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As the integration of distributed energy into the power grid continues to rise, the significance of electricity transactions in
promoting renewable energy consumption grows substantially. This necessitates the establishment of a robust electricity
trading framework to facilitate reliable and trustworthy transactions for prosumers. This paper introduces an innovative
blockchain-based electricity trading framework. Within this framework, we present a decentralized collaborative model training
approach aimed at predicting the power generation of distributed photovoltaic power stations. Simultaneously, we propose a
graph-based algorithm for efficiently matching producers and consumers. Our experiments, conducted on the Hyperledger
Fabric blockchain platform using real-world datasets, demonstrate enhanced prediction accuracy compared to existing models.
The framework effectively handles transactions within one second, sustaining a sending rate of up to 200 transactions per
second. The outcomes of this study not only surpass the performance of existing prediction models but also provide valuable
insights for the development of trading frameworks in actual production environments. The proposed framework stands as a
reference point for constructing reliable trading infrastructures, thereby contributing to the acceleration of green electricity
trading.

1. Introduction

Escalating global environmental problems and energy
demand, coupled with the steady development of new
energy technologies, have been opening up new opportuni-
ties for the promotion of new energy sources. In the context
of global advocacy of energy conservation and emission
reduction, photovoltaic (PV) power, as an important part
of new energy, has been vigorously utilized in recent years,
and the demand for PV power is increasing yearly [1, 2].
In 2019, more than 200 GW of renewable energy capacity
was added globally, with PV power accounting for about
2.8% of global power generation [3]. An increase in PV
power generation capacity typically requires a stronger con-
sumption capability.

However, considering the instability of renewable energy
sources, insufficient energy storage technology, inaccurate

load forecasting, and many other reasons, the self-
regulation ability of power grid is limited. In addition, there
are still some inadequacies in the existing electricity trading
mechanism that need to be improved [4, 5]. For example,
the traditional electricity trading mechanisms may not be
able to respond effectively and accurately to customers’
demand. As a result, the problem of how to improve the
consumption capacity of distributed PV power generation
has become increasingly prominent.

Therefore, a more effective and efficient electricity trad-
ing framework is urgently needed to satisfy the requirements
of both energy producers and consumers to the greatest
extent. And then, the new energy consumption can be facil-
itated while the needs of producers and consumers can be
met [4, 5]. This requires cooperation between both power
producers and consumers: the producers are supposed to
accurately forecast their own power generation to avoid
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oversupply or undersupply and ensure a stable trading envi-
ronment, while the consumers have to trade with the most
suitable power producers to secure their own interests.

This paper explores the application of federated learning
(FL) and blockchain technology in peer-to-peer (P2P) elec-
tricity trading and proposes a novel blockchain-enabled
trading framework for distributed photovoltaic power using
FL. The main contributions of this paper are as follows:

(i) We design a decentralized collaborative model
training approach using blockchain-based federated
learning (BFL) with the consideration of data pri-
vacy preservation in distributed PV power stations

(ii) We develop a graph-based matching algorithm by
abstracting the producers and consumers of elec-
tricity trading into an equivalent graph model and
utilize a smart contract to execute the proposed
matching algorithm automatically

(iii) We implement the proposed framework, called
blockchain-based federated learning with smart
contract (BFLSC) framework, on the Hyperledger
Fabric platform and validate its effectiveness using
real-world datasets, which provides a better refer-
ence for the developers of blockchain

The rest of our paper is organized as follows. The related
work is surveyed in Section 2, followed by the description of
the decentralized collaborative power prediction model
designed by BFL in Section 3. Then, Section 4 gives the
design of transaction matching algorithm and the imple-
mentation of smart contract. Section 5 introduces the pro-
posed BFLSC framework. The experiment and analysis are
provided in Section 6. Eventually, we conclude our work
with a summary in Section 7.

2. Related Work

Recently, there have been many researches on prediction of
power generation and on blockchain technologies in elec-
tricity trading. For power predicting, Dutta et al. [6], in the
context of short-term PV power forecasting, shift from
meteorological-based prediction to an approach grounded
in historical electricity data. This modification has led to
heightened accuracy. However, the method exhibits limita-
tions in predicting large-scale variations, necessitating addi-
tional recent historical data as supplementary support. Zhou
et al. [7] propose a multivariate hybrid prediction system
that integrates signal decomposition and artificial intelli-
gence techniques. This system leverages independent vari-
able features to enhance the accuracy of solar power
generation predictions. But the incorporation of multiple
variables implies a greater demand for data. Almonacid
et al. [8] try to employ a dynamic artificial neural network
for PV power prediction and achieve a satisfactory margin
of error. Their method is regarded as a new prediction strat-
egy with better generalization capability. Hossain and Mah-
mood [9] select features according to the correlation
between different weather variables and PV power and

introduce long short-term memory for prediction. Different
from the previous centralized processing, Yoo et al. [10] uti-
lize FL to build a solar power generation prediction model
based on data collected from local generators.

On the aspect of applying blockchain in electricity trad-
ing, Oprea et al. [11] embed two novel settlement mecha-
nisms for P2P electricity exchange into smart contracts as
stored procedures, improving the classic pairwise settlement.
Alao and Cuffe [12] devise the trading strategy based on
smart contract arrangements, thus reducing the volatility
risk for power producers. In addition to combining smart
contracts with settlement mechanisms and trading strate-
gies, Liu et al. [13] execute smart contracts to implement
the proposed proof-of-benefit consensus protocol and pro-
tect the system from potential risks. Vieira and Zhang [14]
rely on blockchain technology and auction mechanism to
develop two market frameworks, facilitating autonomous
P2P energy transactions in microgrids. Han et al. [15] make
use of the fact that smart contracts can strictly implement
the designed trading and payment rules to encourage direct
energy trading between producers and consumers. Further-
more, Ping et al. [16] propose a joint energy-reserve
prosumer-centric market based on blockchain, contributing
to an autonomous and trustworthy prosumer-centric
market.

As summarized in Table 1, previous studies have exten-
sively explored various strategies for the smart sustainable
grid. In the realm of power prediction research, a predomi-
nant approach involves relying on large-scale data aggre-
gated from individual power stations to enhance accuracy.
However, the growing emphasis on data security has made
the aggregation of large-scale data increasingly challenging.
FL, as a distributed machine learning approach, presents
itself as a novel method for collaborative multiparty data
analysis.

While there have been efforts to address the issue of
insufficient local data through FL, the traditional FL model
faces challenges such as single-point failure and potential
malicious data, stemming from its centralized architecture
and dependence on a central server [17]. Furthermore, in
the domain of electricity trading, the application of smart
contracts [18] has predominantly focused on transaction
pricing and arrangements. However, achieving accurate
matching between producers and consumers is equally vital
for establishing a reliable and trusted trading environment.

3. Decentralized FL Training
Model for Prediction

FL is a distributed machine learning approach which enables
model training on a large corpus of decentralized data [19,
20]. It uses local data of all parties involved in training to
update the global model by exchanging information of
model rather than data, so as to break data islands and pro-
tect data privacy. In this paper, we achieve the decentralized
architecture of FL by using blockchain technology and
merge convolutional neural network and long short-term
memory (CNN-LSTM) as a hybrid training model with

2 International Journal of Energy Research



attention mechanism for predicting the power generation of
each PV power station.

3.1. The Proposed Hybrid Model of BFL. The proposed
hybrid model with attention mechanism is composed of
input layer, CNN layer, LSTM layer, attention layer, full con-
nection layer, and output layer, as shown in Figure 1. The
model input is the time-series data composed of power gen-
eration and related environmental factors considering the
influence of external environment, such as illumination
and temperature. The time-series data is a one-dimensional
grid obtained by regular sampling on the time axis. There-
fore, CNN with strong capabilities in grid-like structured
data processing is used to extract features of the power gen-
eration data. The CNN layer consists of two 1D convolution
layers and two pooling layers; this is simple but effective. The
first convolution constitutes the feature map of input data,
and the second convolution is conducted on the feature
map created in the first convolution with an attempt to fur-
ther amplify the significant features. The pooling layer uses
max-pooling which selects the maximum value on feature
area for down-sampling to reduce the number of features
and simplify the feature map. The activation function in
the CNN layer is the ReLU function, and its formula is
ReLU x = def max 0, x .

The LSTM layer is used to learn the variation law of
power generation because it is apt at processing longer
sequences of time data [21]. The LSTM employs gating
mechanism to selectively retain or forget historical informa-
tion with a forget gate f t , input gate it , and output gate ot .
The f t selectively retains the hidden state information of
the previous cell to the current cell, the it selectively retains
the information of input to the cell unit, and the ot selec-
tively retains the current internal state information and out-
puts it to the next cell unit. The basic cell structure of the
LSTM network model is shown in Figure 2.

In the figure, xt and gt are the input and candidate state
of the current cell, respectively, ct−1 and ct are the internal
state of the previous cell and the current cell, respectively,

ht−1 and ht are the hidden state of the previous cell and cur-
rent cell, respectively, and σ and tanh are the sigmoid func-
tion and hyperbolic tangent function, respectively. The
calculation formulas are shown in the following.

f t = σ wf ht−1, xt + bf ,
it = σ wi ht−1, xt + bi ,
ot = σ wo ht−1, xt + bo ,
gt = tanh wg ht−1, xt + bg ,
ct = f t ∘ ct−1 + it ∘ gt ,
ht = ot ∘ tanh ct ,

1

where wf ,wi,wo,wg and bf , bi, bo, bg represent the weight
matrix and bias matrix of f t , it , ot , gt , respectively, and ∘ rep-
resents the Hadamard product. The process of calculation is
as follows: (1) it , ot , and gt are calculated separately. (2) ct is
obtained by combining f t and it . (3) ht of the current net-
work is acquired using ot .

Additionally, to improve the efficiency of model and sav-
ing computing resources, we also introduce attention mech-
anism into the model, which is a processing method
simulating the cognitive attention of the human brain [22].
The attention mechanism distributes feature weights accord-
ing to the feature importance; then, the neural network will
only select the key information for processing when a large
amount of input information from the previous layer needs
to be processed. The parameters of attention mechanism
are calculated by the following.

αi =
exp σ whi + b

∑n
j=1 exp σ whj + b

,

y = 〠
n

i=1
αixi,

2

Table 1: An overview of related work.

Type Source Contribution Limitation

Power predicting

[6] An approach grounded in historical electricity data Additional recent historical data

[7] The combination of multiple variables Greater demand for data

[8] Dynamic artificial neural network Greater demand for data

[9]
The correlation between different weather variables and

PV power
Greater demand for data

[10] FL Insecurity and single-point failure

Blockchain in electricity
trading

[11] The introduction of settlement mechanism Neglect of transaction subjects

[12] Blockchain for risk management Neglect of transaction subjects

[13] New consensus protocol Neglect of blockchain performance

[14] Auction mechanism for microgrids Incapability of automated transactions

[15] Smart contract for implementation of rules
Without considering future generation

capacity

[16]
Proposal of a joint energy-reserve prosumer-centric

market
Without considering future generation

capacity
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where σ represents attention scoring function, w represents
weight matrix, b represents bias coefficient, xi represents
the input of the previous layer, hi represents the output of
the previous layer and the input of the current attention
mechanism layer, αi represents the value of the attention
probability distribution, and y represents the output of
attention mechanism layer.

Eventually, the future power generation is acquired
through the full connected layer and output layer.

3.2. The Execution Process of BFL. Traditional FL counts on a
central server to aggregate parameters and update the global
model [23] as shown in Figure 3(a). Despite the data-
preserving capability of traditional FL, its centralized archi-
tecture is vulnerable to the malfunction of the server. Fortu-
nately, the advent of blockchain provides more
opportunities for the development of FL, by which the
aggregation and update can be realized in a distributed and
secure manner as shown in Figure 3(b). In our BFL, the
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Figure 1: The structure of the hybrid model with attention mechanism.
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blockchain serves as an immutable distributed ledger to
record and store model updates; thus, a decentralized FL
structure can be achieved while preventing attacks from pos-
sible malicious node.

We assume that there are K number of PV power sta-
tions, and each PV power station has a corresponding com-
puter workstation which is regarded as a node in the
blockchain network. The local dataset of a node i
1 ≤ i ≤ K is denoted as Di, the total number of data in Di

is denoted as ni, and ∑K
i=1 Di is denoted as N . Algorithm 1

depicts an overview on the BFL execution, and the execution
process will be described in detail below.

The initial parameters of the prediction model men-
tioned in Section 3.1 are manually set to genesis block which
is the first block of the chain at the beginning. Then, all
nodes use these parameters for initialization at the beginning
of training separately. We define the structure of data stored
in the ledger with the node ID, denoted by nodeID; local
model parameter, denoted by localParm; and the corre-
sponding training epoch, denoted by epochNum, i.e., each
data item in the ledger represents the localParm of nodeID
in epochNum.

Let us denote the local model parameter of node i and
the global model parameter in epoch t by wt

i and wt
0, respec-

tively. And the local model parameter of node i in the next
epoch of t is denoted as wt+1

i . Then, wt+1
i minimizes f wi ,

namely, arg min f wi in the epoch, during the local model
training using Di. The following Equation (3) defines the f
wi , and then, wt+1

i can be obtained by Equation (4) accord-
ing to the gradient descent algorithm.

f wi =def 1
ni
〠
ni

j=1
σ xij ,wi , 3

wt+1
i ⟵wt

i − η∇f wt
i , 4

where xij represents the sample indexed by j in Di, σ repre-

sents the loss function, η represents the learning rate of gra-
dient descent, and ∇f wi represents the calculated gradient
of f wt

i .
During training, the local model parameters of each

node will be updated in every epoch. For example, the cur-
rent wt

i will be updated to wt+1
i for a node i after local model
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training of epoch t. Whenever the local model parameter of
a node is updated, the node stores its own node ID, the num-
ber of next epoch, and the obtained new local model param-
eter to the distributed ledger. After that, the node waits for a
time interval, denoted by twait, in order to allow each node to
determine whether the global model update can be carried
out in current epoch. Once the interval reaches twait, the
node queries the amount of records where epochNum = t
+ 1 from the ledger. If the amount equals to K , it indicates
that local model training and parameter recording have been
completed on all nodes. Then, the node can gather the local
model parameters of all nodes from the ledger and locally
update a new global model parameter by Equation (5) which
aggregates the gathered parameters based on a weighted
average. Otherwise, the node has to wait for twait time inter-
val again until the work is done on all nodes. Overall, the
whole process mentioned above including local model train-
ing, local parameter recording, and global model update is
repeated until the global model training is completed.

wt+1
0 ⟵ 〠

K

i=1

ni
N
wt+1

i 5

4. Real-Time Electricity Trading Strategy Based
on Graph Theory and Smart Contract

4.1. Graph-Based Algorithm for Matching. Accurate match-
ing of producers and consumers can better maintain the bal-

ance between supply and demand in the power system while
accurate matching requires appropriate matching algo-
rithms to achieve. In the following, we propose an efficient
matching algorithm based on graph theory.

The processing of semistructured data usually relies on
graph theory which is a mathematical model describing the
relationships between objects [24, 25]. As a model of graph
theory, the bipartite graph is a graph whose vertices can be
divided into two disjoint and independent sets. The proper-
ties of electricity trading can be conveniently described by
means of a diagram consisting of two sets of vertices with
a set of edges joining certain pairs of these vertices. There-
fore, an undirected graph G = U , V , E is used to represent
an electricity trading system. Where the vertex sets U and V
represent the producers and consumers, respectively, the
edge set E represents the transaction links between them.
In the graph G, an element edge ei ∈ E has a weight wi
wi ≥ 0 which represents the power quantity traded by a
matched pair of producer and consumer. The elements ui
∈U and vi ∈ V represent a producer and a consumer,
respectively. For convenience of description, the predicted
power of a producer ui is denoted as Si, the demanded power
of a consumer vi is denoted as Ri, and the weight between
the ui and vi is denoted as w ui, vi .

According to the given bipartite graph G, the matching
problem between the two sides of electricity trading can be
modeled as Equation (6) with the purpose of promoting
power consumption. The objective function f is to maximize
the quantity of electricity traded with three constraint

Input: w1
0, twait ,Di, K

Output: The global model M
1 begin
2 wt

i ⟵w1
0; t⟵ 0; f lag⟵ true;

3 while global model training has not yet been completed do
4 use wt

i and Di for local model training;
5 wt+1

i obtained by Equation (4);
6 nodeID⟵i; epochNum⟵t + 1 ; localParm ⟵wt+1

i ;
7 store {nodeID, epochNum, localParm} to the ledger;
8 while flag= true do
9 sleep twait ;
10 totalNum⟵ amount of records where epochNum = t + 1 in the ledger;
11 if totalNum = K then
12 f lag⟵ false;
13 end
14 end
15 for i ∈ K do
16 wt+1

i ⟵ localParm of node i where epochNum = t + 1 in the ledger;
17 end
18 wt+1

0 obtained by Equation (5);
19 update M with wt+1

0 ;
20 t⟵ t + 1;
21 wt

i ⟵wt
0;

22 end
23 return M

24 end

Algorithm 1: BFL execution.
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conditions: (1) transactions made are as few as possible; (2)
for all producers, the amount of electricity traded should not
exceed the predicted power generation; (3) for all con-
sumers, no more power is traded than they need.

max f = 〠
E

i=1
wi

s t min E

∀uj ∈U , 〠
V

k=1
w uj, vk ≤ Sj

∀vj ∈ V , 〠
U

k=1
w uk, vj ≤ Rj

6

The greedy strategy is a common strategy for solving
optimal problems. This strategy greedily chooses the best
available option at each step without considering any poten-
tial consequences, but it is very convenient and effective. To
solve the above mathematical model, we apply the greedy
strategy which makes the locally optimal choice at each
stage, i.e., meeting the maximum demand with as few pro-
ducers as possible at each stage.

Let us assume that the sets of U and V are sorted in
descending order by the power generation and power
demand, respectively. Then, Si ≥ Si+1 and Ri ≥ Ri+1 for all i
1, 2, 3,⋯ . Additionally, the maximum tradable quantity of

electricity must be less than or equal to min ∑ S
i=1Si,∑

R
i=1Ri

. In this context, there are two cases for the S1 and R1:
one case is that S1 ≥ R1, another case is that S1 < R1. For
the first case, a new edge would be built in the G, and the
weight of the edge would be assigned to R1. For another case,
it should be searched backwards to k that satisfies the condi-
tion ∑k

i=1Si ≥ R1. If there is a such k, the k number of new
edges would be built. The weights of the first k − 1 edges
would be assigned to the corresponding Si, and the weight
of k-th edge would be assigned to R1 −∑k−1

i=1 Si. Otherwise, a
new edge would be built for each supplier, and the weight
of the edge would be assigned to the corresponding Si. The
following Algorithm 2 shows more details of our matching
procedure. The time complexity of the matching algorithm
that we designed is O n log n +m log m , where n is the data
scale of the producers, and m is the data scale of the
consumers.

Here, we give a proof of the correctness for our proposed
greedy strategy. Without loss of generality, let us assume that
the set of vertices currently connected to R1 to build edges in
G is P S1, S2,⋯, Sk k ≥ 1 . Instead of selecting, chooseS1to
build the edge withR1, and now, we replaceS1with other ele-
ments inS. Due to the descending order of S, all elements in
S are less than or equal to S1. If k = 1 and there is Si ∉ P Si
≥ R1 , replacing S1 with Si will not increase the number of
edges in G, that is, the number of transactions. Otherwise,
at least two elements Si ∉ P, Sj ∉ P Si + Sj ≥ S1 are needed
to substitute for the amount of electricity that S1 trades to
R1. In other words, there will be one new edge or more in

G, which violates the condition of minimizing the number
of edges in the graph. To sum up, this substitution method
is incorrect. By analogy, replacing any element in P will
not make the result better. That means the greedy strategy
applied by us can get the optimal solution.

4.2. Smart Contract in Trading Strategy. Relying on the con-
sensus mechanism and immutable data of blockchain, smart
contract has gradually developed from an agreement where
participants jointly fulfill digital commitments to an agree-
ment enforced automatically by computer programs without
the intervention of a trusted third party [18, 26]. In electric-
ity trading systems, smart contracts can be utilized to specify
rules concerning how and when to conduct electricity trad-
ing [27]. In our work, the smart contract is used to make
the matching procedures progressed automatically in order
to provide a reliable and credible environment.

The proposed BFLSC framework provides market
matching services and transaction recording services for
producers and consumers using smart contract as shown
in Figure 4. Energy producers send predicted tradable power
to the smart contract in hopes of achieving consumption of
PV while energy consumers submit their energy demand
which meet their production and living needs to the smart
contract.

Our smart contract is built upon blockchain to ensure
the correct execution. Once the smart contract is invoked,
the contract clauses will be executed automatically as the
business logic of electricity trading as shown in Figure 5.

Above all, producers provide the real-time-predicted
power generation, and the consumers provide the power
demand. These supply and demand serve as the basis for
subsequent transactions between two parties. In the second
place, the smart contract executes the proposed matching
procedure to promote deals between them. Later, producers
and consumers reach a consensus on electricity trading.
Whenever new transactions are created, the transaction
information will be recorded in the distributed ledger of
blockchain for storage to ensure the security. Notice that
the whole procedure which forms a real-time trading con-
tract is completed between producers and consumers in a
P2P manner without the intervention of a third party. As a
result, the efficiency and security of trading can be greatly
enhanced.

5. The BFLSC Framework for P2P
Electricity Trading

The proposed BFLSC framework consists of two modules to
summarize: the collaborative prediction method for power
generation using BFL and a real-time trading strategy based
on smart contract. Our approach involves using BFL to fore-
cast the future power generation of each station and subse-
quently implementing real-time peer-to-peer (P2P) trading
with smart contracts, as illustrated in Figure 6. In this trad-
ing framework, distinct PV stations within the same region
are considered clusters. This clustering is based on the sig-
nificant similarity observed in power generation among dif-
ferent PV stations within the same region and time frame.
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Moreover, the PV power generation sources and consumers
should be connected within a network to facilitate commu-
nication between consumers and producers. Simultaneously,
a blockchain network is established among PV stations for
implementing BFL and executing smart contracts.

We employ BFL to train our innovative hybrid CNN-
LSTM model, which incorporates an attention mechanism
for predicting power generation in each PV power station.

The process begins with stations within a regional cluster
gathering local small-scale historical power generation data
and conducting data preprocessing, including normalization
to eliminate noise data effects. Before BFL execution, the
global model is initialized by manually setting its initial
parameters to the genesis block.

Subsequently, each node utilizes its dataset for local model
training, and the results are recorded in the blockchain’s

Input: G U ,V , E
Output: totalQ, G

1 begin
2 the total amount of electricity traded totalQ⟵ 0 ;
3 a sequence a a1, a2, a3,⋯ ⟵U sorted by descending order of S;
4 a sequence b b1, b2, b3,⋯ ⟵V sorted by descending order of R;

5 maximum tradable quantity maxQ⟵min ∑ a
i=1Sai ,∑

b
i=1Rbi

;
6 while totalQ ≠maxQ do
7 sort a and b in descending order;
8 if Sa1 ≥ Rb1

then
9 create edge a1, b1 in G;
10 w a1, b1 ⟵ Rb1

;
11 Sa1 ⟵ Sa1 −w a1, b1 ;
12 if Sa1=0 then
13 remove a1 from a;
14 end
15 remove b1 from b;
16 totalQ⟵ totalQ +w a1, b1 ;
17 else

18 if there is a k satisfying ∑k
i=1Sai ≥ Rb1

then
19 for i⟵ 1 to k do
20 create edge ai, b1 in G;
21 if i ≠ k then
22 w ai, b1 ⟵ Sai ;
23 remove ai from a;
24 else

25 w ai, b1 ⟵ Rb1
−∑k−1

j=1 Saj ;

26 Sai ⟵ Sai −w ai, b1 ;
27 end
28 totalQ⟵ totalQ +w ai, b1 ;
29 end
30 if Sa1=0 then
31 remove a1 from a;
32 end
33 remove b1 from b;
34 else
35 for i⟵ 1 to a do
36 w ai, b1 ⟵ Sai ;
37 remove ai from a;
38 Rb1

⟵ Rb1
−w ai, b1 ;

39 totalQ⟵ totalQ +w ai, b1 ;
40 end
41 end
42 end
43 end
44 return totalQ,G
45 end

Algorithm 2: The matching procedure.
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distributed ledger. After completing local training tasks, nodes
collect and update a new global model parameter using the
FedAvg algorithm. This parameter is then used to replace local
models iteratively until global model training is complete.
Once BFL is done, nodes can employ the global model to pre-
dict future power generation.

In real-time, new actual power generation data is
dynamically added to the local dataset, ensuring the dataset’s
continuous expansion. This BFL-based approach enhances
the accuracy and real-time performance of power prediction
for PV power stations, showcasing excellent generalization
applicable to various time-series prediction problems while
maintaining data security.

For the real-time trading strategy based on smart con-
tracts, the system relies on the blockchain’s distributed led-
ger, with producers and consumers acting as network
nodes facilitating smart contracts. The trading system incor-
porates a time trigger, automatically invoking the smart con-
tract interface and executing clauses based on preset
business logic at the specified interval.

The smart contract acquires predicted future power gen-
eration results from each distributed PV power station for
accurate power bidding. Simultaneously, it obtains electricity
demand from consumers and matches power producers
with consumers using an algorithm, promoting efficient
electricity consumption. All transaction records are securely

PV power producers PV power consumersSmart contract

PV power stations

Predicted power
generation

Industry

AgricultureTransaction recording
services

Market matching 
services

Figure 4: Smart contract in the framework.

Begin

End

Obtain the predicted power
generation and power demand

Check for new transactions 

The producers and consumers
reach a consensus on 

electricity trading

Record new transactions
in blockchain

No

Execute the matching
procedure

Yes

Figure 5: Smart contract execution.
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written into the blockchain, ensuring the reliability and
credibility of transactions between the two parties.

Within the same cluster, PV station nodes preprocess
small-scale historical local power generation data using nor-
malization to eliminate noise data effects. All nodes then uti-
lize BFL to train the hybrid CNN-LSTM model with an
attention mechanism. Upon completing training task
orchestration, nodes use the global model to predict future
power generation. The system operates with automatic
matching of producers and consumers using a bipartite
graph mode to maximize quantity and minimize transac-
tions. Transaction information is recorded in the block-
chain’s distributed ledger to ensure genuine, trustworthy,
and immutable transactions. Both transaction matching
and recording services are implemented as smart contract
interfaces.

6. Experiments and Analysis

Prediction accuracy is an important indicator to measure the
fit of model. It describes the degree to which the predicted
value produced by the model fits the historical actual value.
Transaction latency is a significant metric in blockchain sys-
tems. The latency performance of transaction is crucial to
the blockchain in assessing its effectiveness. In this section,
we evaluate the proposed BFLSC framework in terms of pre-
diction accuracy and transaction latency.

P2P electricity trading has certain requirements for the
identity of participants, the transaction information between
them cannot be disclosed, and real-time transactions require
high performance on transaction latency and throughput. In
our experiments, according to the above reasons with the
comparison of different blockchain types in Table 2, we built
a blockchain network using the Hyperledger Fabric platform
which is the most widely used consortium blockchain. The
Hyperledger Fabric differs from other blockchains in that it
introduces the concept of channels. The participants in the
same channel have a separate ledger and maintain the ledger

collaboratively. Furthermore, a fabric network can have mul-
tiple channels, and each channel is isolated from each
other [28].

In our experiments, we regard each PV power station as a
Hyperledger Fabric organization with two peer nodes and an
orderer node. Four organizations, R1, R2, R3, and R4, establish
a network with configuration, CC1 and CC2. Organization R1
has peer nodes, P1 and P2, and an orderer node, O1 and P1,
hosts a copy of ledger L1, and smart contract, S1 and P2, hosts
a copy of ledger L2 and smart contract S2, respectively. Organi-
zations R2, R3, and R4 also have their own peer nodes, orderer
node, distributed ledgers, and smart contracts as shown in
Figure 7. There are two channels, C1 and C2. The channel C1
is used to share the local model parameters during the BFL pro-
cess, and the channel C2 is used to record the transaction infor-
mation. Note that all organizations are joint to the both
channels. The L1 and L2 store the model parameters and trans-
action information, respectively. A1 is an application of predict-
ing future power generation by BFL for the channel C1. The
smart contract S1 is the operation interface ofmodel parameters
in the ledger L1. A2 is an application of real-time electricity
trading for the channel C2. The smart contract S2 is the inter-
face to provide matching services and recording services.

Our experiments are conducted on the Hyperledger Fabric
v2.0 system. We deploy a two-channel fabric network on 4
physical servers in an isolated LAN with 1,000MB/s network
bandwidth. The hardware configuration of each server is a 4-
Core CPU, 16GB main memory, and 1TB magnetic disk,
and each server is installed with Ubuntu Server 20.04 LTS
64bit operating system.

6.1. Experiments for Prediction Performance. To verify the
generality of our BFLSC framework in real-world power sce-
narios, we use PV power data from the Desert Knowledge
Australia Solar Centre (DKASC) [29] as the dataset. More
than 30 PV power station systems are installed in the center,
and the power generation data with corresponding environ-
mental parameters of the PV power station system is

PV power stations

Workstations

Prediction with BFL

Supply Demand

Smart contract

Transaction matching

Transaction recording

Figure 6: The BFLSC framework.
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publicly accessible. Short-term prediction timescales typi-
cally range from 30 minutes to 72 hours [30]. Therefore,
four distributed PV power stations located in DKASC, Alice
Springs, are selected. The station codes are BP Solar, 2.0 kW,
poly-Si, Fixed, 2008, North/Flat/East/West, and the data res-
olution is 5 minutes; the data ranges from November 6,
2022, to November 9, 2022. We label these four power sta-
tions as station A/B/C/D, respectively, to simplify the
expression. Considering the possible influence of dimension
attached to data, we scale the data by min–max normaliza-
tion and then control the data range within the given inter-
val. The following Equation (7) shows how to perform the
min–max normalization. Once the data preprocessing is
done, the overall statistical distribution of data will turn con-
sistent with the elimination of noise data. Then, the dataset
is divided into a training set and a test set at a ratio of 8 : 2.
The training set is used to train the model while the test
set is used to compare with the prediction results of the
model to calculate the prediction accuracy.

x′ = x −min x
max x −min x

, 7

where x represents sample data, x′ represents normalized
sample data, and max x and min x represent the maxi-
mum and minimum values of sample data, respectively.

We adopt mean absolute error (MAE), mean square
error (MSE), root mean square error (RMSE), and coeffi-
cient of determination (R2) to indicate the prediction accu-
racy more directly as the following Equations (8)–(11)
[31]. For MAE, MSE, and RMSE, their values measure the
deviation between the predicted and actual values. So the
smaller their values, the more accurate the prediction results.
While for R2, it portrays the proximity of predicted and
actual values. Therefore, the larger their values, the more
accurate the prediction results. In addition, the R2 is more
informative and truthful and does not have the interpretabil-
ity limitations of MAE, MSE, and RMSE [32].

MAE = 1
N
〠
N

i=1
yi − ŷi , 8

MSE = 1
N
〠
N

i=1
yi − ŷi

2, 9

Table 2: A comparison between different types of blockchain.

Public blockchain Private blockchain Consortium blockchain

Degree of decentralization High Low Middle

Consensus mechanism PoW, PoS PBFT, RAFT PBFT, RAFT

Oriented group Public Individual or organization Multiple organizations

Application scenario Virtual currency Internal audit Transactions between organizations

Examples Bitcoin, Ethereum Multichain Hyperledger Fabric

Performance of transaction Low High Middle
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Figure 7: Network topology diagram of blockchain.
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RMSE = 1
N
〠
N

i=1
yi − ŷi

2, 10

R2 = 1 − ∑N
i=1 yi − ŷi

2

∑N
i=1 yi − y 2 , 11

where yi and ŷi represent the actual values and predicted
values of PV power generation at a certain time, respectively,
y represents the average of y, and N represents the total
number of samples involved in the prediction.

We compare the prediction accuracy of the proposed
BFL model with that of the individual model and centralized
model in an identical simulation configuration. The individ-
ual model means that each of the PV power stations uses
individual data for model training separately, and the cen-
tralized model means that there is a central server that cen-
tralizes data from each power station for model training in
the cluster. They train in different ways and with different
datasets even though the goal of them is to get a trained
hybrid model designed in Section 3.1.

Tables 3–6 provide a quantitative analysis of the predic-
tion results by error indicators. The centralized model is
expected to perform better than the individual model
because it has access to the data of all stations while the indi-
vidual model only uses its own data. From the viewpoint of
R2, the prediction results of the centralized model for all
power stations are higher than those of the individual model,
and the maximum increase of R2 is 2.8%. Meanwhile, from
the perspective of the other three indicators, the accuracy
of the centralized model is similar to that of the individual
model. This demonstrates that despite the pain of gathering
data and the risk of data leakage, the augmentation of the
dataset empowers the centralized model to predict more
accurately. However, the proposed BFL achieves the better
performance on the MSE and RMSE indicators than the
other models without a trade-off in privacy. Although the
BFL model on Station D is larger than the individual model
by 18.8% and is larger than the centralized model by 18.5%
on the MAE indicator, the RMSE decreases by 13.6% and
14.1%, respectively, and the R2 especially increases by 4.0%
and 2.4%, respectively. Despite certain shortcomings in per-
formance as indicated by the MAE and R2 metrics, the BFL
model has demonstrated a significant improvement in per-
formance according to the MSE and RMSE metrics. The rea-
son for the comparatively lower performance on Station D
compared to Station A/B/C may be attributed to the pres-
ence of more noise in the data from Station D. But from a
comprehensive perspective where all metrics are taken into
account, the BFL model could achieve similar or even higher
accuracy than the other models.

Figure 8 shows the comparison of prediction results and
actual power generation. The attention paid to the actual
data quality of Station D is different from that of the other
stations, evident from the observed curve. It can be found
that there is a discernible gap between the prediction results
of the individual model and the centralized model compared
with the actual power generation. Moreover, the obvious

anomalies emerge in the prediction for the Station D due
to the difference of data quality. On the contrary, the predic-
tion results of our BFL model are not only close to the actual
power generation but also perform well under abnormal
conditions.

In contrast, the prediction results of our BFL model not
only closely align with the actual power generation but also
demonstrate robust performance under abnormal conditions.

6.2. Experiments for Trading Performance. In the Hyperl-
edger Fabric, the transaction latency is the amount of time
from the time point that transaction is submitted to the
time point that the result is widely available in the net-
work. The average latency refers to the average time taken
in seconds between issuing a transaction and receiving the
corresponding response [33]. The sending rate is a mea-
sure of how many transactions are sent to the network
in a given time period, expressed as transactions per sec-
ond (TPS). It is mentioned in [34] that the average latency
under different sending rates of transactions is an impor-
tant metric to evaluate the performance of a blockchain
system. Therefore, we decide to use the metric to evaluate

Table 5: Comparison of RMSE.

Station Individual model Centralized model BFL model

Station A 0.353947 0.342916 0.339346

Station B 0.352963 0.351014 0.346047

Station C 0.337259 0.332885 0.328283

Station D 0.484155 0.486978 0.418194

Table 6: Comparison of R2.

Station Individual model Centralized model BFL model

Station A 0.449324 0.462304 0.459666

Station B 0.440533 0.452443 0.431904

Station C 0.545689 0.547228 0.537538

Station D 0.303390 0.308074 0.315653

Table 3: Comparison of MAE.

Station Individual model Centralized model BFL model

Station A 0.223579 0.216478 0.203644

Station B 0.224377 0.214547 0.216227

Station C 0.201429 0.199328 0.193171

Station D 0.273766 0.274456 0.325277

Table 4: Comparison of MSE.

Station Individual model Centralized model BFL model

Station A 0.125278 0.117591 0.115155

Station B 0.124583 0.123211 0.119748

Station C 0.113743 0.110812 0.107770

Station D 0.234406 0.237148 0.174886
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the real-time performance of our trading platform and use
hyperledger caliper which is an open-source benchmarking
tool to get the average latency of transactions. Further-
more, generating a block of transactions depends on chan-
nel configuration parameters BatchSize and BatchTimeout,
which directly affects the transaction latency. The Batch-
Size is the desired size that is allowed in each block, and
the BatchTimeout is the maximum elapsed duration for
creating a block. In other words, if the size of collected
transactions is less than the BatchSize, the creation of
the block has to wait for the BatchTimeout. Otherwise,
the block will be created directly.

The experiments are performed for the different Batch-
Size with increasing the sending rate of transaction request
from a client node in the same local network. The BatchSize
is set to 100, 200, and 300, respectively, and the sending rate
ranges from 20 TPS to 240 TPS with a 20 TPS interval. For
the BatchTimeout, we set it to 1 second (minimum value)
since a longer BatchTimeout will take longer to create blocks
under the given sending rate. Table 7 provides a detailed ref-
erence of our experimental settings. Figure 9 shows the
experimental results of the average transaction latency. The
proposed BFLSC framework is able to cover the transactions
well within one second, and the standard deviations are also
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Figure 8: Prediction results of PV power stations.

Table 7: Experimental settings.

Parameter Value Unit

Number of organizations 4 /

Number of peer nodes 2 Per organization

Number of orderer nodes 1 Per organization

BatchSize 100/200/300 /

BatchTimeout 1 Second

Sending rate 20/40/60/80/100/120/140/160/180/200/220/240 TPS
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low until the sending rate reaches 200 TPS. However, not
only the average latency but also the standard deviation
increase significantly due to bottlenecks in server perfor-
mance when the sending rate is above 200 TPS.

It is worth noting that the average latency increases
during the sending rate ranges from 20 TPS and 40 TPS,
and it decreases during the sending rate ranges from 40
TPS to 100 TPS. The reason is that it should be waited
to create a block up to the BatchTimeout reached when
the sending rate is low, but the block can be created with-
out waiting when the sending rate is high and the higher
the sending rate has the faster block creation. Additionally,
the latency fluctuation is relatively stable during the send-
ing rate ranges from 100 TPS to 200 TPS. This is because
the time used to create a block within the BatchTimeout is
relatively stable.

7. Conclusion

In response to the initiative of distributed generation partic-
ipating in market transactions locally, this paper takes dis-
tributed PV power as the research object and proposes the
BFLSC framework from the perspective of privacy protec-
tion and data security. The framework includes collabora-
tive prediction of power generation by the BFL approach
and real-time trading strategy based on smart contract.
Compared to the traditional FL method, the BFL method
can predict future generation more accurately while ensur-
ing data security. Additionally, the real-time trading strategy
is executed automatically by smart contract. Once the real-
time power generation predicted by the BFL is obtained,

the smart contract will invoke the designed graph-based
algorithm to match the producers and consumers of electric-
ity, prompting both parties to enter into power transactions.
And then, the transaction information will be deposited by
the blockchain. Simultaneously, the experiments imple-
mented on the Hyperledger Fabric v2.0 network with real-
world data corroborate the validity of our framework. This
work has a guiding role in engineering practice for promot-
ing the construction of blockchain-based electricity trading
platform and accelerating green electricity trading.

In the current work, there are still certain limitations to
the proposed approach. Optimization strategies for the per-
formance of the blockchain network are in the exploratory
stage, lacking targeted optimization measures. The latency
of the blockchain network can be further reduced, and
throughput can be increased. This can be achieved by
designing more efficient consensus algorithms to shorten
the time intervals for block generation. Additionally, opti-
mizing the transaction processing flow and reducing the
confirmation time for transactions can also enhance the scal-
ability of the blockchain.

Faced with the shortcomings of traditional blockchain
architectures in terms of scalability, throughput, latency,
and other performance aspects, researchers in recent years
have been exploring improvements by addressing the data
structure and storage structure of blockchain. Solutions such
as DAG-based blockchain and sharded blockchain have
been designed. In the next phase of this research, we will
continue to investigate how to achieve efficient electricity
exchange on DAG-based blockchain and sharded block-
chain with FL.
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