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Buildings play a critical role in energy consumption, representing one of the primary consumers of power. Heating load (HL) and
cooling load (CL) are essential for determining the energy efficiency of buildings. Several research projects attempt to address the
critical challenge of enhancing energy efficiency in residential buildings, focusing on accurately estimating HL and CL using
solutions that implement statistical prediction or typical building control management. This study, however, looked into
advanced machine learning (ML) models for sustainable building design based on harnessing the potential of artificial
intelligence and explainable AI (AIX) technologies. The proposed model was trained and tested using a dataset of 768
buildings based on feature engineering methods with various ML algorithms (including cutting-edge emotional neural learning
(ENN), nonparametric kernel-based probabilistic models known as Gaussian process regression (GPR), and boosted tree (BT)
algorithm). In addition, the output of the model was fed to standard building energy performance software (Ecotect) that
utilizes the dataset from twelve different building shapes to perform various building energy efficiency analyses. The overall
performance of the proposed model was measured using different performance metrics, including MAPE, MAE, RMSE, and
PCC to measure the performance of HL- and CL-based building energy efficiency. The performance evaluation results indicate
that the M3 variants, especially GPR-M3, consistently outperformed their counterparts across heating and cooling scenarios.
The three models indicated reliability for modeling HL and CL. However, for HL, the GPR-M3 model emerged as the best
model, outperforming GPR-M1 by 9.2% and GPR-M2 by 3.9%. Similarly, GPR-M3 is superior to CL, with the highest PCC at
0.9858, marking an 8.1% and 1.9% improvement over GPR-M1 and GPR-M2, respectively.

1. Introduction

In today’s climate, the discourse addressing residential
energy consumption has moved beyond a mere conversation
about conserving resources. It now stands as a vital compo-
nent in the global machinery working towards sustainable
living and environmental preservation [1]. In light of esca-
lating energy prices, growing environmental concerns, and
a global shift towards sustainable design, the demand for
energy-efficient buildings is reaching new heights. Given
that they are the cause of a considerable portion of world-
wide energy consumption and subsequent carbon emissions,
buildings, particularly their heating load (HL) and cooling
load (CL), have emerged as key elements in the quest for

substantial energy savings and a means of achieving a signif-
icant reduction in greenhouse gas emissions [2]. Despite the
growing volume of data being generated that highlights
potential advancements in energy management, a significant
disparity between anticipated and actual building energy
consumption remains [1, 3]. With an ever-diminishing store
of energy resources and the escalating environmental reper-
cussions, residential energy consumption has garnered sig-
nificant attention from various sectors of society [4]. In
this regard, ensuring efficient energy use in buildings, partic-
ularly concerning HL and CL, has become paramount. The
increasing urgency stemming from depleting energy
resources and growing environmental impacts has put resi-
dential energy consumption in the spotlight [5]. The
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profound impact of a building’s geographical location on
temperature differences, a significant factor affecting heating
and cooling loads, highlights the need for a more compre-
hensive understanding of influential parameters affecting
the development of more energy-efficient buildings [6].

The importance of understanding and reducing HL and
CL cannot be understated. These elements significantly
influence overall building energy consumption. Despite the
unwavering efforts of researchers in this field, a robust solu-
tion to managing and minimizing these loads effectively
remains crucial [7]. The geographical location of a building
profoundly impacts the temperature difference, a key vari-
able affecting these loads [8]. While architects and engineers
often seize on these limitations, a comprehensive under-
standing of other influential parameters can facilitate the
design of more energy-efficient buildings. An extensive
range of literature explores diverse facets of building design
to optimize energy consumption. Investigations into various
roof designs and materials, such as integrating hollow-core
masonry and precast concrete slabs into buildings, have
offered valuable insights [9, 10]. Nevertheless, a consistent
issue that emerges in these studies is the challenge of multi-
collinearity or the excess dimensionality in building energy
performance modeling. This issue indicates the necessity of
a more refined approach towards constructing robust
models in this area, emphasizing not only accuracy but also
sensitivity issues to ensure reliable predictions and conclu-
sions [11]. The global outlook of energy consumption
underscores the urgency of this endeavor. Buildings account
for a significant portion of world energy use, contributing to
approximately 40% of all energy usage and 33% of CO2
emissions globally [11]. The imperative for energy-efficient
building design is not just about conserving energy; building
energy efficiency plays a crucial role in mitigating climate
change by reducing greenhouse gas emissions. With the
increasing interest in building energy load, optimizing these
burdens emerges as an evident and effective strategy for sub-
stantial energy savings and reduced emissions [12].

However, traditional engineering-based building energy
modeling often falls short and is unable to accurately predict
actual energy usage due to various unpredictable factors,
including occupancy patterns and weather fluctuations. This
divergence from predicted to actual energy consumption
highlights the pressing need for innovative approaches in
building energy management [13, 14]. One such promising
avenue is the integration of machine learning (ML), artificial
intelligence (AI), and data-driven approaches in building
energy management. The explosion of data generated by
buildings, amplified by the Internet of Things (IoT), has
cleared the way for a more complex and accurate approach
to managing building energy consumption and other appli-
cations. Predictive algorithms, supported by historical
energy consumption data and weather forecasts, hold the
potential to revolutionize building energy management [15,
16]. These algorithms can empower building operators to
make more informed decisions, optimizing energy use, and
reducing costs. This newfound reliance on data goes beyond
mere energy consumption estimating. Algorithms utilizing
energy consumption data have aided the creation of regional

energy-consumption maps, offering policymakers valuable
insights for the efficient allocation of energy. This data-
driven approach extends to the benchmarking of building
stocks, allowing for a more streamlined and automated pro-
cess and fostering a more informed and effective strategy for
global retrofitting and improvements in building energy effi-
ciency [17].

This data-driven method also facilitates the benchmark-
ing of building stocks, enabling a more simplified and auto-
mated process. This enhancement contributes to a more
informed and effective global strategy for retrofitting and
enhancing building energy efficiencies. Hence, advancing
energy performance efficiency in residential buildings is a
multifaceted challenge that necessitates a fresh perspective
and innovative approach. The integration of ML and
explainable AI is a promising avenue, offering enhanced
accuracy in energy consumption prediction and more
informed decision-making processes, ultimately leading to
substantial energy savings, emission reduction, and progress
towards sustainable and energy-efficient residential build-
ings. This study is mainly aimed at contributing to the
enhancement of residential buildings’ energy efficiency by
leveraging advanced computational techniques, specifically
applying various ML models and ensuring their alignment
with global sustainability visions such as the United Nations’
Sustainable Development Goals (SDGs). For this purpose,
the study drives the primary objective to enhance the energy
efficiency of residential buildings by leveraging advanced
computational techniques. Specifically, through comparative
analysis, the study explores the performance of several ML
models, including emotional neural learning (ENN), Gauss-
ian process regression (GPR), and boosted tree (BT) algo-
rithm in determining HL and CL. The study employed a
dataset of 768 buildings that feature various engineering
methods; the research is aimed at validating and assessing
the reliability of these models through performance metrics.
However, the key focus is placed on the effectiveness of the
standalone models. Furthermore, by integrating explainable
AI (AIX), the study ensures that the insights derived are
accurate, interpretable, and actionable for stakeholders,
highlighting the potential of these models in promoting sus-
tainable building designs aligned with global sustainability
visions.

2. State-of-the-Art Research

The recent state-of-the-art literature features a significant
shift towards leveraging AI-based models in enhancing resi-
dential building energy efficiency modeling. Cutting-edge
studies indicate AI’s ability to accurately predict and opti-
mize building energy consumption, surpassing traditional
methodologies substantially. Advanced AI algorithms, par-
ticularly ML and deep learning models, have demonstrated
exceptional adeptness in handling the complex nature of
energy data, uncovering intricate patterns and relationships
that are hard to discern using conventional analytical tech-
niques. These innovative, AI-driven models aid the produc-
tion of more precise, reliable, and immediate energy
performance predictions, contributing to the design of
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highly energy-efficient residential buildings. The use of AI in
this context signals a transformation, indicating a new era of
elevated energy efficiency, sustainability, and environmental
stewardship in residential building design and operation.
Various AI and ML models have been applied in computa-
tional analysis and prediction of building efficiency in terms
of HL and Cl, such as artificial neural network (ANN), sup-
port vector regression (SVR), and linear and polynomial
least square regression (PLS) [8, 18, 19]. For instance, Zhang
and Haghighat [20] developed a regression approach to pre-
dict monthly heating demand for single-family homes in
temperate climates. Aimed at assisting architects and design
engineers in early project stages, the models facilitate swift
parametric studies for optimizing building structures against
various criteria. Cheng and Cao [7] introduced multivariate
adaptive regression splines (MARS) for predicting building
energy performance efficiently. MARS, combined with an
artificial bee colony, optimizes parameter settings for mini-
mal error. The results found were reliable according to their
error values.

Similarly, Nilashi et al. [21] utilized AI-based models to
devise an effective strategy to estimate household energy effi-
ciency by employing ANN and SVR. However, their
research overlooked hyperparameters’ impact on their
models’ efficiency. Sekhar Roy et al. [22] explored ML
methods to predict residential building energy consumption.
They found that tree predictions were most effective with
random forest (RF) or KNN but ignored the role of hyper-
parameters. In 2018, Dan and Phuc [23] investigated the
utility of novel ML in predicting energy consumption for
building designs. They scrutinized diverse ML algorithms
without exploring the influence of parameter adjustments
on performance results. Likewise, Li et al. proposed a cooling
load prediction study using several ML models, viz., SVR
and ANN, with SVR outperforming the ANN model. Simi-
larly, other published literature proved the application of
ML in building sectors [24, 25]. Furthermore, Jain et al.
[26] highlighted the urgent need for advanced energy con-
sumption forecasting in buildings. The study introduces a
sensor-based SVR model that was used to analyze a New
York residential building’s data. The study identified optimal
forecasting with hourly, by-floor monitoring, contributing
significantly to future energy efficiency initiatives and smart
metering deployment. A detailed application of ML in
energy systems has been conducted by Entezari et al. [27].
Figure 1 displays the bibliographic information of a decade’s
review of AI and ML models used in an energy system. This
analysis maps the recurrent keywords in various areas of an
energy system. Figure 1 demonstrates the interconnected
fields of AI and ML within the energy field, forming four
major research clusters.

Notwithstanding numerous attempts and progress in the
field, there remains a notable and unaddressed gap in the
development of an ideal model utilizing a field of algorithms
for increasing the accuracy of energy prediction [28]. Past
efforts, such as the research conducted by [27, 29–31], have
made meaningful contributions by examining the influence
of various factors on the heating and cooling loads (HL
and CL) in residential buildings. Their insights, particularly

regarding the significant impact of wall area and window-
to-wall ratio, have shed light on the intricate dynamics of
building energy consumption. Nonetheless, exploration of
the scope of ML for energy forecasting has encountered sub-
stantial challenges. Addressing these difficulties, [32, 33]
introduced a pioneering standalone and hybrid model. Their
innovative approach, which combines improved optimiza-
tion with a cutting-edge deep learning method, showcased
exemplary performance, outshining alternative predictive
methods in estimating both HL and CL. Yet, despite these
advancements, the sector remains in its nascency, with a
limited number of studies employing explainable ML to esti-
mate building energy usage. In light of this, the present
research employed a novel approach, aiming to enrich this
growing field of study. It introduces a predictive model for
building energy consumption, utilizing GPR, BT, and ENN
models to consider both HL and CL. Subsequently, the out-
come was integrated with the newly explainable ML
approach based on SHapley Additive exPlanations (SHAP).
This groundbreaking model fills a knowledge gap, offering
an optimized configuration that substantially enhances
energy consumption prediction using a combination of ML
and advanced metaheuristic search-based techniques.

It is worth noting that the model’s unique design and
functionality are indicative of its potential to significantly
reduce search complexity and elevate the precision of energy
consumption predictions [34, 35]. This enhancement is not
merely incremental but marks a substantial increase forward
in the field of energy prediction. By accurately predicting
building energy demands, this inventive model stands as a
beacon in the mission to curtail energy wastage and augment
energy efficiency in buildings [36]. This is not just a theoret-
ical advantage; it translates into tangible benefits, including a
reduction in energy costs and the expansion of access to
cost-effective and clean energy [37]. Moreover, by incorpo-
rating AI-based model approaches, the model lays the foun-
dation for a substantial increase in building energy
efficiency, contributing to a marked reduction in the overall
carbon footprint. This is essential in facilitating the global
shift towards more sustainable and environmentally friendly
energy sources, addressing not only the immediate concerns
around energy efficiency but also the broader, more encom-
passing issue of global sustainability.

3. Methodology of Research

3.1. Data Background. To conform standard mathematical
notation, the energy performance data for various building
shapes were determined based on simulations using Ecotect
software, as outlined in the research conducted by Tsanas
and Xifara [38]. The dataset comprises information for 12
different building shapes, incorporating a total of 10 vari-
ables that include eight input and two output variables.
The input variables comprise factors such as relative com-
pactness (RC), surface area (SA), wall area (WA), overall
height (OH), orientation (OT), glazing area (GA), and glaz-
ing area distribution (GD). The output variables include
heating load (HL) and cooling load (CL). The orientation
input variable contains four discrete values representing
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the cardinal directions, while the glazing area input variable
consists of four discrete values representing various percent-
ages of the floor area (0%, 10%, 25%, and 40%). Glazing area
distribution is described by five discrete values correspond-
ing to different distribution scenarios. A total of 768 simu-
lated building cases are encompassed in this dataset, each
characterized by the eight aforementioned input variables
and the recorded HL and CL. For the simulated buildings,
consistent volume (771.75m3), materials, and internal con-
ditions are maintained to ensure uniformity in the simula-
tions. The buildings, situated hypothetically in Athens,
Greece, assume residential usage with specific internal
design conditions that include clothing level, humidity, air
speed, and lighting level. Various glazing area percentages
and distributions, alongside different orientations, are used
to simulate diverse building samples. Despite potential
biases or inconsistencies in the simulation data, the experi-
mental results are regarded as a reliable representation of
actual real-world data for the purpose of this study, provid-
ing valuable insights into the likely changes and trends in the
energy performance of buildings with varying parameters
[21, 38, 39]. The standard serves as a basis for conducting
and analyzing building energy performance simulations,
facilitating energy comparisons of buildings, and contribut-
ing to the development of energy-efficient building designs.

3.2. Data Exploration and Building Information. The data
source and quality were clearly stated by Tsanas and
Xifara [38]; the potential biases or limitations in the data-
set have already been addressed in [38]. This mathematical
notation standard is based on the source dataset developed
by Tsanas and Xifara [38], available in the UCI ML repos-
itory, which includes energy performance data from simu-
lations of 12 distinct residential building types with a
uniform volume of 771.75m3 but varying envelope fea-
tures. The material selection for these buildings was metic-
ulously chosen to achieve the lowest U-values, with
specifications including walls at 1.78m2K/W, floors at
0.86, roofs at 0.50, and windows at 2.26. The window-to-
floor ratio in the simulations varies from 0% to 40%,
and six different glazing distribution scenarios, ranging
from uniform glazing to no glazing, are applied. Each sim-
ulated building is occupied by seven individuals predomi-
nantly involved in sedentary activities. The ventilation
system operates in mixed mode with a 95% efficiency
and a thermostat setpoint range of 19–24°C. The opera-
tional hours for the buildings are set from 3pm to 8pm
(15 : 00–20 : 00) on weekdays and from 10 am to 3pm
(10 : 00–15 : 00) on weekends. Furthermore, a consistent
lighting level of 300 lux is maintained in all building sim-
ulations. Despite the simulated nature of the data, it offers

Figure 1: A comprehensive network of energy, AI, and ML models [27].
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substantial insights into the energy performance of various
building types, aiding in the assessment and comparison
of energy efficiency across diverse building designs and
parameters (see Figure 2(a)). The selected materials for
the simulation had the lowest contemporary U-values,
with specific values for walls, floors, roofs, and windows.
The internal conditions of the buildings were also meticu-
lously set, including factors like clothing, humidity, air
speed, and lighting level. The simulation used a mixed
mode with 95% efficiency and a thermostat range of 19–
24°C. Operational times were assigned as 15–20 hours on
weekdays and 10–20 hours on weekends (see
Figure 2(b)). Further details about the simulations are pro-
vided in the study by Baalousha [40]. The number of cases
and a visual representation are presented in Table 1.

RC = 0.98 RC = 0.90 RC = 0.86 RC = 0.82

RC = 0.79 RC = 0.76 RC = 0.74 RC = 0.714

RC = 0.69 RC = 0.66 RC = 0.64 RC = 0.62

(a)

Overall
height

(b)

Figure 2: (a) Building shape and (b) genetic definition of building areas.

Table 1: Input-output variables and representations.

Abbreviation Target variable No. of possible values

RC Relative compactness 12

SA Surface area 12

WA Wall area 7

RA Roof area 4

OH Overall height 2

OT Orientation 4

GA Glazing area 4

CG Glazing area distribution 6

HL Heating load 586

CL Cooling load 636
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3.3. Data Processing, Reliability, and Analysis. Generally,
data processing, reliability, and analysis are critical elements
for extracting meaningful insights from raw data. Efficient
data processing entails collecting, cleaning, and transform-
ing raw data into a usable format and thus ensuring its reli-
ability for analysis [41]. Reliability highlights the consistency
and stability of data, which is fundamental for accurate anal-
ysis and decision-making. It ensures that the data accurately
represent the information they are intended to measure and
are free from errors and biases. Table 2 outlines the statisti-
cal characteristics of the utilized datasets. Figure 3 graphi-
cally demonstrates the distribution of data parameters
engaged in formulating the model. These visual interpreta-
tions are essential in identifying variable values lacking suffi-
cient data, highlighting areas necessitating additional data
for enhancing the model’s predictive accuracy [42]. In this
paper, the computations reported are for both data pre-
processing and postprocessing and are integral. This
necessity primarily stems from the requirement for outlines,
and the cleaning process was conducted as mentioned in the
results section (Figure 3). This process is vital as it repre-
sents the covariance information among variables, support-
ing the accurate depiction of dependencies. However, all
variables in the study were normalized prior to the model
development, ensuring a mean of zero and a variance of
one, as achieved by a specific linear transformation (Eq.
(1)). This approach accounts for each of the eight input
and two output variables used in the study, each represented
with a specific index and transformed accordingly. The
means, standard deviations, minimum, and maximum
values of each variable, calculated from dataset samples,
are presented for reference (see Table 2). Estimations and
predictions from the models are reconverted to their origi-
nal values using an inverse transform to ensure clarity and
consistency in data interpretation [43–46].

y = 0 05 + 0 95 x − x
xmax + xmin

, 1

where y represents normalized data. x is the measured data,
x is the mean of the measured data, xmax is the maximum
value of the measured data, and xmin is the minimum value.

3.4. Model Validation and Performance Indicators. Model
validation and performance indicators are crucial in asses-
sing the effectiveness and reliability of predictive models
[47–49]. In this context, a 10 k-fold cross-validation method
is employed to ensure the robustness of the models, BT,
NNN, and GPR, used in predicting outcomes (HL and
CL). This technique helps in maximizing the utilization of
available data by partitioning it into ten subsets, where the
model is trained on nine subsets and iteratively validated
on the remaining one (see Figure 4). Regarding performance
indicators, RMSE (root mean square error) and MAE (mean
absolute error) are used to quantify the deviation of the
model predictions from actual values, providing insights
into the model’s accuracy. The Pearson coefficient of deter-
mination (PCC) offers a measure of how well the model’s
predictions match the observed data, wherein a value close

to 1 indicates a good fit. Additionally, MAPE (mean absolute
percentage error) is used as an indicator to understand the
relative error in predictions, thus offering a perspective on
the model’s performance in terms of percentage error. The
combination of these robust validation techniques and com-
prehensive performance indicators facilitates an in-depth
assessment of the BT, NNN, and GPR models, ensuring their
reliability and effectiveness in predictions. The predictive
model’s performance was evaluated using various criteria
(Table 3).

It is worth mentioning that evaluating model effective-
ness entailed the utilization of a k-fold cross-validation tech-
nique [54]. This method significantly reduces the bias
introduced by the random selection of test cases, enhancing
the reliability of model assessment as highlighted by previ-
ous studies. Some researchers indicate that employing ten
folds strikes an optimal balance between bias and variance,
in addition to time efficiency, in the validation process
[55]. In line with this, the current research implemented a
stratified 10-fold cross-validation to ascertain the models’
average performance effectiveness [56, 57]. By partitioning
the randomly selected data into ten unique folds, each was
used sequentially as a testing set, while the others served as
a training set. This approach ensures the comprehensive
application of all data instances in both training and testing
stages, offering a more rounded and thorough model evalu-
ation. The final measure of algorithm accuracy is articulated
as the mean accuracy derived from the ten models across the
ten validation rounds, providing a robust overview of the
model’s predictive capabilities and reliability in various
scenarios.

3.5. Proposed AI-Based Methods. Over the past several
decades, the implementation of computational methodolo-
gies in process engineering fields, notably in systems like
energy, has witnessed a significant transformation and
improvement. AI as a data-driven approach has several
sources of acceptable data, including field investigation,
experimental work, satellite data, sensor data, and online
monitoring. The present research is aimed at establishing
the interpretative and predictive powers of unique AI-
based models, namely, GPR, BT, and NNN, with the final
being recognized as a frequently utilized neural network.

Table 2: Basic descriptive statistics of the study.

Variables Mean SD Kurtosis Skewness Min Max

RC 0.76 0.11 -0.71 0.50 0.62 0.98

SA 671.71 88.09 -1.06 -0.13 514.50 808.50

WA 318.50 43.63 0.12 0.53 245.00 416.50

RA 176.60 45.17 -1.78 -0.16 110.25 220.50

OH 5.25 1.75 -2.01 0.00 3.50 7.00

OT 3.50 1.12 -1.36 0.00 2.00 5.00

GA 0.23 0.13 -1.33 -0.06 0.00 0.40

GA 2.81 1.55 -1.15 -0.09 0.00 5.00

HL 22.31 10.09 -1.25 0.36 6.01 43.10

CL 24.59 9.51 -1.15 0.40 10.90 48.03

SD = standard deviation; Min = minimum; Max = maximum.
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Figure 3: Continued.
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These models are intended to aid in the modeling and para-
metric fine-tuning of energy efficiency within residential
buildings. A necessary phase in creating such intelligence-
laden, data-driven models is the thorough preprocessing of
the collected data, followed by the appropriate selection of
the most fitting model. Recognizing the inherent intricacy
of these models, a multifaceted approach leveraging diverse
AI models becomes imperative. This ensures a comprehen-
sive understanding of the AI’s capabilities, especially when
tackling complex and naturally nonlinear processes that
are characteristic of operations like energy systems. The
summary of the proposed approach is presented in
Figure 5 as a flowchart methodology. While the use of AI
models in enhancing building energy efficiency offers signif-

icant advantages, it is important to consider potential chal-
lenges and limitations. Advanced AI models, like those
involving ENN and GPR, are computationally intensive,
requiring substantial processing power, which might not be
economically feasible for all. The effectiveness of these
models heavily depends on the quality and quantity of data,
and gathering comprehensive, accurate data for numerous
buildings is a massive and complex undertaking. Even with
the integration of explainable AI (AIX), the interpretability
of complex algorithms remains a challenge, especially for
stakeholders without a technical background. Furthermore,
the generalizability and scalability of these models to differ-
ent building types and environments, their adaptation to
real-time changes, and their integration with existing
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Figure 3: Bivariate analysis of input and output variables: (a) HL and (b) CL.
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building systems can be complex and costly. Moreover, the
long-term reliability and maintenance of these AI systems,
considering the rapid evolution of AI technologies, and the
significant upfront costs associated with implementing such
solutions present further obstacles. These challenges under-
score the need for careful consideration and strategic plan-
ning in the deployment of AI for building energy efficiency.

3.6. Theory of Predictive Models. In this section, we explore
the standalone AI-based techniques for accurate estimation
and parametric optimization of energy consumption pat-
terns in terms of HL and CL. The selection of these specific
techniques was carefully done, taking into account their
robust ability to predict complex systems such as energy sys-
tems in science and engineering. In this work, we want to
explain the main ideas, how we use them, and why we chose
these AI-based methods. The main goal is to make it easy to
understand the proposed approach and show that the pre-
diction model is flexible and strong.

3.6.1. Gaussian Process Regression (GPR). Gaussian process
regression (GPR), also known as Kriging, is a Bayesian, non-
parametric approach to regression that directly infers a dis-

tribution over functions, rather than just function
parameters [58] (see Figure 6(a)). At its core, GPR uses a
mean function to represent average behavior and a covari-
ance function (or kernel) to determine how correlated data
points are. This allows GPR to provide not only a predicted
output for a given input but also a measure of prediction
uncertainty. While it excels in modeling nonlinear relation-
ships and estimating uncertainty, GPR can be computation-
ally demanding for large datasets and requires careful kernel
selection [59]. It is widely used in areas like geostatistics and
ML, where prediction uncertainty is paramount [60]. The
following is the general expression of the GPR model that
links the explanatory vector (x) and the response (y):

yi = f xi + ε 2

The function f x for any unobserved pair (x∗, f ∗) in
which f is the response and x is the explanatory parameters
obtained by

f

f ∗
֊Nn + 1 0,

K X, X k X, x∗

k x∗, X k x∗, x∗
3

Testing & training errors 1Testing fold 1

Testing fold 2

Testing fold 3

Testing fold 4

Testing fold 5

Testing fold 6

Testing fold 7

Testing fold 8

Testing fold 9

Testing fold 10

Testing & training errors 2

Testing & training errors 3

Testing & training errors 4

Testing & training errors 5

Testing & training errors 6

Testing & training errors 7

Testing & training errors 8

Testing & training errors 9

Testing & training errors 10

Figure 4: 10 k-fold cross-validation methods.

Table 3: Formulas of different performance measures.

Equation Ranges References

PCC =
∑Y0 − Yom Yp − Ypm

Yp − Ypm
2 − Y0 − Y0m

2 −1 < CC < 1 [50]

RMSE = 1
N
〠
N

i=1
Y p − Y o

2 0 < RMSE <∞ [51]

MAE =
∑N

i=1 Y p − Y o

N
0 <MAE <∞ [52, 53]

MAPE = 100
N

〠
N

I=1

Y O − Y P

Y o
0 <MAPE < 100 [51]
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In Eq. (3), K X, X represents the matrix of covariances
(n × n) for all samples in the calibration data.

3.6.2. Boosted Trees (BT). BT is a supervised ML method
used for both classification and regression. They split data
based on feature values, forming tree-like models of deci-
sions (see Figure 6(b)). Each node represents a feature,
each branch a decision rule, and each leaf a result [61].
They are intuitive and easy to visualize but can be prone
to overfitting if not pruned. BT structure complex solu-
tions in a tree-like structure by dissecting those solutions
into smaller, more manageable possibilities. To offer pre-
cise class assignments, decision trees use splits to select
attributes that minimize entropy [62]. It is simpler to
grasp the model because of its visual representation and
significant insights. While ensembles like random forests
and boosting increase prediction accuracy, pruning strate-
gies reduce overfitting [63].

f x =
c1 if xi ≤ Ti

c2 if xi > Ti

4

f x is the prediction made by the decision tree.
Xi is the ith feature.
Ti is the threshold for the ith feature.
c1 and c2 are the predicted classes or values for the cor-

responding branches.

3.6.3. Emotional Neural Network (ENN). Emotional neural
networks (ENN) integrate emotion modeling into tradi-
tional neural networks, enhancing machines’ capability to
recognize or simulate human emotions [64]. By analyzing

data patterns, like facial expressions or voice modulations,
ENNs can infer underlying emotions such as joy, sadness,
or anger [65]. This is crucial in human-computer interac-
tions, especially in areas like virtual assistants, therapy bots,
or gaming (see Figure 6(c)). The goal is to make interactions
more natural and responsive to human feelings. However,
achieving accurate emotion recognition remains challenging
due to the complexity and subjectivity of emotions. With
further research, ENNs hold the potential to bridge the
emotional gap between humans and machines [66–69]. It
is possible to calculate the output of the ith neuron in an
EANN with three hormonal glands, Ha, Hb, and Hc.

Yi = γi +〠
h

∂i,hHh × f 〠
j

βi +〠
h

Xi,hHh

× ∝i,j +〠
h

Φi j kHh Xi,j + μi +〠
h

Ψi,hHh

5

The artificial hormones are calculated as

Hh =〠
i

Hi,h h = a, b, c 6

The weight implemented for goal (f) in Eq. (5) is repre-
sented by (4).

4. Result and Discussion

The selection of these specific variables is underpinned by
their substantial impact on the energy efficiency of
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residential buildings. This significant influence was high-
lighted in a study by Tsanas and Xifara, illustrating the
potential of employing these variables for accurately deter-
mining a building’s energy efficiency using statistical ML

tools. Further, these variables have been utilized in an artifi-
cial neural network model for estimating the energy perfor-
mance of structures, which reinforces their relevance in this
context. Elements like surface area (SA), wall area (WA),

Calibration phase Verification phase

Select
kernel

function

Initialize

Energy efficiency

Optimize

HL and CL

hyperparameters
prior model

Train
prior model hyperparameters

posterior model

Perform
predictions

(a)

X1

Y1 = f1(X1)

X2 XN

Tree #1 Y2 = f2(X2)Tree #2 Yn = fn(Xn)Tree #3

Energy building efficiency data

Majority voting/
averaging

HL and CL

(b)

XII XI X

VI
V

IV
IV

IIIIII

IX

VII

VII

VIII
HcHbHa

ENN

ENN

i th node

(c)

Figure 6: Structure and flow diagram of (a) GPR, (b) BT, and (c) ENN models.
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roof area (RA), and overall height (OH) are integral compo-
nents of the building envelope. This envelope acts as a cru-
cial physical separator between the indoor and outdoor
spaces of a building, directly affecting its energy efficiency.
Additionally, a building’s orientation (OT) plays a pivotal
role in regulating the amount of solar radiation it receives.
Similarly, the glazing area (GA) and glazing distribution
(GD) significantly influence the levels of natural light and
solar radiation penetration into the building. Collectively,
these factors underscore the critical role that these variables
play in enhancing the predictive accuracy of ML models for
estimating residential building energy loads, as corroborated
by previous research. It is important to note that for the
development of the GPR and BT model, MATLAB (2022b)
was used for the analysis while MATLAB (2017) was applied
for the ENN model. The graphical visualization was done
using Eviews-10 and R-studio software.

The input combinations C1 (OH, RA), C2 (OH, RA, RC,
and SA), and C3 (OH, RA, RC, SA, WA, and GA) were used
based on feature engineering techniques. From Figure 7, the
output’s HL behavior can be understood in relation to other
variables. There is a positive moderate correlation with RC

(0.6223), indicating a tendency for HL to increase as RC
increases. On the other hand, HL decreases as SA rises, as
is highlighted by their negative moderate correlation
(-0.6581). The strong negative correlation with RA
(-0.8618) suggests a pronounced decrease in HL when RA
increases. However, a strong positive correlation (0.8894)
with OH suggests the opposite; HL tends to significantly
increase as OH increases. Other variables like OT show min-
imal impact on HL. It is also notable that HL and CL have a
very strong positive correlation of 0.9759, which is not sur-
prising. Similarly, examining CL’s relationship with other
variables reveals insights into its behavior. A moderate pos-
itive correlation with RC (0.6343) implies that CL generally
increases with RC. On the other hand, SA’s rise likely leads
to a decrease in CL, as suggested by a negative moderate cor-
relation (-0.6730). Strong negative (-0.8625) and positive
(0.8958) correlations with RA and OH, respectively, indicate
the significant influence that those variables have on CL.
Most other variables have a weaker, though still noteworthy,
impact on CL. However, due to the low correlation of OT
and GA with corresponding target variables HL and CL of
less than 27%, we decided to drop them from the modeling

–1.2

–0.8

–0.4

0.0

0.4

0.8

1.2

RC SA WA RA OH OT GA CG HL CL

OH
RA
RC
SA
WA

GA
OT
CG
CL
HL

Figure 7: Input variable and linear feature engineering selection.

Table 4: Performance results for heating-loading-based building energy efficiency.

Models
Calibration phase Verification phase

PCC RMSE MAE MAPE PCC RMSE MAE MAPE

GPR-M1 0.9070 4.2965 3.2496 18.1679 0.9506 4.5779 3.4299 13.0575

GPR-M2 0.9614 2.9780 1.9147 11.7599 0.9976 3.2217 3.0424 12.8812

GPR-M3 0.9990 0.4248 0.2985 1.3844 0.9988 0.5146 0.3874 1.7141

BT-M1 0.9070 4.2963 3.2598 18.2225 0.9504 4.5793 3.4250 13.0215

BT-M2 0.9614 2.6885 1.8149 10.7575 0.9975 4.2097 3.9763 16.5940

BT-M3 0.9970 1.2076 0.9152 4.1517 0.9983 1.5621 1.3544 5.4528

ENN-M1 0.8947 4.5347 3.5025 19.1457 0.9419 4.7858 3.5531 13.3336

ENN-M2 0.9600 3.0230 2.0185 12.6051 0.9962 3.2665 3.0427 12.8040

ENN-M3 0.9865 1.5874 1.2416 6.9545 0.9919 1.3286 1.0056 4.3299
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Figure 8: Scatter plots showing the predicted and measured values for (a) BT, (b) ENN, and (c) GPR.
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schema in order to reduce the complexity of the input vari-
ables [70–72]. Table 4 indicates the predictive performance
of HL using several AI-based models.

However, enhancing the generalizability of ML models
requires hyperparameter optimization, a critical step in
training ML algorithms. This ensures that models do not
overfit or underfit and maintain minimal complexity. Using
methods like GPR, BR, and ENN can improve the model’s
accuracy, efficiency, and performance. This optimization
examines every combination of hyperparameters within
their respective ranges to identify the best values. For GPR,
the model of the hyperparameter is the kernel, with popular
choices being the radial basis function (RBF); for instance,
the RBF kernel has a length scale, typically in the range
[0.1, 2.0], dictating the function’s flexibility. Another vital
hyperparameter is the noise level, often between [1e‐3, 1e
+3], which represents data noise and aids in fitting noisy
observations. Some models may also incorporate regulariza-
tion functions. For ENNs, hyperparameters often mirror
those of standard neural networks. The learning rate is piv-
otal and can vary widely, typically within [1e-6, 1e-1]. Batch
size, often between [16 and 512], dictates the number of
samples processed before updating model weights. The
number of epochs, usually in the range [10, 1000], represents
full training dataset passes. Activation functions, like ReLU,
sigmoid, or tanh, determine node outputs. Dropout rates,
commonly set between [0, 0.5], are regularization tech-
niques, with a higher rate dropping more neurons. The net-
work’s architecture, including the number of layers and
units per layer, also plays a significant role.

In the assessment of HL-based building energy effi-
ciency, the GPR-M3 model clearly excels during both cali-
bration and verification phases, achieving the highest PCC
at 0.9990 and the lowest values for RMSE, MAE, and MAPE,
making it the most accurate among the GPR models. Simi-
larly, BT-M3 surpasses its counterparts, BT-M1 and BT-
M2, in all metrics during the calibration phase, indicating
either a possibly optimized structure or refined parameters
(see Figure 8(a)). Moreover, among the ENN models,
ENN-M3 stands out with its notably lower MAPE of
6.9545 during the calibration phase. Although ENN models
generally show a marginally reduced PCC in comparison to
GPR and BT, their RMSE, MAE, and MAPE metrics remain

competitive, underscoring their reliable prediction capabili-
ties (see Figure 8(b)). A consistent observation is the supe-
rior performance of the M3 variant across all model
categories, possibly due to more advanced or meticulously
adjusted hyperparameters. This underscores the paramount
role of hyperparameter refinement and model optimization
in heightening predictive accuracy in building energy effi-
ciency tasks. Besides, in the numerical and in-depth analysis
of the HL-based building energy efficiency models, the GPR-
M3 model emerged as the most efficient. During the calibra-
tion phase, it recorded a PCC of 0.9990, outperforming
GPR-M1 by 9.2% and GPR-M2 by 3.9%. It also boasted an
RMSE value of 0.4248, a reduction of 90% and 85.7% com-
pared to GPR-M1 and GPR-M2, respectively. This superior
performance continued in the verification phase. Similarly,
in the BT models, BT-M3 outshined the others with a PCC
of 0.9970 and a significant reduction in RMSE values.
ENN-M3 showcased a PCC of 0.9865, surpassing ENN-M1
by 10.3% and ENN-M2 by 2.8%. Its RMSE was also signifi-
cantly lower. Conclusively, across all model types (GPR,
BT, and ENN), the M3 variants demonstrated the highest
precision, with GPR-M3 standing out due to its remarkably
low RMSE values, underscoring its unmatched accuracy in
predicting building energy efficiency across both phases.

Table 5 presents the predictive performance of CL in
both the calibration and verification phases. In the calibra-
tion phase, GPR-M3 is superior, with the highest PCC at
0.9858, marking an 8.1% and 1.9% improvement over
GPR-M1 and GPR-M2, respectively. It also achieves the low-
est RMSE of 1.5537, a 60.3% and 39.2% reduction from
GPR-M1 and GPR-M2. This trend extends to the verifica-
tion phase, where GPR-M3 maintains the highest PCC
(0.9856) and the lowest RMSE (1.6620). Similarly, BT-M3
outperforms in the calibration phase with a PCC of 0.9840,
closely matching BT-M2 at 0.9669. Its RMSE stands at
1.9502, a 48.6% and 17.7% reduction from BT-M1 and BT-
M2, respectively. In the verification phase, BT-M3 exhibits
a PCC of 0.9853, a slight increase from its M1 and M2 coun-
terparts, and an RMSE of 2.2219, showcasing its efficiency.
ENN-M3 demonstrates excellence in the calibration phase,
securing a PCC of 0.9766, 8.6% and 2.9% higher than
ENN-M1 and ENN-M2. It also achieves a commendable
RMSE of 1.9914, which is 52.2% and 35.4% less than

Table 5: Performance results for cooling loading-based building energy efficiency.

Calibration phase Verification phase
PCC RMSE MAE MAPE PCC RMSE MAE MAPE

GPR-M1 0.9122 3.9170 2.9586 13.0233 0.9373 4.1717 3.0187 10.3308

GPR-M2 0.9669 2.5534 1.8331 7.9534 0.9839 2.9060 2.4337 9.1846

GPR-M3 0.9858 1.5537 0.9807 3.4820 0.9856 1.6620 1.1200 3.7157

BT-M1 0.9122 3.7921 2.7099 11.2299 0.9373 4.8755 3.6608 12.8637

BT-M2 0.9669 2.3698 1.7078 6.9924 0.9839 3.8342 3.3110 12.6301

BT-M3 0.9840 1.9502 1.3287 4.9661 0.9853 2.2219 1.6184 5.7117

ENN-M1 0.8993 4.1653 3.1975 13.8809 0.9306 4.3302 3.0965 10.4926

ENN-M2 0.9486 3.0834 2.4555 11.1264 0.9730 3.2273 2.5407 9.2624

ENN-M3 0.9766 1.9914 1.5204 6.6260 0.9791 2.0030 1.5801 6.1763
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ENN-M1 and ENN-M2, respectively. In the verification
phase, ENN-M3’s PCC reaches 0.9791, while its RMSE
remains the lowest among the ENN models at 2.0030. Com-
paratively, the M3 variants across GPR, BT, and ENN con-
sistently surpass their M1 and M2 counterparts in both the
calibration and verification phases. It is worth mentioning
that the GPR-M3 model distinguishes itself with its notably
lower RMSE values, suggesting its enhanced precision in
predicting CL-based building energy efficiency across both
phases (see Figure 8(c)).

Numerical analysis of Table 3 focused on CL-based
building energy efficiency, and the M3 models consistently
display enhanced precision across all categories. Specifically,
GPR-M3 in the calibration phase demonstrates a significant
reduction in MAE (0.9807) and MAPE (3.4820%), outper-
forming its GPR counterparts by over 66% in MAE and
73% in MAPE. BT-M3 follows a similar trend, with its cali-
bration phase MAE and MAPE values indicating a 50.9%
and 55.7% reduction from BT-M1. In the ENN category,
ENN-M3 outshines with a 63.5% and 52.3% decrease in
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Figure 9: Error plot between the observed and predicted values: (a) HL and (b) CL.
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Figure 10: Summarized SHAP for (a) HL ((A) GPR, (B) BT, and (C) ENN) and (b) CL ((A) GPR, (B) BT, and (C) ENN models).
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MAE and MAPE, respectively, compared to ENN-M1. Dur-
ing the verification phase, these M3 models maintain their
lead, with GPR-M3 standing out with the lowest MAE
(1.1200) and MAPE (3.7157%). Figure 9 shows the error plot
of HL and CL based on error performance criteria. This
underlines the superiority of the M3 model in predicting
building energy efficiency with higher accuracy and preci-
sion. Through examination of the above results, which
depict the performance metrics for HL- and CL-based build-
ing energy efficiency, it is evident that the M3 models, espe-
cially GPR-M3, consistently outshine their counterparts.
Their unique precision suggests a significant potential for
these models in real-world applications. Moving forward, it
would be beneficial to delve deeper into the specific attri-
butes of M3 models, expand datasets to encompass varied
building structures, and incorporate features like occupancy
patterns for enhanced prediction. Stakeholders should prior-
itize the adoption of these models, especially GPR-M3, and
consider their integration into smart building systems. Col-
laborative efforts between industry and academia can facili-
tate the evolution of these models, ensuring that they
remain at the forefront of building energy efficiency solu-
tions. Continuous validation in diverse scenarios is crucial
to maintain the relevance and accuracy of the results. The
excellent performance of the M3 models, notably GPR-M3,
in predicting building energy efficiency directly aligns with
the United Nations’ Sustainable Development Goals (SDGs),
particularly Goal 7: Affordable and Clean Energy. By harnes-
sing these models, we are not only advancing energy effi-
ciency but also championing a sustainable, eco-friendly
future. Their application could revolutionize the way we
approach energy consumption, making strides towards more
sustainable global infrastructure.

4.1. Interpretability of the Model (SHAP Analysis).
Figure 10(a) showcases a SHAP (SHapley Additive exPlana-
tions) plot detailing the influence of features on the ML
model’s prediction for GPR in determining which is the best
model (HL). The vertical axis lists features such as RC, GA,
and SA, while the horizontal axis denotes the SHAP value,
capturing each feature’s impact on the prediction. A central
color gradient reveals the feature’s actual value: pink for
higher and blue for lower values. Notably, GA and SA
exhibit a broad spread in SHAP values, signifying their pro-
nounced influence on the model’s outcomes. In contrast,
features like OT, RA, and OH have minimal variation
around the average prediction, indicating lesser influence.
This comprehensive visualization underscores the differen-
tial impacts of each feature, pinpointing GA and SA as par-
ticularly significant contributors to the model’s predictions.

For CL, the visualization is a SHAP plot, employed to
communicate how individual features impact an ML model’s
predictions. On the vertical axis, we have features like RA,
SA, GA, and more (see Figure 10(b)). The horizontal axis
illustrates the SHAP value, reflecting each feature’s influence
on the model outcome: values to the right suggest a positive
effect and values to the left suggest a negative effect. The
color gradient, ranging from high (pink) to low (blue), rep-
resents the actual value of the feature for each data instance.

The dots across the graph are individual data points. Fea-
tures like RA and SA predominantly lean to the right, indi-
cating that when their values are high (represented by pink
dots), they typically have a positive effect on the model’s pre-
diction. Conversely, for WA and RC, high values (again,
pink dots) seem to push the prediction to the left, indicating
a negative effect. Notably, the feature GA presents mixed
results: high values of GA can be seen on both sides of the
SHAP value, suggesting that it can either increase or
decrease the model’s prediction based on the context and
presence of other features. The base value, delineated on
the horizontal axis, represents the model’s average predic-
tion across the dataset. This visualization aids in deciphering
how distinct features drive predictions away from this base
value, underscoring the nuanced roles that each feature plays
in the model’s decision-making process.

Similarly, SHAP analysis significantly enhances the
interpretability of AI models, aligning closely with the
research objectives of advancing energy performance effi-
ciency in residential buildings for sustainable design. By pro-
viding transparency in model decision-making, SHAP
analysis reveals how different features, such as insulation
quality or window orientation, impact heating load (HL)
and cooling load (CL). This insight allows architects and
planners to make data-driven design decisions, prioritizing
the elements that most significantly contribute to energy effi-
ciency. The identification of key predictors for energy effi-
ciency through SHAP analysis is crucial in fine-tuning
building designs to reduce energy consumption and in strat-
egizing retrofitting existing buildings. Additionally, the
explainability provided by SHAP analysis enhances the
trustworthiness of the AI models among stakeholders,
ensuring that model recommendations are more likely to
be accepted and acted upon. These insights from SHAP
analysis can also provide direction for future research in sus-
tainable building design, focusing on areas with significant
impacts on energy efficiency. This approach not only aids
in minimizing energy consumption but also aligns with
broader sustainability goals, such as those outlined in the
United Nations’ Sustainable Development Goals. Thus,
SHAP analysis is integral in linking AI model interpretabil-
ity to practical applications in sustainable building design
while adopting informed, transparent, and effective strate-
gies for enhancing energy efficiency.

5. Conclusion

This comprehensive study focused on evaluating and opti-
mizing energy efficiency in residential buildings, leveraging
various advanced ML models, specifically HLCL, to accu-
rately estimate building energy performance, thereby ensur-
ing optimum utilization of energy. The proposed model
employed GPR, ENN, and BT algorithms, each with three
input variables (M1-M3), explaining their capabilities in
forecasting energy performance. Consistently across the
models, the results reveal that the third combination, M3,
consistently outperformed both M1 and M2. In particular,
the GPR-M3 model showcased superior prediction skills in
forecasting both heating and cooling loads. However, subtle
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differences across the models became apparent, underscoring
the need for diverse strategies depending on the focus, whether
precision or broader prediction trends when measured with
metrics such as MAPE and MAE. This demonstrates that the
findings seamlessly align with the SDGs, particularly in cham-
pioning sustainable cities and communities. To ensure the
long-term efficacy and relevance of the models, continuous
monitoring, feedback, and iterative refinements are essential.
This will ensure that as building designs and technologies
evolve, the models remain relevant and accurate. Based on
the results and discussion, future research directions in this
field could focus on several key areas:

(i) While the current study focuses on residential
buildings, future research could extend these AI
models to commercial, industrial, and institutional
buildings. Additionally, testing these models in
various climatic and geographical settings could
provide a more comprehensive understanding of
their applicability and effectiveness

(ii) Exploring how these AI models could be integrated
with renewable energy sources (like solar or wind
power) in building designs could offer insights into
creatingmore sustainable and self-sufficient buildings

(iii) Implementing these models in real-time energy
management systems could allow for predictive
maintenance and more efficient energy use in
buildings. This could include real-time adjust-
ments to heating and cooling systems based on
current occupancy and weather conditions

(iv) Researching how human behavior and occupancy
patterns influence building energy consumption
could refine these models further. This includes
studying the impact of different lifestyles, work-
from-home trends, and occupancy schedules on
energy efficiency

(v) Investigating the role of innovative construction
materials and techniques in enhancing building
energy efficiency. This research could focus on
how different materials and designs affect heating
and cooling loads and how AI models can optimize
these factors

(vi) Understanding how the findings from these AI
models can inform and shape energy policies and
building regulations. This could help governments
and regulatory bodies implement standards and
incentives that promote energy-efficient building
designs

(vii) Conducting comprehensive analyses of the eco-
nomic and environmental impacts of imple-
menting these AI models in building design and
construction. This includes cost-benefit analysis,
lifecycle assessment, and carbon footprint analysis

(viii) Encouraging collaboration between architects,
engineers, AI researchers, and environmental sci-

entists to develop holistic and sustainable building
solutions. This could lead to innovative designs that
are both aesthetically pleasing and energy-efficient

(ix) Further exploration into how explainable AI can
be made more accessible and understandable to
architects, builders, and laypersons. This could
involve developing user-friendly interfaces and
visualization tools

(x) Conducting longitudinal studies to assess the long-
term performance and durability of AI-optimized
buildings. This would help in understanding how
these buildings fare over time in terms of energy
efficiency and structural integrity
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