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This paper presents a multistrategy fusion particle swarm optimization model for dynamic economic dispatching of renewable
energy in distribution networks. The objective is to minimize active network losses and system voltage deviation while
considering the integration of distributed energy sources and static reactive power compensators. The algorithm incorporates
specific strategies, including a particle position change strategy based on the midpipeline convergence approach, a strategy for
generating exploding particles near the optimal particles, and a particle velocity update strategy relying on the global optimal
particle position. The inertia weights and particle position update methods of the simplified particle swarm optimization
algorithm are also utilized. Simulation experiments are conducted on an IEEE 33 bus radial distribution system, demonstrating
the effective optimization of system losses while ensuring system voltage stability. This research contributes to the scientific
understanding of renewable energy integration in distribution networks and its economic dispatching.

1. Introduction

Renewable energy sources are being actively promoted to
replace fossil fuels, as part of efforts to achieve comprehen-
sive green transformation in economic and social develop-
ment [1]. The shift towards clean and low-carbon energy
consumption is accelerating, driving the energy industry
towards high-quality development. The rapid and stable
economic growth has led to increased energy demand and
consumption [2]. To meet this demand while reducing
power losses and emissions, renewable energy-based power
generation technologies, in the form of distributed genera-
tion (DG), are being integrated into existing power networks
to supply electricity to local customers [3–5].

Various studies have been conducted by researchers
worldwide to optimize the siting and capacity planning of
DG from different perspectives. For example, Song et al.
[6] improved the genetic algorithm for distributed power
planning using a multiobjective optimization model. Abo
El-Ela et al. [7] enhanced the gray wolf algorithm by incor-
porating chaotic sequences and considering multiple objec-
tives. Karunarathne et al. [8] applied a chaotic search

strategy in the cat swarm algorithm to minimize system
losses and power purchase costs. Balu and Mukherjee [9]
improved the particle swarm algorithm for determining the
optimal location and capacity of DG.

The integration of renewable energy sources, such as wind
and solar, presents challenges due to their variability and
uncertainty, leading to imbalances in power generation and
consumption [10–14]. The economic operation of renewable
energy sources has become a major research focus. Several
optimization models and algorithms have been proposed,
including those considering wind-heat systems [15], optimal
power system dispatch under combined uncertainty of wind
power [16], and real-time economic dispatch models account-
ing for renewable energy variations [17].

While these solutions have shown promise, there is still a
need to improve their stability and adaptability. Particle
swarm optimization (PSO) algorithms, known for their sim-
plicity and efficiency, have been widely used for optimization
problems. They suffer from limitations such as premature
convergence and low convergence accuracy. To address
these issues, researchers have explored various improve-
ments to the PSO algorithm, such as adjusting inertia
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weights [18], enhancing population diversity [19, 20], and
incorporating other algorithms [21].

In this paper, a multistrategy fusion particle swarm
model is proposed for dynamic economic dispatch of renew-
able energy. The objective is to minimize active network
losses and voltage deviations, while considering the operat-
ing limits of the AC distribution network. The effectiveness
of the proposed model is demonstrated using the IEEE 33
node bus radial distribution system.

2. Methodology

2.1. Optimization Model of Distribution Network System
with Distributed Renewable Energy. For distribution net-
works connected with distributed generation (DG), the con-
trol of active network losses involves optimizing the reactive
power of the system while simultaneously optimizing the
node voltage. The mathematical model consists of an objec-
tive function, power constraints, and equations for control
variables.

To classify additional methods for integrating distrib-
uted renewable energy into the grid, this paper refers to
existing equivalent calculation schemes. The paper catego-
rizes these methods into three groups.

(1) UV access method for distributed renewable energy

For distributed renewable energy sources that operate
with a constant power factor, such as doubly fed wind tur-
bines and static var compensators (SVCs), this paper con-
siders them as UV nodes. In the system load flow
calculation, they are typically treated as loads with negative
power output. The equivalent model for the load flow calcu-
lation can be expressed as

U = −Ums,
V = −V s,

1

whereU andV are the active power and reactive power equiv-
alent to the load of the power supply model and Ums and V s
are the rated active and reactive power output from distributed
renewable energy sources such as doubly fed wind turbines
and SVCs with constant power factor operation.

(2) Distributed renewable energy UQ access method

For asynchronous wind turbine-type distributed energy
connected to the grid through an inverter, this paper treats
it as UQ node.

(3) Distributed renewable energy UX access method

For distributed renewable energy connected by DC cur-
rent control inverter of PV plant type, it can be treated as
UX node. Such nodes can be processed as follows in the tidal
current calculation:

V solar n = Xsolar
2P2

solar n − 1 −U2
solar, 2

where n is the number of iterations, V solar n is the reactive
power of the n-iteration of distributed renewable energy of
the photovoltaic power station type, U solar is the active
power of a photovoltaic power station, Xsolar is the amplitude
of current injected into the distribution network, and Psolar
n − 1 is the node voltage calculated at n − 1 iteration.
Then, the UX node can be transformed into UV node func-
tion by the above equation.

U = −U solar,
V = −f Xsolar

3

Active network loss is a crucial economic and technical
parameter in distribution networks, and optimizing it is
essential for improving equipment operation from an eco-
nomic perspective. Simultaneously, nodal voltage deviation
is an important indicator that impacts the efficiency and
working condition of power equipment, and it should be
taken into consideration.

In this paper, the objective function is established with
the active loss and nodal voltage deviation of the distribution
network system, considering distributed renewable energy,
as the control targets. The control objective prioritizes the
optimization of active network loss and voltage deviation
control. The expressions are as follows:

wxtF =wxt 1 − λ1 F1 + 1 − λ2 ηF2 , 4

F1 =
Ua +∑t

x=1 UDA,x−∑UL
Ua +∑t

x=1 UDA,x
, 5

F2 = 〠
t

x=1

ΔQx

Qx max −Qx min

2
, 6

λ1 + λ2 = 1, 7

where F1 is the active network loss control objective func-
tion, F2 is the voltage deviation control objective function,
t is the total network tributary, Ua is the total active
power input, UDA,x is the active power input of the dis-
tributed power supply at each node, UL represents each
active load of the distribution network, ΔQx is the thresh-
old deviation of node voltage, Qx max and Qx min are the
maximum and minimum voltage values allowed at the
node, and λ1 and λ2 are the weight coefficients of the
objective function, which can be adjusted according to
the control target bias.

When ΔQx ≥Qx max, ΔQx = ΔQx −Qx max. When ΔQx ⩽

Qx min, ΔQx =Qx min − ΔQx. When Qx min ⩽ ΔQx ⩽Qx max,
ΔQx = 0. In this paper, λ1 = 0 7, and λ2 = 0 3. η is the penalty
coefficient of the control voltage deviation, which is
expressed according to the oscillatory dispersion penalty
coefficient treatment as

η = z1 + z2 n + z1n sin 2π
N ′ n −

N ′
4 , 8

2 International Journal of Energy Research



where z1 is the constrained gravitational increasing coeffi-
cient, n is the number of iterations, n′ is the oscillatory
divergence period length, and z2 is the gravitational decreas-
ing coefficient. It is designed to guarantee convergence. In
this paper, z1 = 0 2, z2 = 0 02, and N ′ = 300.

For this reactive optimization model, each node must
satisfy the active power and reactive power balance; i.e., the
condition of equation (9) is satisfied.

Ux +UAx −ULx = Px 〠
t

y=1
Py Axy cos θxy +Hxy sin θxy ,

Vx + VAx + VxSVC −VLx = Px 〠
t

y=1
Py Axy cos θxy −Hxy sin θxy ,

9

where ULx and VL,x are the active and reactive power loads
at node x, VxSVC is the reactive power output of the SVC
connected to node x, θxy is the voltage phase angle difference
between nodes x and y, and Axy and Hxy are the node con-
ductance and conductance.

In the actual model, the voltage and reactive power com-
pensation capacity of each node are limited to a certain
range to ensure power quality and investment control. After
the distribution network is connected to DG, the node volt-
age amplitude is controlled by the access of SVC equipment,
and the variable constraints are shown in equation (10).

UAx min ⩽UAx ⩽UAx max,
VAx min ⩽VAx ⩽VAx max,
Px min ⩽ Px ⩽ Px max,
VxSVCmin ⩽VxSVC ⩽VxSVCmax,

10

where VxSVCmin and VxSVCmax are the minimum and maxi-
mum allowable power output values of the static reactive
power compensation device connected to node x.

2.2. Improved Particle Swarm Algorithm for
Multistrategy Fusion

2.2.1. Convergence Strategy of the Midperm Algorithm. Mid-
perpendicular algorithm (MA) is a new swarm intelligent
optimization algorithm. The algorithm makes use of the
property of the middle vertical line in geometry: the distance
between any point on the middle vertical line and the two
ends of the line segment that is bisected is equal. As shown
in Figure 1, it is assumed that there is only one optimal point
U in a sufficiently small range (the inner region of the outer
rectangle) in two-dimensional space, there are random
points G and H, and the midvertical of the line segment con-
necting the two points is L. The distance from G to U is less
than the distance from H to U , because any point on L is the
same distance from G and H. But if UG < UH , U must
exist in the region near G side of L. MA replaces the distance
from the optimal point with the fitness of the point; that is,
in Figure 1, the fitness of point G is superior to that of point

H, and P has the best fitness. Taking Figure 1 as a specific
case, the convergence process of MA is as follows:

(1) MA determines that the region where the optimal
value U exists must be located in the region of the
midpipeline against the G side (the yellow region in
Figure 1), and U must not be located in the region
of L against the H side

(2) MA discards the original point H and generates a
new random point H ′ in the region of L against G

(3) Make G and H ′ form the midline of the line L′, as
shown in Figure 1. At this point, H ′ is closer to point
U ; that is, H ′ is better adapted, so MA determines
that the optimal value must exist in the region of
L′ against H ′ (the orange grid region in Figure 1)

A new point G is generated in the area where the optimal
point is likely to exist, and then, the space where the optimal
point is located can be narrowed down by the midpipeline
determination method. Repeat the above steps to find the
optimal point.

2.2.2. Particle Position Change Strategy Incorporating
Convergence Strategy of Midpipeline Algorithm. The stan-
dard PSO adjusts the velocity of each particle by the rela-
tionship between the current best particle position abest
and the historical best position ubest of each particle and
the current particle position i. The specific adjustment
method is as follows.

qxy n + 1 =mqxy n + c1r1 ubestxy − ixy n

+ c2r2 abestxy − ixy n ,
11

ixy n + 1 = ixy n + qxy n + 1 , 12

where m is the inertia factor, c1 is the individual learning
rate, and c2 is the population learning rate. This strategy
allows each particle to be influenced by the population

H

G

H′

L′

P

L

Figure 1: Principle diagram of the midpipeline algorithm.
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optimal position and the individual historical optimal posi-
tion, so as to find the optimal solution. Relying only on par-
ticle velocity to regulate the position of particles is likely to
lead to slow convergence of PSO.

If a random particle C is added in Figure 1, C is
located in the region of H side of the middle good line,
as shown in Figure 2. If the particle position update strat-
egy of PSO is used to update the positions of points H
and C, it must take several iterations to reach the region
of the midpipeline on the G side. To address this problem,
this paper proposes to move particles H and C to H ′ and
C′ before using the particle velocity and position update
strategy of PSO. The particles H and C are moved to
the vertical foot which is perpendicular to L′ past point
B or C. And then, the particle velocity and position update
strategy of PSO is used to change the particle positions.
The above strategy algorithm is implemented as follows.
The evaluation involves determining whether the particle
is located in the region of the midpipeline against the H
side and setting it accordingly.

G = g1, g2,⋯,gD ,
H = h1, h2,⋯,hD

13

Then, if a particle x is located in the region near the H
side of the vertical line, the y-th dimension variable of i
satisfies the following inequality.

λ1iy + λ2iy+1 + λ3 > 0, y <D,
λ1iy + λ2i1 + λ3 = 0, y =D,

14

where

λ1 = 2 × hy − gy ,

λ2 = 2 × hy+1 − gy+1 ,

λ3 = gy

2
− hy

2 + gy+1
2
− hy+1

2,

y ∈ 1,D − 1 ,

λ1 = 2 × hy − gy ,

λ2 = 2 × h1 − g1 ,

λ3 = gy
2
− hy

2 + gy+1
2
− h1

2,

y =D

15

To improve the global optimization performance of the
algorithm, the particle x only needs to have any two-
dimensional variables that do not meet the above condi-
tions. That is, it is determined that the position of the par-
ticle is located in the small good line against the G side
region, and the position of the particle does not use the
above strategy. If it is determined that the particle is
located in the region of the middle vertical line against

the H side, the y-th and y + l -th dimensional variables
of ix are updated as follows.

ixy′ =
λ22ixy − λ1λ2ixy+1 − λ1λ3

λ21 + λ22
,

ixy+1′ =
λ21ixy+1 − λ1λ2ixy − λ2λ3

λ21 + λ22
,

y <D,

16

ixy′ =
λ22ixy − λ1λ2ix1 − λ1λ3

λ21 + λ22
, y =D 17

Figures 3 and 4 show the variation of particles when find-
ing the minimum of the function f i = i21 + i22 for the
improved PSO algorithm incorporating the above strategies.

From the comparison of particle position variation in
Figures 3 and 4, it can be seen that the improved particle
position variation approach incorporating the convergence
strategy of the midpipeline algorithm has the following
advantages and problems.

(a) When facing a single extremum problem, the slow
displacement of particles that are in the region
judged by the MA convergence strategy as impossi-
ble to exist at the best advantage can be effectively
avoided. This helps to accelerate the convergence
accuracy of the algorithm. Compared with the con-
vergence strategies of the particle swarm algorithm,
genetic algorithm, and whale algorithm, the conver-
gence strategy of MA has great advantages in con-
vergence accuracy and speed

(b) When facing a complex optimization problem with
multiple extremes, the convergence strategy of the
midpipeline algorithm may cause the particle swarm
algorithm to directly discard the optimal point range
and search in the minimal value range. As the popu-
lation of the algorithm increases, the probability of

H

G

H′

C′

C

L′

P

Figure 2: Principle diagram of the improved algorithm.
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occurrence of this situation decreases significantly.
At the same time, as the algorithm’s extreme value
points increase, the probability that the distance
between the optimal points G and H determined at
each iteration is greater will be greater, and the range
of optimal points determined by the convergence
strategy of MA will be greater, causing a further
reduction in the probability of the above problem.
The convergence strategy of the midpipeline algo-
rithm will cause a reduction in the global merit-
seeking performance of the algorithm, but the reduc-
tion is not significant

(c) Despite the appeal problem, if the region where the
optimal point exists as determined by the previous
MA convergence strategies is correct, all particles
will be searched in the correct region. This can
greatly enhance the global optimal search perfor-
mance of the algorithm in that region

2.2.3. Optimal Particle Explosion Strategy. When the optimal
particle abest of traditional PSO updates the velocity of a
particle according to equation (11), the particle position of
the next generation generated will often be inferior to that
of the previous moment, relying only on the historical infor-
mation of that particle. The role of the optimal particle is not
fully explored causing the algorithm’s optimization-seeking
accuracy and speed to decrease. To address this problem,
this paper proposes an optimal particle explosion strategy
to generate a certain number of particles around the optimal
particles. These particles are generated in the following way.

eity = abesty +
abesty − hy rand −1, 1

4n 18

The y-th dimensional variable of the t-th exploded parti-
cle eit is generated in equation (18). These particles are gen-
erated around the optimal particle, and the range of
generated particles is 1/4 of the difference between the
dimensions of the optimal particle abest (i.e., point G) and
point H.

2.2.4. Improved Particle Velocity Update Strategy. The tradi-
tional particle swarm algorithm affects the velocity of parti-
cles by the historical best position of each particle. After
adopting the midpipeline strategy, if the historical position
information of the particles is used, the particles will return
to the position on the H side of the midpipeline, which will
affect the convergence speed of the algorithm. The following
particle velocity update strategy is used.

qxy n + 1 =mqxy n + c2r2 abestxy − ixy n 19

If the total number of population particles is w and t
exploding particles are generated around the optimal parti-
cles, then the number of traditional particles that need posi-
tion updating is w – t . To enhance the ability of the
algorithm to jump out of the local optimum, the population
of traditional particles is divided into two parts. Let a part of
the traditional particles update their positions according to
equation (19), and the proportion of this part to the total
number of particles is α. To ensure that most of the particles
keep approaching, the optimal value set α = 0 6,1 . The
remaining conventional particles update the particle velocity
according to

eqxy n + 1 =mqxy n + c2r2 eity − ixy n 20

That is, the velocity of particle ix is influenced by the
explosive particle eit , making the particle converge to the
explosive particle eit . The x-th conventional particle ix is cho-
sen to converge to the t-th explosive particle eit with equal
probability. After the velocity update using equations (19)
and (20), the position change of different particles is shown
in Figure 5. The particle with velocity update by equation
(19) will be close to the current optimal point abest. The par-
ticle with velocity update by equation (20) will be close to the
particle eit produced by the explosion of abest.
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Figure 3: Variation of particle position of traditional PSO algorithm.
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Figure 4: Variation of particle position of the improved PSO
algorithm.
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Using this strategy has these advantages: (a) part of the
particles updated by the speed of equation (19) can ensure
that part of the algorithm constantly converge to the optimal
point, which helps the algorithm to stabilize. (b) The velocity
update of some particles according to equation (20) can
make some of the particles in the algorithm positioned close
to the exploding particles around the optimal particles. This
can enhance the diversity of particle populations and
enhance the global optimization finding ability of the
algorithm.

2.2.5. Improved Particle Position Update Strategy. In this
paper, a particle position update strategy is proposed using
the following equation, and its effectiveness in improving
the global optimization-seeking capability of the algorithm
is demonstrated.

ixy n + 1 =mixy n + 1 −m qxy n + 1 21

2.2.6. Inertia Weight Update Strategy. A nonlinearly varying
inertia weight based on logistic mapping is also proposed,
which is defined as follows.

r n + 1 = 4r n 1 − r n , r 0 = rand, r0 ≠ 0,0 25,0 75,1 ,

m n = r n mmin +
mmax −mmin n

Nmax
,

22

where mmin = 0 9 and mmax = 0 4. The nonlinear inertia
adjustment method of equation (22) using logistic mapping
is more likely to make the algorithm jump out of the local
optimum, the inertia weight update method is described in
equation (22). The variation of inertia weights with increas-
ing number of iterations is shown in Figure 6.

2.2.7. Algorithm Implementation Steps. According to the
above introduction, the implementation of the improved

multistrategy fusion particle swarm optimization algorithm
in this paper can be obtained.

By fusing these strategies together, the proposed algo-
rithm combines the exploration capability of exploding par-
ticles, the exploitation capability of conventional particles,
and the update strategies based on particle velocities and
positions. The algorithm dynamically adjusts the particle
velocities and positions, using both global and historical
information, to guide the search towards better solutions.
This fusion of strategies enables proposed method to effec-
tively balance exploration and exploitation, leading to
improved optimization performance and the identification
of optimal solutions.

3. Result Analysis and Discussion

3.1. Experimental Setup. To verify the superiority and feasi-
bility of the proposed algorithm, this paper carries out the
analysis of the algorithm based on the IEEE 33 node distri-
bution network model with enhanced distributed genera-
tion. The experimental analysis is performed using Python
2.7 environment, and the implementation platform is a stan-
dalone Intel Xeon E5-2650 processor. In this experiment, the
number of populations is 200, the maximum number of iter-
ations is 250, and the experimental results are averaged. The
algorithm of this paper was tested on an IEEE 33 bus radial
distribution system (see Figure 7).

3.2. Analysis of Simulation Results

3.2.1. Analysis of Network Loss Impact. Minimal value seek-
ing is performed on the normalized objective function after
normalization. Literatures [22, 23] are used to compare with
the algorithm in this paper, and the results are shown in
Figure 8.

As can be seen from Figure 8, in the scheme where DG is
not connected to the distribution network, the active power
loss of the system can reach about 2012.1 kWh. After the DG
is connected to the distribution network, the active power
loss is reduced from 2012.1 kW to 957.3 kW by using the
proposed model. Literature [22] and literature [23] are

H
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Figure 5: Particle position change after improving the velocity
update strategy.
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Figure 6: Variation of inertia weights with the number of iterations.
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smaller than the optimization results of the proposed algo-
rithm. The experiments prove that the optimized model of
this paper has significantly improved the system absorption
and support capacity and enhanced the power transmission
capacity of the distribution network.

3.2.2. Node Voltage Impact Analysis. Figure 9 shows the volt-
age scaling values of each node before and after the access to
DG with different optimization models for siting and capac-
ity determination. From the figure, it can be seen that the
minimum values of node voltages have been increased after
accessing DG. When the distribution network is not con-
nected to DG, the minimum value of system voltage is
around 0.265 p.u. at node 32. In literature [22], the lowest
node voltage amplitude was found at node 16 with
0.442 p.u. after the optimization of the model. In literature
[23], the lowest node voltage amplitude occurs at node 18,
which is about 0.496 p.u. The lowest node voltage amplitude
occurs at node 30 after the input of the model optimization
strategy in this paper, reaching a minimum voltage of
0.545 p.u. at the node. The results indicate that the overall
boost voltage level is the best. In summary, in terms of

Input: same initial values for variables, fitness function, maximum number of iterations, problem dimension.
Output: best fitness value, optimal particles.
1) Initialize parameters: population learning rate, particle velocity parity, number of exploding particles t, total population w, mmin
and mmax.
2) Initialize the population of traditional particles by generating (w − t) particles and calculate the fitness for each particle.
3) Set the particle with the best fitness as abest (point G) and the particle with the second-best fitness as point H.
4) Generating inertia weights m with equation (22).
5) Generating t exploding particles by equation (18).
6) Update the velocities of α × t −w random conventional particles using equation (19).
7) Update the velocities of the remaining traditional particles using equation (20).
8) Update the positions of traditional particles using equation (21).
9) Calculate the fitness of all traditional particles.
10) Update the values of abest (point G) and point H.
11) Check if the end condition of the algorithm is met. If so, terminate the algorithm; otherwise, go to step 4.

Algorithm 1: Multistrategy fusion particle swarm algorithm.

1 2

Main network

Base voltage
12.66 kV

3 4 5 6

23 24 25

7 8

19 20 21 22

9 10 11 12 13 14 15 16 17 18

26 27 28 29 30 31 32 33

Figure 7: IEEE 33 bus system diagram.
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voltage magnitude, the model in this paper has the best
improvement on the system voltage, the model in literature
[23] has the second-best improvement, and the model in lit-
erature [22] is the worst.

3.2.3. Comparative Analysis of Algorithm Effect. To demon-
strate the optimization effect of the improved particle swarm
algorithm, the improved algorithm in this paper and two
other comparative algorithms are used to optimize under
the same network. The results are shown in Figure 10 and
Table 1.

It can be seen from Figure 10 that the proposed algo-
rithm has the smallest value of network loss. The improved
PSO optimization algorithm access in this paper plays a sig-
nificant role in the network loss reduction of the distribution
network system. It shows that the algorithm improves the
individual location optimization of the population and is
effective, and the distributed power supply is connected
from the lowest voltage node of the distribution network,
which can raise the voltage of the accessed point and slow
down the tidal current movement on the feeder, reducing
the net loss to some extent. Since the results are better than
other algorithms from the beginning, the convergence speed
will be faster during the next optimal solution fine-tuning
strategy.

Table 1 reveals that the three algorithms exhibit similar
iteration accuracy, yet the enhanced PSO optimization algo-
rithm presented in this paper demonstrates superior optimi-
zation accuracy. Regarding optimization efficiency, this
algorithm achieves an average of 71 iterations, while the
other two algorithms require 131 and 175 iterations. The
improved algorithm in this paper exhibits the lowest number
of iterations. Upon conducting 100 runs for each of the three
algorithms, the algorithm proposed in this paper showcases
the highest optimization efficiency, the shortest average time
consumption, and superior optimization accuracy and
efficiency.

Based on the experimental results, the proposed multi-
strategy fusion particle swarm optimization model demon-

strates superior performance compared to other state-of-
the-art optimization algorithms in several key aspects:

(1) Network loss impact: the proposed algorithm signif-
icantly reduces network losses in the IEEE 33 node
distribution network model, surpassing other state-
of-the-art algorithms

(2) Node voltage impact: the proposed algorithm effec-
tively improves node voltage levels, leading to
enhanced system voltage magnitude

(3) Comparative analysis of algorithm effect: the pro-
posed algorithm achieves the smallest network loss
value compared to other algorithms. It also demon-
strates superior optimization accuracy and efficiency
with the fewest iterations required

The proposed algorithm exhibits clear superiority in
terms of network loss reduction, node voltage improvement,
optimization accuracy, convergence speed, and time con-
sumption. These findings validate its effectiveness and com-
petitiveness in optimizing the dynamic economic dispatch of
renewable energy sources.

The proposed algorithm addresses the variability of
renewable energy sources, such as wind and solar power,
through dynamic economic dispatch strategies. It incorpo-
rates real-time optimization and forecasting techniques to
account for the uncertain and fluctuating nature of these
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Table 1: Comparison of optimization results of different
algorithms.

Algorithm Literature [22] Literature [23] Proposed

Minimum net
loss (kWh)

1257.16 1392.72 957.33

Average number
of iterations

131 175 71

Average time (s) 17.9 25.5 15.3
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energy sources. By optimizing the scheduling and allocation
of power generation, the algorithm effectively utilizes renew-
able energy while meeting load requirements. It adjusts
power generation levels based on real-time measurements
and feedback, ensuring efficient integration into the power
grid. The proposed algorithm enables the effective utilization
of renewable energy and reduces reliance on conventional
sources.

4. Conclusion

This paper presents a multistrategy fusion-improved particle
swarm algorithm for grid-connected optimization in distrib-
uted renewable energy systems. The algorithm focuses on
minimizing network losses and enhancing node voltage sta-
bility, providing significant scientific value and practical
applicability. By integrating the convergence strategy of the
midperpendicular algorithm and the optimal particle explo-
sion strategy, the algorithm achieves faster convergence with
maintained accuracy. Simulation results demonstrate its
effectiveness in reducing active power loss and voltage fluc-
tuation, thereby improving power quality in distribution
networks. Comparative analysis against traditional optimi-
zation algorithms verifies its superior performance in power
loss reduction and voltage distribution. This study addresses
specific optimization challenges in distributed renewable
energy systems, showcasing its novelty. The extended appli-
cation of this approach to systems incorporating renewable
energy sources contributes to sustainable energy manage-
ment. Additionally, the algorithm’s applicability in dynamic
pricing for energy markets, considering environmental fac-
tors, presents new opportunities for efficient and ecofriendly
energy systems. While the study demonstrates promising
results, it is important to acknowledge limitations and
potential challenges. Further investigation is needed to
address scalability, parameter tuning, and handling the
dynamic nature of renewable energy sources. Resolving
these challenges will enhance the real-world implementation
of the proposed algorithm.
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