L Uniform 0.25 2 [36]

L/t Uniform 7.5 27.5 [36]

P (N) Uniform 0.022Aw f c′ 0.182Aw f c′ [36]

ρh Uniform 0.00125 0.0161 [36]

ρv Uniform 0.00125 0.0287 [36]

Aw : gross area of the web cross section (mm2).
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2. Finite Element Model of Box-Type Shear
Wall for Surrogate Model and
Fragility Analysis

For training surrogate models and conducting fragility anal-
ysis for the shear walls, developing a finite element model
and running NTHAs is essential. This study uses a finite
element model of box-type RC shear walls, which was

developed and validated with the experimental data
[20–24]. The validated finite element model is analyzed
considering uncertainties, and corresponding analytical
results are used to develop surrogate models and conduct
a fragility analysis in the following sections. An experi-
ment on the box-type RC shear walls was conducted by
the Nuclear Power Engineering Corporation (NUPEC) to
assess the ultimate seismic capacity of the shear walls, as
shown in Figure 2(a) [8]. The shear walls consisted of
upper slab, lower slab, and four rectangular shear walls
with an aspect ratio of 0.67. The box-type shear walls were
subjected to multiaxial cyclic loading, and vertical preload-
ing was applied to the upper slab, resulting in a typical
value of compressive stress at the bottom of shear walls
for the lower story of a building in NPPs. The rectangular
shear walls had a double layer of D6 rebar with a rebar
ratio of 1.2% in both the horizontal and vertical directions.
Figure 3 shows the dimensions of the box-type shear wall
system.

The finite element model was developed consisting of a
box wall, loading slab, and bottom slab using ABAQUS.
An analysis of the shear wall under cyclic loading was per-
formed through the ABAQUS implicit solver. The developed
model is shown in Figure 2(b) [20–22]. The walls were mod-
eled by a 4-node shell element with reduced integration
(S4R) and a mesh size of 100mm, assuming that the rebar
is perfectly bonded with the concrete. In the experimental
observations, there was no damage to the upper and lower
slabs, so an elastic isotropic concrete model was applied to
the slabs. The bottom slab is fixed at the ground, and multi-
axial cyclic loading is applied to the loading slab. To
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Figure 8: Comparison between predicted and actual ultimate shear force of box-type shear walls for training dataset.
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represent the nonlinear behavior of the system, a concrete
damage plasticity model proposed by Lubliner et al. [23]
and Lee and Fenves [24] was applied to the rectangular
shear walls. It has been used in many studies on the non-
linear behavior of concrete structures [20–22, 25–32]. In
addition, the uniaxial concrete tension stiffening model
and compression hardening model that were proposed by
Maekawa and Okamura [33] and Izumo [34], respectively,
were used in this study. Tables 1 and 2 summarize the
material properties of the shear wall and parameters of
the concrete damage plasticity model [20], where f b0 and
f c0 are the biaxial compressive yield stress and the uniaxial
compressive yield stress, Kc is the ratio of the second
invariant of the tensile meridian to that of the compressive
meridian at initial yield for any given value of the first
stress invariant, and wc and wt represent the compression
and tension recovery factors.

Figure 4(a) shows that the experimentally obtained load-
deformation backbone curve coincides well with the corre-

sponding curve obtained from the finite element analysis,
particularly at the ultimate (maximum) shear strength which
needs to be measured in this study. In addition, the coeffi-
cient of determination (R2) between the experimental and
analytical shear forces represents 0.9959, as presented in
Figure 4(b); therefore, this finite element model can be used
to collect ultimate shear forces for developing surrogate
demand models and for conducting a fragility analysis in
the following sections.

3. Uncertainty in Material, Geometry, and
Ground Motion

All sources of uncertainties must be considered in a fragility
analysis. This study considers uncertainties in the material,
the geometry of the box-type shear walls, and earthquakes.
The uncertainties in the material properties and geometry

are presented in Table 3. f c′ and f y are included as the
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Figure 9: Comparison between predicted and actual ultimate shear force of box-type shear walls for testing dataset.
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material uncertainty. The material properties of concrete,
such as f c′, Eo, and f t, are correlated in nature, thereby being
considered by the following equations [35]:

Eo = 3,320 f c′+ 6,900, 1

f t = 0 33 f c′
1/2 2

The degree of uncertainties in steel-related strength
parameters is much less compared to the corresponding
strength parameters in concrete [11]; thus, in this study, f y
for the uncertainty in the steel is only considered. The geom-
etry uncertainties, such as the aspect ratio of the shear wall
(H/L), ratio of length to thickness (L/t), vertical preloading

Table 4: R2 and RMSE values of surrogate models.

RSM SVM GPR NN

Training set

R2 0.86 0.80 0.86 0.86

RMSE 426 514 422 423

MAE 298 304 294 303

VAF (%) 62.8 55.4 63.1 63.1

Test set

R2 0.88 0.82 0.74 0.81

RMSE 378 456 553 472

MAE 294 343 373 376

VAF (%) 65.7 58.3 49.0 56.4

Average

R2 0.87 0.81 0.80 0.84

RMSE 402 485 488 448

MAE 296 324 334 340

VAF (%) 64.25 56.85 56.05 59.75

1.0
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Figure 10: Cloud analysis of shear walls: ultimate shear forces and corresponding PGA levels.
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(P), and horizontal and vertical rebar ratio ρh and ρv, are
considered, and the correlations between the parameters
are not considered because of the inherent variability in
structural geometry across different structural types and
purposes. The geometric uncertainties were determined by
research from the Multidisciplinary Center for Earthquake
Engineering Research [36]. In the research, a database was
assembled comprising data from experiments with 434 squat
walls to improve the current state of knowledge on squat
wall response and develop improved empirical equations
for ultimate shear strength for shear walls [36]. The database
for the 150 rectangular wall experiments is used in this study
to consider uncertainties in the geometry of the rectangular
shear walls. All input variables, including material and
dimensional properties, would be randomly extracted based
on the defined distribution in Table 3. Furthermore, 20 pairs
of artificial ground motions that were generated in a previ-
ous study [37] are selected to account for the uncertainty
in earthquakes. The artificial ground motions consist of
two horizontal and a vertical earthquake time history, and
they are compatible with a design response spectrum
anchored to 0.3 g for NPPs based on Regulatory Guide
1.60 [38], as shown in Figure 5. The entire ground motions
are scaled to 10 different peak ground acceleration (PGA):
0.2 g, 0.4 g, 0.6 g, 0.8 g, 1.0 g, 1.2 g, 1.4 g, 1.6 g, 1.8 g, and
2.0 g for generating surrogate models and estimating fragility
curves. 200 sets of random variables for the material and
geometry of the boxed-type shear walls are generated by
the Latin hypercube sampling technique, and the sets are
randomly matched with the selected ground motions. As a
result, 200 NTHAs are performed to obtain the ultimate
shear forces of the shear walls for given input variables.

4. Surrogate Models for Seismic Demand Model

Probabilistic risk assessments provide realistic and subjective
risk index of structures that describes losses as a function of
hazard intensity and the probability of occurrence of each
consequence. In the probabilistic risk assessment, the fragil-

ity curve is used to evaluate seismic performance on struc-
tures and estimate the probability of a specific failure given
earthquake intensity. In addition, the fragility curve could
estimate potential damage to structures during an earth-
quake. The conventional fragility analysis employs NTHA
to collect the seismic demands. However, recent fragility
analysis studies have shown the need for a multiparameter
demand model using surrogate models because the existing
method requires repetitive NTHAs to reestimate a fragility
curve when the input parameters are changed or updated.
On the other hand, the pretrained surrogate models help
reduce a lot of computational time caused by NTHAs for
reestimating the fragility curves and identifying the impact
of each parameter on the fragility curve. Thus, this study
uses common machine learning algorithms, such as the
response surface method, support vector machine, Gaussian
process regression, and neural network, to develop surrogate
models for the seismic demand of box-type shear walls.

4.1. Response Surface Method (RSM). RSM consists of a group
of mathematical and statistical techniques used to develop an
adequate functional relationship between a response of
interest and several input variables [39]. The relationship
could be approximated with a linear polynomial function
and second-order polynomial function, as follows [39]:

y = β0 + 〠
n

i=1
βixi + 〠

n

i=1
〠
n

j=1,i>j
βixixj, 3

y = β0 + 〠
n

i=1
βixi + 〠

n

i=1
〠
n

j=1,i>j
βixixj + 〠

n

i=1
βixi

2, 4

where y, x, and β represent the predicted responses, input
variables, and regression coefficients. The coefficients are
estimated using the least square method, which minimizes
the gap between the response surface (polynomial function)
and seismic demands obtained from the NTHAs.
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Figure 12: Fragility curve for the box-type shear wall using MSA.
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4.2. Support Vector Machine (SVM). SVM is a learning
method to define a hyperplane for data classification and
regression [18, 40–42]. In the regression case, the goal of
the SVM is to define the hyperplane close to as many of
the data points as possible [40]. The objective function of
the SVM is to choose a hyperplane with a small norm while
simultaneously minimizing the sum of the distances from
the data points outside of ε-tube to the hyperplane, and
the linear function is written as follows [40]:

minimize w 2

2 + C〠
n

i=1
ξi + ξi

∗

subject to wTx + b − y ≤ ε + ξi

  y − wTx − b ≤ ε + ξi
∗

  ξi, ξi∗ ≥ 0,

5

where w, x, and b is the n-dimensional orthogonal vector to
the hyperplane, n-dimensional input vector, and scalar. C is
the positive penalty parameter, and slack variables (ξi and
ξi
∗) represent the deviation of data points from the ε-tube.

In the SVM, the error of the data points within the ε-tube
is ignored. Figure 6 shows a schematic of the support vector
regression model.

When it is difficult to linearly define a hyperplane in low-
dimensional space, a kernel function is used, and it implicitly
transforms the input variables into high-dimensional space so
that a linear hyperplane is provided in the high-dimensional
space. A function for multiple input variables is Gaussian basis
function with standard deviation (σ) as follows [40]:

k xi,xj = exp −
xi − xj

2

σ
6
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Figure 13: Comparison between fragility curves using surrogate models and traditional approaches.
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4.3. Gaussian Process Regression (GPR). GPR is a nonparamet-
ric Bayesian regression combined with the properties of
Gaussian processes [43–45]. Its goal is to obtain the distribu-
tion of predicted responses at given input variables, in contrast
to a representative regression, which would fit actual responses.
In GPR, it is assumed that a function f x is distributed as a
Gaussian process, which is a probability distribution over
functions that fit the data as follows [43]:

f x ~ GP m x , k x, x′ , 7

wherem x is the mean and k x, x′ represents the covariance
functions between each pair in x (input variables). In this study,
the squared exponential kernel function is used as written in
the following [43]:

k x, x′ = 2σf 2 exp −
x − x′ 2

2σm
2 , 8

where σf and σm are hyperparameters. The kernel function
represents the similarity of data, which means that similar
input variables produce similar outputs. The multivariate
Gaussian distribution of f and f ′ is expressed as follows [43]:

f

f ′
~N

m

m′

K X, X K X, X ′

K X ′, X K X ′, X ′
, 9

where f and f ′ are output functions obtained from observed
and expected data. The conditional distribution over f ′ given
f represents a posterior distribution given new data and is writ-
ten as follows [43]:

f ′ f ~N m′ + K X ′, X K X, X −1 f −m , K X ′, X ′

− K X ′, X K X, X −1K X, X ′

10

4.4. Neural Networks (NN). NN is one of the widely used
machine learning techniques inspired by the structure of the
human brain [41, 44, 46, 47]. TheNN consists of an input layer,
an output layer, and different hidden layers between the input
and output layers, as shown in Figure 7. Each layer is connected
and has neurons (nodes) that are assigned numerical values.
Nodes in the input layer collect input data and transmit the
data multiplied by the corresponding weight value to the hid-
den layer. The sum of the weight data from the input layer is
saved at each node in the hidden layer, and an activation func-
tion that exists in the hidden layers determines the value of the
data to be transmitted to a subsequent hidden layer or output
layer. The function plays a significant role in defining nonlinear
relationships between each node. Finally, the output layer pro-
duces the seismic demand for given input variables. Com-
monly, the backpropagation process is applied for training
the model to minimize the error between actual and predicted

outputs by modifying the weight and bias values. In this pro-
cess, the model is retrained based on the error in the output.
If the error does not satisfy a predefined accuracy threshold,
it returns back to the input layer to adjust the weight and bias,
reestimates the output, and repeats the process until the desired
accuracy is achieved.

5. Fragility Analysis of Box-Type RC Squat
Shear Wall

5.1. Evaluation for the Accuracy of Surrogate Models. Surro-
gate models using various techniques, such as RSM, SVM,
GPR, and NN, are generated for predicting the ultimate
shear forces of box-type shear walls with different input data.
The accuracy of the generated surrogate models is evaluated,
and a best-fitting model is identified. To avoid overfitting in
the surrogate models, the input data of the shear walls are
randomly divided into a training set and a test set. The ratio
of the testing to the training data is adopted as 0.333 in the
current study. The training set is used to generate surrogate
models, and the test set is used to evaluate the performance
of the surrogate models. The accuracy of the surrogate
models is evaluated with the following performance indices:
coefficient of determination (R2), root mean square error
(RMSE), mean absolute error (MAE), and variance
accounted for (VAF). The predicted and actual ultimate
shear forces are compared in Figures 8 and 9. Table 4 pre-
sents the performance indices for surrogate seismic demand
models. The surrogate models show the highest prediction
of 88% and the lowest prediction of 74% in terms of R2.
Results from the GPR- and NN-based model show overfit-
ting, whereas results from the RSM- and SVM-based model
present slight underfitting. For selecting the best fitting
model, average values of training and test set at each perfor-
mance index are calculated as presented in Table 4, and as a
result, it is found that the RSM-based surrogate model pro-
duces the best performance.
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Figure 14: Fragility curves using surrogate models and traditional
approaches.
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5.2. Fragility Curve Using Traditional Approach

5.2.1. Cloud Analysis (CA). A seismic fragility curve repre-
sents the conditional probability of a failure that a seis-
mic demand exceeds a specific capacity for a given IM,
and it is generally estimated in conjunction with the
NTHA of a finite element model. IM may include

spectral acceleration or peak ground acceleration (PGA).
In this study, PGA is used as IM, considering consistency
with previous studies [11, 21, 22] for fragility analysis of
shear walls. A lognormal cumulative distribution for a spe-
cific IM often defines the fragility function. Cornell et al. [48]
suggested the conditional probability of a failure as follows:

0
0

0

0

0.01

0.02

400

500

600

0
2
4
6
8

35
40
45
50
55

10
20
30
40

0
1
2
3

0.02

0.04

2000
4000

Vu
pv

ph
fy

 (M
Pa

)
P 

(N
)

6000

2 4
PGA

6 0 1 2
H/L

3 20 40 35 40 45 5055 0 2 4 6 8 400 500 600 0 0.01 0.02
L/t fc′ (MPa)

fc
′ (

M
Pa

)
L/

t
H

/L

0

2

4

6

PG
A

P (N) × 106

Correlation matrix 

fy (MPa) ph
0 0.02 0.04

pv
0 4000

Vu

Figure 15: Correlation matrix of the variables.

Table 5: Estimated parameters of lognormal fragility curves.

CA MSA RSM SVM GPR NN

Median (θ (g)) 0.657 0.359 0.361 0.288 0.388 0.381

Dispersion (β) 1.146 0.566 0.688 0.826 0.653 0.605
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Pf demand > capacity IM =Φ
ln Sd/Sc
β2
d IM + β2

c

, 11

where Φ() is the standard normal cumulative distribution
function, Sd and Sc are the median of the demand and capac-
ity, βd IM is the dispersion of demand given in the IM, and βc is
the dispersion of the capacity. The Sd has a linear regression in
the logarithmic space, and it can be expressed as follows:

ln Sd = ln a + b ln IM , 12

where a and b are regression coefficients obtained from
NTHA. The βd IM is calculated as follows:

βd IM = ∑N
i=1 ln di − ln aIMb

N − 2 , 13

where N is the number of simulations and di is the seismic
demand obtained from ith NTHA at a given IM. Figure 10
shows the seismic demands and IM plot obtained from the
NTHAs of the FE models of the shear walls. It includes the
assumed linear regression for the median of seismic demand,
and the linear regression model shows a low prediction of
40% (R2 = 0 404). The capacities of 200 shear walls (Sc) are
calculated based on ACI 349 design code [49] to estimate the
fragility curve of the shear walls. Finally, the fragility curve
through the CA is estimated in conjunction with Equations
(11)–(13), and Figure 11 presents the results.

5.2.2. Multiple Stripe Analysis (MSA). In the traditional
MSA, the probability of a failure at a specific IM is estimated
in conjunction with NTHA’s results and is expressed as a
ratio of the number of failures to the total number of simu-
lations; therefore, the probability of a failure for the box-type
shear walls is estimated at 10 different PGAs in this study.

However, the fragility curve cannot be estimated directly
with these discrete data, and the maximum likelihood esti-
mation (MLE) [50] is thereby used to estimate the fragility
function. Figure 12 presents the fitted fragility curve by
MLE compared with the MSA results at the different PGAs,
and the conditional probability of a failure is written as
follows:

Pf demand > capacity IM =Φ
ln x/θ

β
, 14

where θ is the median of IM and β is the standard deviation
of ln IM .

5.3. Fragility Curve Using Surrogate Models. The fragility
curves of the box-type shear walls using generated surrogate
models are estimated in this section. To estimate the fragility
curves, seismic demands at each PGA level obtained from
the surrogate models are compared with the capacity of each
shear wall model. The probability of a failure at the specific
PGAs (pf ,IM =Nf ,PGA/N) is calculated, and the fragility curve
is estimated by MLE. Figures 13 and 14 present a compari-
son of the fragility curves between the traditional approaches
and each surrogate model, and Table 5 summarizes the esti-
mates of the fragility curves.

The fragility curve using CA represents the most overes-
timated fragility values, and the difference between the esti-
mates of the fragility curves represents more than 50%
compared with the MSA. It shows that the assumption of
the CA that the median of the demands has a linear regres-
sion in the logarithmic space leads to unrealistic and overes-
timated results. Thus, the CA is not appropriate for the
fragility analysis considering uncertainties in extensive input
variables such as material, geometry, and earthquake. On the
other hand, the RSM-based surrogate model produces the
most similar fragility curve to the MSA. Also, the GPR and
NN show errors within 10% regarding the probability of a
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Figure 16: Comparison between predicted and actual ultimate shear force of box-type shear walls with five-parameter model.
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failure at each PGA. However, the SVM-based surrogate
model results in greatly underestimated fragility curves,
and the median value is less than 25% compared with the
MSA. The dispersion of the fragility curves generated by sur-
rogate models tends to be slightly larger than that generated
by MSA; however, the overall trend of the fragility curve is
quite similar to MSA’s result, as shown in Figure 14. As a
result, the RSM-based surrogate model is the best-fitted seis-
mic demand model for box-type shear walls.

6. Reduced Multiparameter Surrogate Model
Using RSM

While the RSM-based surrogate model is generated using
the eight variables in the previous section, the model is sim-
plified through a correlation analysis, which measures the
correlation or dependence between variables, as presented
in this section. Figure 15 shows the correlation between the
variables. It is found that while the seismic demand (Vu) is
rarely affected by f y, ρh, and ρv, five other variables (PGA,
f c′, H/L, L/t, and P) have quite an effect on it. Moreover,
three of the five variables (PGA, L/t, and P) have the greatest
influences on the seismic demand of the shear walls. To
simplify the generated surrogate model, two cases are
considered in this study: in case 1, the f y, ρh, and ρv are
eliminated, and only five variables are used as the input
parameters. Case 2 is that only the three most important var-
iables are used as the input. As a result, the two surrogate
models are trained by RSM with different input variables
(case 1 and case 2) and the accuracy of the surrogate models
is presented in Figures 16 and 17. The RSM-based surrogate
model with five parameters shows around 80% accuracy and
has little difference from the original eight-parameter model;
however, the three-parameter model is less accurate than the
other model, at around 70%. In terms of the fragility curve,
the results estimated by the reduced parameter surrogate
models are shown in Figure 18 and compared with the

original RSM-based model and MSA. The median of a fragil-
ity curve from the five-parameter model represents the clos-
est value of MSA and RSM original, and the three-parameter
model provides an overestimated median. Nevertheless, the
three-parameter model still provides a better result than
the CA. The estimated parameters of lognormal fragility
curves are summarized in Table 6.

Although there is a slight difference in a fragility curve
between full parameters and reduced parameters, the advan-
tage of the RSM-based surrogate model with reduced
parameters is that the model could be derived as a simple
form due to the assumption of the polynomial regression.
As a result, it is easily used with little understanding of
surrogate models. Therefore, the seismic demand and
fragility curves can be conveniently estimated based on the
closed forms originating from Equations (3) and (4). The
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five-parameter and three-parameter models are written as
follows:

Max shear force kN = −97 9 PGA 2 − 33 3 PGA L
t

− 1 39 × 10−5 PGA P

− 497 PGA H
L

+ 14 9 PGA f c′

+ 1548 PGA + 3 30 L
t

2
− 9 7

× 10−6 L
t

P − 45 7 L
t

H
L

+ 5 14 L
t

f c′ − 261 L
t

+ 2 07 × 10−12 P 2 − 3 0

× 10−4 P
H
L

+ 1 49

× 10−5 P f c′ + 2 14

× 104 P + 8 17 H
L

2

+ 44 2 H
L

f c′ + 15 5 H
L

− 2 23 f c′
2
+ 9 33 f c′ + 1823,

15

Max shear force kN = −35 3 PGA 2 − 29 1 PGA L
t

− 2 05 × 10−5 PGA P

+ 1356 PGA + 4 18 L
t

2

+ 3 13 × 10−6 L
t

P − 155 L
t

+ 2 44 × 10−12 P 2 + 3 44
× 10−4 P + 1122

16

7. Conclusion

While existing fragility methods to reestimate the fragility
curves of structures require repetitive NTHAs, surrogate
model-based fragility methods are expected to reduce a lot
of computational time and conveniently reestimate the fra-
gility curve. This study generates multiparameter surrogate
models of a box-type RC squat shear wall for a fragility

analysis. The summary and conclusion of this study are the
following:

(1) By comparing four performance indices, the RSM-
based surrogate model is selected as the best-fitting
demand model of the box-type shear walls and has
87% of R2

(2) The RSM-based surrogate model produces the most
similar fragility curve to the MSA. In addition, the
GPR- and NN-based models lead to errors within
10% in terms of the probability of a failure at each
PGA. On the other hand, the SVM-based surrogate
model results in quite underestimated fragility curves,
and the median value represents less than 25% com-
pared with the MSA

(3) Based on a correlation analysis, simplified surrogate
models are expressed as closed forms of polynomials.
The simplified surrogate model with five parameters
yields a fragility curve similar to the results of the
MSA and RSM-based surrogate models. However,
the simplified surrogate model with three parameters
produces an overestimated fragility curve

(4) The suggested surrogate model and the reduced
parameter closed forms help to reestimate and
update the seismic shear force and fragility of the
box-type RC squat shear walls without the time-
consuming NTHAs when the change in the input
variables of the shear walls occurs (i.e., degradation
of material properties and discrepancy in the vari-
ables between design and construction stages)

While the surrogate models with multiparameters for
estimating the seismic demand and fragility are generated
in this study, the characteristic of earthquakes is only defined
by PGA. Further studies are needed to consider various
characteristics of the earthquakes (i.e., spectral acceleration
at a period of 1.0 s and at the fundamental frequency of
structures and duration of strong earthquake). In addition,
the accuracy of the surrogate models lies around 87%; there-
fore, efforts to improve the performance of the surrogate
models are needed in further studies.

Data Availability

Data are available on request.

Additional Points

Highlights. (i) This study presents surrogate models for a
shear wall seismic demand. (ii) The seismic demand data
for the shear wall are collected based on an experimentally

Table 6: Estimated parameters of lognormal fragility curves for reduced parameter surrogate models.

MSA RSM original RSM case 1 RSM case 2

Median (μ (g)) 0.359 0.361 0.354 0.393

Dispersion (β) 0.566 0.688 0.651 0.656
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validated finite element model. (iii) The surrogate models
are developed using several machine learning methods.
(iv) The reduced parameter surrogate model is further
proposed. (v) The efficient and accurate closed form equa-
tion is finally devised.
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