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Facing the method’s limitations of the existing drone inspection on offshore wind farms, we adopt a new comprehensive-assisted
drone automated inspection scheme under the comprehensive assistance. Our objectives are saving energy and high-efficient
inspection. The such inspection is used to formulating the two mixed-integer nonlinear programming problems based on two
new drone basic models: the mobile edge computing driven drone computation system model and the drone flight model. To
solve the problems, we split them into four subproblems, and a new improved heuristic algorithm is created to address. In
turns, the waypoints, total inspection time, inspection energy consumption, and traveling distance of unmanned aircraft vehicle
(UAV) and the traveling distance of boat are obtained by K-means algorithm and the smallest enclosing circle (SEC)
algorithm, the Lin-Kernighan Heuristic 3 (LKH-3) algorithm, and the LKH. Finally, conducting the comprehensive
optimization and simulation, the simulation numeric results are gotten. The simulation results demonstrate that as for the two
aspects of the total energy consumption and inspection efficiency under different data amount and average wind speed, the
scheme improves at most 44% and 23.5% than the current other three; the scheme achieves the objective of saving energy and
high-efficient inspection.

1. Introduction

Recent decade, clean energy has been paid a great attention.
In particular, wind power will grow greatly in the next five
years [1]. This high increase will inevitably rely on more
large-scale application of wind turbines, further developing
to deep sea, forming the large amount of various large-
scale wind farms. So, the wind turbine failure also increases
with their more widely applications. The wind turbines espe-
cially in the offshore wind farm [2] required more checking
to ensure the safe and continuous operation, because they
usually operate in a harsher environment and have relatively
higher failure rates [3]. The failures usually and mainly
occur on the blades [4]. However, the traditional sensors
can hardly directly and sensitively reflect the microdamage
on the blade surface [5, 6]. But, a High Definition camera
sensor (HDCS) combined with image recognition technol-
ogy can reflect the situation [5, 6]. However, the HDCS

and the traditional sensors are hard usefully to install and
maintain on the wind turbine offshore [1], thanks for the
unmanned aircraft vehicle (UAV) equipped with HDCS
possessing mobility and adjustable flight altitudes [7]. This
provides conveniently to detect the wind turbine blades
and offers a visualization service in many promising appli-
cation scenarios [8], including blade damage inspection in
the wind turbine [5, 9–11]. This provides the solid basis
on saving energy and high-efficient inspection to offshore
wind farm.

To improve the inspection efficiency of the whole wind
farm, utilizing UAV equipped with HDCS, scientists or
researchers have proceeded some far and wide study on
the following various aspects: the deployment and flight tra-
jectory of the UAV [1, 12–14], the routing of inspecting the
wind turbine [1, 6], the wind speed [1, 12–17], the traveling
salesman problem (TSP) [1, 12], the wireless communica-
tion environment [12], and the cost including the location
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selecting and building of the automated airports [1]; more-
over, the vehicle-assisted UAV [13] or mobile edge comput-
ing (MEC) server [12, 18, 19], the local computing [18–20]
and data offloading [20], and the advancement of massive
machine-type connectivity (mMTC) and satellite technolo-
gies [21] have made a great progress. But for the future
developing great amount of large-scale offshore wind farms
that is facing more wide and deep sea, there are still limita-
tions of some scheme for the inspection schemes:

(i) Not enough consideration of the UAV total inspec-
tion energy consumption problem [1, 6, 12, 13]

(ii) The scalability and flexibility of which a fixed auto-
mated airport lacks [1, 12]; the UAV charging sta-
tion problem [21]

(iii) Nonconsideration of the UAV computation capa-
bility and the wind condition problem [6, 13]

1.1. Motivation and Contributions. We are enlightened by
the methods of inspection land wind farms [12, 13] and
motivated by the schemes of inspection offshore wind farms
[1, 21]. A new comprehensive-assisted UAV automation
inspection scheme of the future offshore wind farm, for col-
lecting the health data of offshore wind turbine mainly
including blades, is proposed and used. That is, under
MEC server assistance, exploiting a boat-assisted UAV
scheme deploys UAVs to detect wind turbine and process
sensory data in wind farms [12]. Drone is equipped with
HDCS, communication modules, and computation units
[1, 12], further comprehensively considering the saving
energy, high-efficient, and optimal route planning. At pres-
ent, this type of comprehensive research on inspecting off-
shore wind farms is yet seldom.

The comprehensive scheme is aimed at exploiting the
following current advance technologies: (1) the integration
strengths of the low earth orbit (LEO) satellite and the mas-
sive machine-type connectivity (mMTC, i.e., LoRaWAN),
which is specially used in remote areas [12, 21] (or remote
marine areas), (2) the MEC technological advantages [12,
20], and (3) the scalability and flexibility of the movement
battery station or automated airport (use of truck onshore
[22] or boat offshore [6]). As for the UAV of the scheme,
it is assisted by the LEO satellite and the mMTC (i.e., LoRa-
WAN), in which, there are two ways (indirect LoRaWAN
and direct LoRaWAN) [21]; it can be based on the practical
situation to choose. Based on the real conditions, the mas-
sive machines for connectivity can be load on the boat.
The boat possesses an extra battery and charging equipment
as a station (BBS) and a control center. The center is
equipped with the equipment similar to the ground stations
(GSs) [12], combining with LEO satellite and MEC servers
together, constructing a new space-air-boat integrated net-
work (SABIN), similar to the space-air-ground integrated
network (SAGIN) architecture [12]. So, seamless and flexible
network coverage for wind farms is provided.

For the problems of the saving energy and high-efficient
inspection, the scheme objectives are to minimize the total
energy consumption of the detection and optimize the

inspection efficiency via the optimal route planning and then
the optimal inspection time. The two problems (i.e., the two
aims) are modeled as two combinatorial optimization prob-
lems based on the UAV and BBS routing planning. These
are the mixed-integer nonlinear programming problem
(MINLP). We address them by solving the following four
optimization subproblems: the UAV detection energy con-
sumption of each wind turbine, the power consumption of
the UAV under the wind condition, and the route planning
of the UAV and the BBS, respectively. For the four subprob-
lems, an improved heuristic algorithm (i.e., mixed optimiza-
tion algorithm (MOA)), which combined the Lin-Kernighan
Heuristic 3 (LKH-3), smallest enclosing circle (SEC) algo-
rithm, and K-means clustering algorithm, is developed in
this paper, to solve the combinatorial optimization prob-
lems. This paper contributes as follows:

(i) The new comprehensive MEC and BBS-assisted
UAV automating inspection scheme for offshore
wind farms is proposed, which makes drone inspec-
tion with scalability and flexibility

(ii) Two new basic models are employed in the scheme
for research. One is a new MEC-driven UAV com-
putation model, and another is a new UAV power
consumption model under wind conditions. It
makes the inspection trending to the real scene

(iii) To solve the combinatorial optimization problems,
we have developed an improved heuristic algorithm
consisted of three different type algorithms of LKH-
3, SEC, and K-means

(iv) The total energy consumption of the inspection has
been minimized, and the efficiency of inspecting
wind farms has been optimized. The scheme per-
forms the best

(v) The optimal routes of the BBS and the UAV are
obtained via the improved heuristic algorithm

1.2. Relative Research Work and Their Experiences. For the
wind turbine, some researchers focus on using the advanced
sensor to detect the health of wind turbine blades. Zhao et al.
[23] successfully extracted blade parameters and detected
blade fault by the Doppler radar sensor based on the time-
Doppler features of the horizontal axis wind turbine
(HAWT). Avendaño-Valencia et al. [24] predicted the
short-term fatigue damage equivalent loads (DEL) on the
wind turbine blade via the deployment wind field inflow sen-
sors and/or load sensors. Xu et al. successfully developed a
waveform-based feature extraction method and used it to
obtain the original acoustic emission (AE) signals by AE
sensor array arrangement to monitor the blade health [25].
However, the various traditional sensors above are hard,
direct, and sensitive to reflect the microdamage on the blade
surface [5, 6]. Aiming the challenge of reflecting the micro-
damage, some researchers used the UAV with an HD cam-
era sensor and image recognition to detect the blade [1, 5,
6, 9–11]. For example, Yang et al. [5] used the Otsu method
to recognize the damaged image taken by UAV HD camera,
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and this method had an excellent performance. Huang et al.
[6] reported that the UAV with HD camera under the boat
assistance detects the blade microdamages of wind turbines
for the modern large-scale offshore wind farm in details.
Wang and Zhang [9] applied the Haar-like feature to depict
crack regions and trained a cascading classifier for detecting
cracks. It made the crack recognition in images taken by
UAV HD camera faster. In the meantime, a parallel sliding
window method was developed by Wang et al. [10] to scan
those wind turbine blade surface cracks via analyzing blade
images captured by UAV HD camera and successfully
deployed on devices of UAVs. Xu et al. employed the alter-
nating direction method of multiplication to reduce the
hardware device requirements for image recognition and
improve the performance of the image recognition device
on UAV [11]. The above research works improved the blade
failure detection efficiency and precision in one single wind
turbine, but did not still extend, and apply in the inspection
efficiency that is facing more large-scale offshore wind farms
in the future.

In order to improve the inspection efficiency of the
whole wind farm, researchers have proceeded many greatly
effective studies.

Chung et al., Cao et al., and Baik and Valenzuela have
presented that the deployment and flight trajectory of the
UAV impact the efficiency of inspecting wind farms [1, 12,
13]. They suggested that the wind speed is an indispensable
condition in the inspection [1, 12]. Although the wind speed
changes from time to time [15], either on the sea or on land,
in most cases, the wind speed is assumed to be a constant in
creating a flight path. For examples, Chung et al. [1]
reported the routing of inspecting the wind turbine and
considered the influence of average wind speed on the
inspection. Luo et al. [16] showed that under steady wind
speed, a UAV path planning solution is feasible. Thibbotu-
wawa et al. [14] used constant wind speed in creating flight
plans (including flight paths). Coombes et al. considered that
steady uniform wind speed for a flight path of the UAV
aerial survey is realistic [17]. Wind speed makes an impact
on the UAV inspection efficiency and its total inspection
energy consumption. Chung et al. [1] considered not only
the influence of the wind speed on the inspection efficiency
of the offshore wind farm but also used the TSP to improve
the UAV inspection efficiency but had not considered the
influence of the wind condition on the wireless communica-
tion environment and the total energy consumption of the
UAV inspection wind farm. Meanwhile, establishing and
maintaining the fixed automated airport offshore is still very
hard. If many stationary automated airports are built off-
shore, the cost of establishment and maintenance will be
very high. In addition, manual maintenance for each off-
shore airport results in an increase in the risk and labor cost
for the maintenance worker. Cao et al. [12] improved the
efficiency of inspecting wind farms by UAV using the TSP
by considering the impact of the wireless communication
environment and wind speed on the wind farm. But the
as-used ground control center station is fixed, and the appli-
cation scenario was on land. Baik and Valenzuela [13]
reduced the total operation time for inspecting a wind farm,

and this UAV inspection is assisted by a ground vehicle with
extra batteries and charging equipment available. However,
as an automated inspection scheme, the total energy
consumption of the UAV inspection wind farm, the UAV
computation capability, and the wind condition are not con-
sidered. Leveraging the advancement of massive machine-
type connectivity (mMTC) and satellite technologies, Ullah
et al. [21] investigated the potential of these to enable remote
monitoring of the offshore wind farms. Finally, they used
realistic deployment and traffic and advanced propagation
and collision models, proving the indirect architecture and
direct approach feasibility and packet delivery probability
numerically when implemented over mMTC (i.e., LoRa-
WAN) technology. However, a part of collecting wind tur-
bine blade data techniques in [21] scheme was relied on
the techniques of [12]. Especially, when a battery capacity-
limited UAV needs to charge, for the wider and far marine
large-scale wind farms, the reliability of a fixed onshore
charging station should be worthy to be cautiously consid-
ered. Huang et al. [6] had made some progresses at two
aspects and overcome the following limitations: one is the
existing methods lack scalability and flexibility due to the
UAV requirements for battery exchange stations; another
is the “record-offload-process” further limits the application
of conventional UAVs for wind farm inspections. But there
are some unsatisfactory considerations of the effects from
the wind speed and the exploiting of modern technological
advantages.

Therefore, some issues in inspecting the entire offshore
wind farms by UAV are still wide open: not enough consid-
eration of the total inspection energy consumption problem
[1, 6, 12, 13], the lack of a moving automated airport scal-
ability and flexibility [1, 12], the UAV charging station prob-
lem [21], and nonconsideration of the UAV computation
capability and the wind condition problem [6, 13].

More importantly, the experience about leveraging the
MEC server [12, 18, 19] and the local computing [18–20]
and data offloading [20] provides us an important reference.
Cao et al. reported that the MEC server can improve the
inspection efficiency and computation capability of UAVs
in land wind farms [12]. Sun et al. [20]. combined local com-
puting and data offloading into a joint computation algo-
rithm for proposing a new optimal scheme, which has an
excellent performance. They also reported that data offload-
ing becomes preferable when this data size grows more and
more. A unified system design that includes MEC and wire-
less power transfer (WPT) is proposed by Wang et al. [18].
The system could charge power for the user’s local computa-
tion and made itself obtaining excellent system performance
by offloading data to the MEC server. Zhang et al. investi-
gated the partial computation offloading mode in a MEC
system on the UAV, and the system obtained the maximum
computation efficiency [19]. In a word, using MEC technol-
ogy can improve UAV computation capability. Therefore,
the MEC system can be employed to improve the inspection
performance of offshore wind farms.

Besides, notably, the LKH algorithm demonstrated
strong optimization capabilities [26]. The researchers high-
lighted the importance of the LKH algorithm for addressing
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a distance-constrained capacitated vehicle routing problem
(DCVRP), which is a special case of the TSP; the DCVRP
is known to be a strongly NP-hard problem [27], and deriv-
ing a precise analytical mathematical solution is highly chal-
lenging. However, the LKH-3 algorithm has been proved by
Helsgaun [28] to be a well-suited heuristic algorithm for
effectively tackling such strongly NP-hard problems.

In summary, using the strengths of the technologies
above, i.e., the LEO satellite and LoRaWAN, the UAV with
an HD camera sensor and image recognition, the MEC tech-
nology, the local computing and data offloading, and the
strong optimization capability algorithms for inspection will
be the trend in the future.

2. System Models and Methods

2.1. System Models

2.1.1. The UAV Computation System Model Assisted by MEC
Server. For a computation task on the UAVs, first, we con-
sider only one UAV local computation system here. Let Dc,
tc, f u, Cu, ϵu, and Ec denote the computation data amounts
in the UAV, the UAV local computation time, the CPU fre-
quency, the number of CPU cycles to complete the compu-
tation, the effective capacitance coefficient of the CPU, and
the UAV computation energy consumption, respectively;
according to [12, 18–20], we have

tc =
DcCu

f u
, 1

Ec = ϵuCuDcf u
2 2

In the offshore wind farm, the horizontal location of the
wind turbine is denoted as qk = xk, yk , k ∈WT. When the
UAV detects a wind turbine, the image data of each wind
turbine is indicated as Dwt. Part of the data is sent to the
MEC server to reduce the computation burden of the
UAV, where the MEC server is connected to a MEC network
established by one or more LEO satellites [12, 21]. Thus, at
the kth wind turbine, we have the data transmitting time
from UAV to the MEC server:

tk =
Dwt −Dc

rk
, 3

where rk is the throughput between the MEC server and the
UAV. Because the ocean environment and the distance
between the UAV and the MEC server change, the through-
put can be also changed with the different wind turbines
detected by UAV’s camera.

The computation offloading stage of the MEC server can
be divided into three steps: the offloading step, the computa-
tion step, and the downloading step. Similar to [18], the time
of the MEC server’s computing and the UAV’s download
time can be ignored. Meanwhile, the MEC server can simul-
taneously process the image data by computation offloading
and UAV local computing, likeness to [20]. Since the dam-
ages need to be fed back in real time, all image data are proc-

essed before leaving the wind turbine. For the UAV
detection time dtk (i.e., the image data processing time) at
the kth wind turbine, we have

dtk =max tk, tc 4

According to (4), the UAV should hover at a wind tur-
bine and has the corresponding detection energy consump-
tion Ed , which can be expressed as

Ed = Ec + Ph ∗ dtk + Puctk, 5

where Puc is the communication-related power consumption
and Ph is the hovering energy consumption of the UAV.

2.1.2. The UAV Flight Model. As far as the UAV inspecting
wind turbines is concerned, it usually faces a wind environ-
mental condition (wind speed) on the inspection route. We
consider a UAV flying system shown in Figure 1(a). The
thrust Tφ of the UAV is expressed as

Tφ cos α =mg, 6

where α is a tilt angle between the vector of Tφ and the
inverse direction vector of mg and mg is the weight of the
UAV in newton. The α can be obtained as follows [29]:

α = arctan
w2

μ
, 7

where w is the wind speed and μ is an empirically deter-
mined coefficient with a value of 58 [29]. Therefore, a rela-
tionship between the thrust Tφ and the wind speed w is

Tφ =
mg

cos arctan w2/μ
8

Based on [30–32], a power consumption Pf V ,w of a
UAV flying, in watt (W) as unit, is decomposed as follows:

PH Vh = P0
1
Vh

+
3Vh

Ω2Ru
2

+ 1 + γ Tφ

Tφ
2

4Vh
4ρ2DA2 +

1
4
−
1
2

1/2

+
1
2
d0ρs ∗DA ∗Vh

2,

9

where V , P0, Ω, Ru, and γ stand for the airspeed of UAV,
the constant introduced in [30], the blade angular velocity,
the rotor radius, and the incremental correction factor to
induced power, respectively. d0, ρ, and s are introduced as
the fuselage drag ratio, the air density, and the rotor solidity,
respectively. The rotor disc area is indicated by DA.
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According to (9), under the wind condition, the power
consumption PH in flying is expressed as

PH =
Pf Vh,w

Vh
, 10

where Vh is the horizontal speed of the UAV.

2.2. Formulation of Problem. In Figure 1(b), the waypoint of
the BBS is denoted as vi = xi, yi , i ∈ I. Here, I is defined as a
set of the waypoints of the BBS. All wind turbines compose a
set WT, which can be decomposed to I numbers of subsets
WTi. Each subsetWTi can be again decomposed toM num-
bers of subsets WTi,m, as well. There is a plane distance
PDk,l = qk − ql , k, l ∈WTi,m between any two turbines.
Assuming one turbine is only inspected by the UAV once,
the sum of the traveling distance of the UAV in a subset is

PDUt,i,m = 〠
WTi,m

k∈WTi,m

〠
WTi,m

l∈WTi,m/ k

PDk,l 11

Let vi denote the starting place and the ending place of
the UAV (i.e., the position of the BBS); we have

PDUt,i,m = 〠
WTi,m

k∈WTi,m

〠
WTi,m

l∈WTi,m/ k

PDk,l 12

subject to 〠
l∈WTi,m

Pi,vi ,l = 1, 〠
l∈WTi,m

Pi,l,vi

= 1, l ∈WTi,m, i ∈ I, vi ⊂ I

13a

〠
k∈WTi,m

Pi,k,l = 〠
l∈WTi,m

Pi,l,k = 1, k, l ∈WTi,m 13b

〠
k∈Su

〠
l∈Su

Pi,k,l ≤ Su − 1,∀Su ⊂WTi,m, 2

≤ Su ≤ WTi,m − 1,
13c

where (13a) indicates that both the starting and ending
places of the UAV are vi (13b) ensures only one path
between the kth turbine and the lth turbine. (13c) states only
one loop in the subset of WTi,m. So, the total traveling time
TTUtra of the UAV in the inspection of all the wind turbines
is expressed as

TTUtra =
∑I

i=1∑
M
m=1PDUt,i,m
Vh

14

For each subset WTi,m, the sum (Ei,m) of energy con-
sumption of detecting wind turbines is expressed as

Ei,m = 〠
WTi,m

k∈WTi,m

Ed,k 15

As shown in Figure 1(b), for a waypoint set of the BBS in
the wind farm, there is a plane distance PDi,j = vi − vj , i, j
∈ I between two waypoints. So, the total traveling distance
of the BBS is

PDBBS = 〠
I

i∈I
〠
I

j∈I/ i

PDi,j 16

Let BSE denote the starting and ending places of the BBS;
each waypoint is only visited once, and we have

PDBBS = 〠
I

i∈I
〠
I

j∈I/ i

PDi,j 17

subject to〠
j∈I
PBSE,j = 1,〠

j∈I
Pj,BSE

= 1, j ∈ I, BSE ⊂ I 18a

〠
i∈I
Pi,j =〠

j∈I
Pi,j = 1, i, j ∈ I 18b

Wind
mg

� = arctan w2

�
�

(a)

BBS

UAV
positionMEC cloud server

waypoint (xi,yi)
x

(xk,yk) y

(b)

Figure 1: Two models: (a) the UAV flight model with the influence of wind; (b) the problem model.
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〠
i∈SB

〠
j∈SB

Pi,j ≤ SB − 1,∀SB ⊂ I, 2 ≤ SB ≤ I − 1, 18c

where (18a) indicates that both the starting and ending
places of the BBS are BSE. (18b) ensures only one path
between the ith waypoint and the jth waypoint (i.e., the
orange line). (18c) states only one loop in the set of I.

Let VBBS denote the velocity of the BBS, and the traveling
time TTBBSt of the BBS in the inspection of the wind farm is
expressed as

TTBBSt =
PDBBS
VBBS

19

Let PBBS denote the propulsion load of the BBS, and
then, for minimizing the total inspection energy consump-
tion Et in the offshore wind farm, we have Problem 1. Prob-
lem 1 is expressed as

Problem 1.

min
k,l∈WT,i,j∈I

Et = min
k,l∈WT

〠
I

i=1
〠
M

m=1
Ei,m

+ 〠
I

i=1
〠
M

m=1
PDUt,i,mPH + PBBSTTBBSt

20

subject to 〠
l∈WTi,m

Pi,vi ,l = 1, 〠
l∈WTi,m

Pi,l,vi

= 1, l ∈WTi,m, i ∈ I, vi ⊂ I

21a

〠
k∈WTi,m

Pi,k,l = 〠
l∈WTi,m

Pi,l,k = 1, k, l ∈WTi,m 21b

〠
k∈Su

〠
l∈Su

Pi,k,l ≤ Su − 1,∀Su ⊂WTi,m, 2

≤ Su ≤ WTi,m − 1
21c

〠
j∈I
PBSE,j = 1,〠

j∈I
Pj,BSE

= 1, j ∈ I, BSE ⊂ I 21d

〠
i∈I
Pi,j =〠

j∈I
Pi,j = 1, i, j ∈ I 21e

〠
i∈SB

〠
j∈SB

Pi,j ≤ SB − 1,∀SB ⊂ I, 2 ≤ SB ≤ I − 1

21f

In order to simulate the limitation of the UAV battery
capacity, there are still some constraints in Problem 1 as
follows:

(i) The limitation of energy consumption assigned to
UAV flying, i.e., PDUt,i,mPH ≤ EUtraL

(ii) The limitation of energy consumption assigned to
UAV detecting, i.e., Ei,m ≤ EUdetL. Therefore, Prob-
lem 1 is rewritten as

Problem 2.

min
k,l∈WT,i,j∈I

Et = min
k,l∈WT

〠
I

i=1
〠
M

m=1
Ei,m

+ 〠
I

i=1
〠
M

m=1
PDUt,i,mPH + PBBSTTBBSt

22

subject to 21a — 21f 23a

PDUt,i,mPH ≤ EUtraL 23b

Ei,m ≤ EUdetL 23c

For the setWT, the total detection time TTUdet in the off-
shore wind farm is expressed as

TTUdet = 〠
I

i=1
〠
M

m=1
〠

WTi,m

k∈WTi,m

dtk 24

In summary, the total inspection time T ti in the wind
farm can be expressed as

T ti = TTUtra + TTBBSt + TTUdet 25

Thus, to find the minimum total inspecting time in the
offshore wind farm under the MEC- and BBS-assisted
UAV, the minimization problem can be formulated as

Problem 3.

min
i,j∈I,k,l∈WT

T ti = min
i,j∈I,k,l∈WT

TTUtra + TTBBSt + TTUdet 26

subject to 21a — 23c 27

2.3. Solution of Problem. Solving Problem 1 is decomposed
into four simple subproblems, and then, Problem 3 can be
addressed according to the answer to Problem 1.

2.3.1. Minimizing the UAV Detection Time in One Wind
Turbine. To minimize Et in the offshore wind farm, accord-
ing to the constraints (23c) and (15), in the detection energy
consumption Ed,k in (5), there is the first simple subproblem,
i.e., minimizing the detection time (dtk) of detecting one
wind turbine. Therefore, for the detection time, according
to (1), (3), and (4), dtk can be rewritten as

dtk =max
DcCu

f u
,
Dwt −Dc

rk
28

So, we have Proposition 4.

Proposition 4. If a local minimum exists in the dtk, it is the
only local minimum in dtk.

Proof. Let f Dc =DcCu/f u, and then, it is easy to find out
that f Dc is a single increasing function with Dc. Let g Dc
= Dwt −Dc /rk, and then, it is easy to find out that g Dc
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is a single decreasing function with Dc. When f min Dc <
g min Dc and f max Dc > g max Dc , the minimum dtk
exists when f Dc = g Dc .

When the hovering energy consumption (Ph) of the
UAV is much larger than the communication-related power
consumption (Puc) and the UAV computation energy con-
sumption (Ec), the minimum value of the Ed,k is decided
by dtk.

2.3.2. Minimizing Flight Power Consumption of the UAV.
According to constraints (23b) and (10), the second simple
subproblem, i.e., the minimum flight power consumption
(PH) of the UAV, can be found. Then, we have Proposition
5.

Proposition 5. If a local minimum exists in the Pf Vh,w /
Vh and when Vh > 0, it is the only local minimum of the
function.

Proof. Define PH Vh = Pf Vh,w /Vh; we have

PH Vh = P0
1
Vh

+
3Vh

Ω2Ru
2

+ 1 + γ Tφ

Tφ
2

4Vh
4ρ2DA2 +

1
4
−
1
2

1/2

+
1
2
d0ρs ∗DA ∗Vh

2

29

We must show PH Vh being concave (i.e., ∂PH2 Vh /
∂Vh

2 > 0). It is easy to prove that the first and third terms
are both concave. For the second term, define γ2 = Tφ

2/ρ2

DA2. According to the first-order Taylor approximation,
when γ2/Vh

4 ≪ 1, we have

Vh ≜
γ2

4Vh
4 +

1
4
−
1
2

1/2

=
2
2

γ2

Vh
4 + 1 − 1

1/2

=
2
2

γ2

2Vh
4 + 1 − 1

1/2

=
1
2

γ

Vh
2

30

It is easy to prove 1 + γ Tφ g Vh > 0. A nonnegative,
nonzero weighted sum of strictly concave function is strictly
concave. So, PH Vh is concave when Vh > 0.

2.3.3. Minimizing the Total UAV Traveling Distance in
Inspecting the Offshore Wind Farm. After minimizing the
corresponding detection energy consumption (Ed,k) and the
flight power consumption of the UAV (PH), the next objec-
tive is to minimize the total traveling distance of the UAV
in the inspection of all the wind turbines. For this, according
to the subset WTi,m, the constraint (23b), and the constrain
(23c), the minimization problem is expressed as

Problem 6.

min
i∈I

〠
I

i=1
〠
M

m=1
PDUt,i,m 31

subject to 18a — 18c 32a

PDUt,i,mPH ≤ EUtraL 32b

Ei,m ≤ EUdetL 32c

According to the constraints, Problem 6 is transformed
into a DCVRP. So, Problem 6 is obviously a strongly NP-
hard problem. The methods of solving DCVRP are diverse.
It can be used on any one of the algorithms as follows:
LKH-3, genetic algorithm (GA), ant colony optimization
(ACO) algorithm, simulated annealing (SA), and particle
swarm optimization (PSO). Here, we use LKH-3 to find a
promising DCVRP solution, for conveniently addressing
Problem 6.

2.3.4. Minimizing the BBS Traveling Time in Inspecting the
Offshore Wind Farm. For the traveling time TTBBSt of the
BBS in the inspection of the wind farm, its minimization
problem is expressed as

Problem 7.

min
i,j∈I

TTBBSt 33

subject to 21d — 21f 34

Although Problem 7 is a simple TSP problem, the prob-
lem size of Problem 7 increases with the increment of the
number i of the subset WTi, i ∈ I.

In summary, according to Proposition 4, Proposition 5,
Problem 6, and Problem 7, Et can be minimized. For this,
a heuristic algorithm is designed to solve the minimum total
inspection energy consumption problem. In addition,
according to (28), (31), and (33), the minimum total inspect-
ing time (i.e., Problem 3) also can be solved.

2.4. Algorithm Design. Based on Proposition 4, Proposition
5, Problem 6, and Problem 7, the new heuristic algorithm
(i.e., MOA) is designed based on the K-means, SEC, and
LKH-3 to address Problem 1.

2.4.1. Algorithm 1: MOA. For the given wind turbine loca-
tions (i.e., the setWT) in the offshore wind farm, to optimize
the total inspecting energy consumption to minimal value by
the algorithm, MOA, obtaining the optimal positions of the
BBS waypoint is crucial.

Therefore, the steps of the MOA to address Problem 1
are arranged as follows:

(i) The waypoints v1,⋯,vI of the BBS are obtained
by K-means algorithm and SEC algorithm. Then,
the offshore wind farm WT is divided into multiple
subsets WTi by the distance PDi,k between the way-
point of BBS and the location of the wind turbine
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(ii) For each subset WTi, using the BBS waypoints as
the UAV starting and ending places, under the lim-
itation of energy consumption assigned to UAV for
flying EUtraL and detecting EUdetL, the sum of travel-
ing distance in one subset is obtained. Then, the
total traveling distance is also acquired (i.e., Prob-
lem 6)

(iii) The traveling time of the BBS is obtained by the
LKH (i.e., Problem 7)

The details in Algorithm 1 are given as follows.
So, the time complexity analysis of the MOA can be ana-

lyzed as follows: for the K-means cluster algorithm, we
assume that the number of iterations is iter. The time com-
plexity of the K-means algorithm is O 2 I WT iter in line
1. Meanwhile in line 1, according to [33], the time complex-
ity of the SEC algorithm is O I lg md/Ra WTi , where
md is the shortest distance from a point to the circumference
of a circle when the point is outside the circle and Ra is the
radius of the smallest circle that we need to obtain in the last
round of iteration.

In Problem 6, the time complexity of the LKH-3 can be
simplified to O WTi . Problem 7 is similar to Problem 6;
the time complexity of the solution in Problem 7 is O I .
In a word, in the MOA, the LKH-3 needs to run I times.
From the discussions above, the time complexity of MOA
is O 2 I WT iter +O I lg md/Ra WTi +O I WTi

+O I 2 .

3. Results and Discussion

To comprehensively evaluate the performance of MOA in
solving Problem 1 and Problem 3, i.e., under the MEC-
and BBS-assisted UAV, minimizing the total inspecting
energy consumption and total inspecting time for the off-
shore wind farm, numerical results are provided by simula-
tions. The physical meaning and values of the parameters
are given in Table 1. Under wind conditions, to simulate

the hovering energy consumption system of the UAV, the
parameters and their physical meanings of the UAV are also
shown in Table 1. The parameter values are based on the
specification values of the UAV used in the simulation. For
simulating each pair of wind turbine’s realistic distance from
each other, its coordinate is quoted from kingfisher informa-
tion service-offshore renewable cable awareness (KIS-
ORCA) [1]. A plane coordinate of a wind turbine transforms
from the longitude and the latitude via a transformation
program called PROJFWD in MATLAB. All the simulations
are conducted in MATLAB 2020b. The as-simulation results
are analyzed and discussed as follows.

To clearly illustrate the performance of the as-proposed
scheme, we compare it with the following schemes:

(i) Full MEC server computation scheme (FSC): all data
is transmitted to the MEC server for computation
[18]

(ii) Full UAV local computation scheme (FULC): all
data is computed in the local UAV [12]

3.1. Discussion of Proposition 4 and Proposition 5. Two sim-
ulating numerical data results of Proposition 4 and Proposi-
tion 5 are shown in Figures 2(a) and 2(b), respectively.
Figure 2(a) shows the relations between the throughput
and the corresponding detection energy consumption under
different computation schemes. In Proposition 4, the FULC
and the FSC indicate that Dc =Dwt and Dc = 0 in (3), respec-
tively. From Figure 2(a), the corresponding detection energy
consumption decreases with the throughput increment
between the MEC server and the UAV in the as-proposed
computation scheme and the FSC scheme. The energy con-
sumption remains unchanged with the throughput incre-
ment in the FULC scheme. When the throughput is
smaller than 18Mbit/s, the corresponding detection energy
consumption in the as-proposed scheme is the smallest
among the three schemes. At this time, it means that it is
better that part of the data is transmitted from the UAV to

Input: WT , I, VBBS, PBBS, Pu, Puc, PH,Dwt , rk
Output: Et , Tti
1. The waypoints v1,⋯,vI and the subsets WT1,⋯,WTI are obtained by K-means algorithm and SEC algorithm;
2. for i =1 to I

3. Obtain the sum of UAV detecting times ∑M
m=1∑

WTi,m
k∈WTi,m

dtk and the sum of UAV detecting energy consumption ∑M
m=1Ei,min one sub-

setWTi;
4. Obtain the sum of UAV traveling energy consumption ∑M

m=1PDUt,i,mPH by LKH-3with vi, WTi, EUtraL, and EUdetL;
5. end
6. Obtain the traveling distance PDBBS of the BBS by LKH
7. TTBBSt ⟵ PDBBS/VBBS;
8. Et ⟵∑I

i=1∑
M
m=1Ei,m +∑I

i=1∑
M
m=1PDUt,i,mPH + PBBSTTBBSt ;

9. TTUdet ⟵∑I
i=1∑

M
m=1∑

WTi,m
k∈WTi,m

dtk;

10. TTUtra ⟵∑I
i=1∑

M
m=1PDUt,i,m/VU ;

11.Tti ⟵ TTUtra + TTBBSt + TTUdet .

Algorithm 1: Mixed optimization algorithm (MOA).
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the MEC server for computation. When the throughput is
over 18Mbit/s, the energy consumption in FSC is the same
as that in the as-proposed scheme, and the energy consump-
tion in the both schemes is lower than that in FULC. It
means that the larger the throughput, the better using the
MEC server for computation.

Figure 2(b) shows under different average wind speeds,
the relation between the proposed computation scheme’s
power consumption, and the airspeed of the UAV (Vh m/s).
Here, five different average wind speeds (w = 6,⋯, 10m/s )
are provided by [1]. When the airspeed Vh = 5, the power
consumption is the highest. Then, the power consumption
decreases as the airspeed increases from Vh = 5 to 15. How-
ever, the power consumption increases as the airspeed
increases from 25 to 30. When the airspeed Vh increases
from 15 to 25, the lowest power consumption points
emerge on each power consumption line. Therefore, there
is an optimal airspeed corresponding to the minimum
power consumption in each average wind speed. The opti-
mal values for power consumption shown in Figure 2(b)
are listed in Table 2. In offshore wind farm inspection,
the minimum power consumption of the UAV flight is cru-
cial to saving energy and increasing the efficiency of the
UAV inspection.

3.2. The Result Comparison of Schemes under Different Data
Amounts. For evaluating the performance of the as-
proposed scheme, under the different image data amounts,
the boat-direct, the FSC, and the FULC are employed to
compare with the as-proposed. The boat-direct uses a boat
(BBS) to carry a UAV directly to each wind turbine position
for detection, where it follows a TSP route. Figure 3(a) shows
the comparison results of Et under different data amounts in
four schemes. There, Et of the four schemes increases with
the increment of the data amount. While compared with
the other three schemes, the as-proposed scheme has the
smallest Et . Compared especially to the boat-direct, the Et
gap is about 44% on average. It means that approximately
44% of energy consumption can be saved on average, rela-
tive to boat-direct. The reason for presenting a large energy
consumption gap between the as-proposed and the boat-
direct is that the as-proposed scheme has a minimum travel-
ing distance. Although when the data amount is 100Mbit, Et
of the three (i.e., the as-proposed, the FULC, and the FSC) is
quite close; when the data amount increases, the Et gap in
the three schemes becomes bigger and bigger. When the data
amount is 1000Mbit, the as-proposed can save about 0.12%
and 0.06% energy consumption, relative to the FULC and
the FSC, respectively. We can conclude from Figure 3(a) that

Table 1: Parameters and their values.

Parameters Physical meaning Value

EUtraL Maximum traveling energy limitation of the UAV 90 kJ

EUdetL Maximum detection energy limitation of the UAV 60 kJ

VBBS Speed of BBS 5m/s

PBBS The propulsion load of the BBS [34] 120 kW

Ph The power consumption of UAV in hovering 181.32W

Puc The communication power consumption 5W

h The UAV’s average communication altitude 110m

Cu The number of CPU cycles to complete the computation 103 cycles/bit

ϵu The effective capacitance coefficient of the CPU 10-28

f u The CPU frequency 10GHz

mg Aircraft weight in newton 20

ρ Air density in kg/m3 1.225

Ru Rotor radius in meter (m) 0.4

DA Rotor disc area in m2, DA ≜ πRu
2 0.503

Ω Blade angular velocity in radians/second 300

Nb Number of blades 4

Bl Blade or aerofoil chord length 0.0157

s Rotor solidity, defined as the ratio of the total blade area to the disc area, s ≜NbBl/πRu 0.05

SFP Fuselage equivalent fat plate area in m2 0.0151

d0 Fuselage drag ratio, defined as d0 = SFP/sDA 0.6

γ Incremental correction factor to induced power 0.1

ϑ Profile drag coefficient 0.012

Tφ Rotor thrust
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the as-proposed scheme achieved the objective of saving
energy under the data amount increasing condition, and this
gain is quite remarkable when the collected data amount is
more and more, especially for the future of developing super
large-scale wind farm towards the wider and deep sea.

To arrive at the aim of saving energy and high-efficient
inspection, we also investigate the total inspection time (T ti
) in four schemes. Figure 3(b) shows the comparison results
of four schemes of T ti under different data amounts. In
Figure 3(b), T ti all increase with the increment of the data
amounts for four schemes. It is reasonable since the time
taken for data computation increases along with data
amounts. Compared with the other three, the as-proposed
scheme spends the least total inspection time. Although
when the data amount is 100Mbit, T ti of the three (exclud-
ing boat-direct scheme) is quite close; when the data amount
increases more and more, the T ti gap in our scheme relative
to the other two becomes bigger and bigger. However, when
the data amount increases, the T ti gap between the proposed

scheme and the boat-direct slightly reduces. Even so, when
the data amount is 1000Mbit, the least T ti gap is still about
15%; it means that still about 15% of the T ti can be saved
by the as-proposed scheme relative to boat-direct. Com-
pared to the FULC and the FSC, the as-proposed can save
approximately 23% and 22%, respectively, of the T ti. From
Figure 3(b), it can be concluded that the as-proposed scheme
is high efficient at the T ti aspect under the different data
amount conditions.

3.3. Comparing the Results of the Different Schemes under
Different Average Wind Conditions. In the offshore wind
farm, as far as evaluating the performance of the inspection
scheme is concerned, the effect of average wind speed on Et
is also an important reference. According to [1], the average
wind speed data range is 6 to 10m/s, which occupies most.
Figure 4(a) shows the comparison results of Et in four
schemes, and in the figure, for all the schemes, there is an
insignificant change in Et with the average wind speeds.
The propulsion load of the BBS is the main power consump-
tion in the inspection. Thus, the total energy consumption in
the as-proposed, FSC, and FULC schemes is far less than
that in the boat-direct. And the as-proposed scheme has
the minimum total energy consumption. The as-proposed
can save, on average, approximately 0.06%, 0.02%, and
41% of Et compared to the FULC, the FSC, and the boat-
direct, respectively. The objective of saving energy is
achieved at different average wind speeds.

For the saving energy and high-efficient inspection at
different average wind speeds, we also investigate T ti in four
schemes. Figure 4(b) shows the comparison results of T ti;
as far as the other three schemes are concerned, with the

Table 2: Optimal airspeed and power consumption under different
wind speeds.

Average wind speed
W (m/s)

Airspeed of UAV
Vh (m/s)

Power
consumption (J/m)

6 19 9.22

7 19 9.54

8 20 9.99

9 21 10.61

10 23 11.39
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Figure 2: (a) Changes in the detection energy consumption with the throughput under different computation schemes. (b) Variation in the
proposed computation scheme’s power consumption with the UAV airspeed (Vh), under different average wind speeds.
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increment of the average wind speed, there is a crucial dec-
rement in T ti. However, for the as-proposed, T ti is almost
unchanged. This indicates that for the usual average wind
speeds, the T ti obtained by simulating calculation via the
as-proposed scheme is more stable and reliable, relative to
those T ti of the other three schemes. In the meantime,
compared to the other three, T ti in the proposed scheme

is still the smallest. About 23.5%, 15.1%, and 11.9% time
on average can be saved relative to the boat-direct, FULC,
and FSC schemes, respectively. This means that the objec-
tive of the high-efficient inspection achieves at different
average wind speeds.

The above accomplishments of saving energy and high-
efficient inspection should be attributed to this reasonable
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Figure 3: (a) Comparison in total inspection energy consumption for four schemes under different data amounts. (b) Comparison in total
inspection time under different data amounts for four schemes.
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Figure 4: (a) The total inspection energy consumption for four schemes at different average wind speeds. (b) The total inspection time for
four schemes at different average wind speeds.
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scheme design, the suitable MOA, and its optimal planning
routes of the boat and the UAV under LEO satellite MEC
service and boat-assisted inspection shown as follows.

3.4. The Optimized Inspection Routes. Based on the results
above discussion, the optimal routes of the BBS and the
UAV in the as-proposed scheme (i.e., MOA) are given in
this part. An interesting inspection region in the offshore
wind farm is considered, where there are 86 wind turbines
deployed. The unified deployment of the wind turbines is
shown in Figure 5(a). A green point is the wind turbine posi-
tion. A blue pentagram indicates a waypoint of the BBS. In
Figure 5(a), following the direction of the blue arrow can
achieve the BBS route, and the objective of saving energy
and high-efficient inspection can arrive. Meanwhile, the
objective achievement is also inseparable from the UAV
route. Figure 5(b) shows the inspection route of the UAV
in the BBS waypoint 2. At each waypoint, the BBS acts as
the take-off and landing locations of the UAV. At waypoint
2, the UAV must inspect all wind turbines using four trips
(see 4 different color closing lines). These trips are 0 > 19
> 20 > 13 > 14 > 7 > 12 > 0, 0 > 18 > 24 > 23 > 27 > 28 > 29
> 26 > 25 > 0, 0 > 10 > 5 > 4 > 3 > 1 > 2 > 6 > 11 > 0, and 0
> 9 > 8 > 15 > 21 > 22 > 16 > 17 > 0; the corresponding trav-
eling distances are 8068.56m, 8679.64m, 8885.58m, and
8524.52m, respectively. The sum of traveling distance is
equal to 34158m. At the other two waypoints 1 and 3, the
UAV needs to visit the wind turbine position with the five
trips and the three trips (5 and 3 different color closing
lines), respectively. The sum of traveling distance is 39014m
and 32547m.

Briefly, the optimal route of the BBS, the optimal plan-
ning route of the UAV, and the minimum total inspection
energy consumption (and time) of the BBS and the UAV
are obtained using the MOA in our scheme.

4. Conclusions

Facing the limitations of current assisted UAV inspection of
offshore wind farms, this paper proposes a new
comprehensive-assisted UAV automated inspection scheme.
Its objectives are conducting the saving energy and high-
efficient inspection and are used for formulating two combi-
natorial optimization problems based on the UAV and BBS
routing planning. We have solved the two problems by
exploiting the new improved heuristic algorithm (MOA),
made of the LKH-3, SEC, and K-means clustering algo-
rithms, i.e., decomposing the two problems into four sub-
problems, and then, to be solved. First, the boat waypoints
are obtained by the K-means algorithm and the SEC algo-
rithm. Then, the offshore wind farm is divided into multiple
subsets via the distance between the waypoint and the loca-
tion of turbine; two sums about the drone inspecting time
and the detecting energy consumption are acquired, respec-
tively. Second, the drone total traveling distance in one sub-
set is obtained by the LKH-3 algorithm. Third, the boat
traveling distance is obtained by the LKH. Finally, we con-
duct simulations and use the results to comprehensively
evaluate the performance of the proposed scheme. The sim-
ulation experimental results demonstrate that compared
with the other three schemes, the as-proposed scheme not
only has the smallest total inspection energy consumption
and the least total inspection time but also, via the scheme
algorithm, provides the optimal routes with the BBS and
the UAV, in inspection of the offshore wind farm. These
results can provide the inspecting offshore wind farms with
some references. Hereafter, the ocean sensor will be studied.

Data Availability

Data is included in the article, and further inquiries can be
directed to the first or corresponding author.
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Figure 5: The inspection route of the BBS and the UAV in MOA: (a) BBS and (b) UAV at BBS waypoint 2.

12 International Journal of Energy Research



Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

Acknowledgments

This research was funded by the National Natural Science
Foundation of China (grant number 62062007).

References

[1] H. M. Chung, S. Maharjan, Y. Zhang, and K. Strunz, “Place-
ment and routing optimization for automated inspection with
unmanned aerial vehicles: a study in offshore wind farm,”
IEEE Transactions on Industrial Informatics, vol. 17, no. 5,
pp. 3032–3043, 2021.

[2] D. Li, S. M. Ho, G. Song, L. Ren, and H. Li, “A review of dam-
age detection methods for wind turbine blades,” Smart Mate-
rials and Structures, vol. 24, no. 3, article 033001, 2015.

[3] W. Qiao and D. Lu, “A survey on wind turbine condition mon-
itoring and fault diagnosis—part I: components and subsys-
tems,” IEEE Transactions on Industrial Electronics, vol. 62,
no. 10, pp. 6536–6545, 2015.

[4] K. Branner and A. Ghadirian, “Database about blade faults,”
DTU Wind Energy E-0067, Technical Report, 2014.

[5] X. Yang, Y. Zhang,W. Lv, and D.Wang, “Image recognition of
wind turbine blade damage based on a deep learning model
with transfer learning and an ensemble learning classifier,”
Renewable Energy, vol. 163, pp. 386–397, 2021.

[6] X. Huang, G.Wang, Y. Lu, and Z. Jia, “Study on a boat-assisted
drone inspection scheme for the modern large-scale offshore
wind farm,” IEEE Systems Journal, vol. 17, no. 3, pp. 4509–
4520, 2023.

[7] B. Alzahrani, O. S. Oubbati, A. Barnawi, M. Atiquzzaman, and
D. Alghazzawi, “UAV assistance paradigm: state-of-the-art in
applications and challenges,” Journal of Network and Com-
puter Applications, vol. 166, article 102706, 2020.

[8] A. Qayyum, I. Ahmad, M. Iftikhar, and M. Mazher, “Object
detection and fuzzy based classification using UAV data,”
Intelligent Automation & Soft Computing, vol. 26, no. 4,
pp. 693–702, 2020.

[9] L. Wang and Z. Zhang, “Automatic detection of wind turbine
blade surface cracks based on UAV-taken images,” IEEE
Transactions on Industrial Electronics, vol. 64, no. 9,
pp. 7293–7303, 2017.

[10] L. Wang, Z. Zhang, and X. Luo, “A two-stage data-driven
approach for image-based wind turbine blade crack inspec-
tions,” IEEE/ASME Transactions on Mechatronics, vol. 24,
no. 3, pp. 1271–1281, 2019.

[11] D. Xu, C. Wen, and J. Liu, “Wind turbine blade surface inspec-
tion based on deep learning and UAV-taken images,” Journal
of Renewable and Sustainable Energy, vol. 11, no. 5, article
053305, 2019.

[12] P. Cao, Y. Liu, C. Yang, S. Xie, and K. Xie, “MEC-driven UAV-
enabled routine inspection scheme in wind farm under wind
influence,” IEEE Access, vol. 7, pp. 179252–179265, 2019.

[13] H. Baik and J. Valenzuela, “An optimization drone routing
model for inspecting wind farms,” Soft Computing, vol. 25,
no. 3, pp. 2483–2498, 2021.

[14] A. Thibbotuwawa, G. Bocewicz, G. Radzki, P. Nielsen, and
Z. Banaszak, “UAV mission planning resistant to weather
uncertainty,” Sensors, vol. 20, no. 2, p. 515, 2020.

[15] D. Xu, Y. Sun, D. W. K. Ng, and R. Schober, “Multiuser MISO
UAV communications in uncertain environments with no-fly
zones: robust trajectory and resource allocation design,” IEEE
Transactions on Communications, vol. 68, no. 5, pp. 3153–
3172, 2020.

[16] H. Luo, Z. Liang, M. Zhu, X. Hu, and G. Wang, “Integrated
optimization of unmanned aerial vehicle task allocation and
path planning under steady wind,” PLoS One, vol. 13, no. 3,
article e0194690, 2018.

[17] M. Coombes, T. Fletcher, W. H. Chen, and C. Liu, “Decompo-
sition-based mission planning for fixed-wing UAVs surveying
in wind,” Journal of Field Robotics, vol. 37, no. 3, pp. 440–465,
2020.

[18] F. Wang, J. Xu, X. Wang, and S. G. Cui, “Joint offloading and
computing optimization in wireless powered mobile-edge
computing systems,” IEEE Transactions on Wireless Commu-
nications, vol. 17, no. 3, pp. 1784–1797, 2018.

[19] X. Zhang, Y. Zhong, P. Liu, F. Zhou, and Y. Wang, “Resource
allocation for a UAV-enabled mobile-edge computing system:
computation efficiency maximization,” IEEE Access, vol. 7,
pp. 113345–113354, 2019.

[20] H. Sun, F. Zhou, and R. Q. Hu, “Joint offloading and computa-
tion energy efficiency maximization in a mobile edge comput-
ing system,” IEEE Transactions on Vehicular Technology,
vol. 68, no. 3, pp. 3052–3056, 2019.

[21] M. A. Ullah, K. Mikhaylov, and H. Alves, “Enabling mMTC in
remote areas: LoRaWAN and LEO satellite integration for off-
shore wind farmmonitoring,” IEEE Transactions on Industrial
Informatics, vol. 18, no. 6, pp. 3744–3753, 2022.

[22] Y. C. Zhu and S.W.Wang, “Efficient aerial data collection with
cooperative trajectory planning for large-scale wireless sensor
networks,” IEEE Transactions on Communications, vol. 70,
no. 1, pp. 433–444, 2022.

[23] H. Zhao, G. Chen, H. Hong, and X. Zhu, “Remote structural
health monitoring for industrial wind turbines using short-
range Doppler radar,” IEEE Transactions on Instrumentation
and Measurement, vol. 70, pp. 1–9, 2021.

[24] L. D. Avendaño-Valencia, I. Abdallah, and E. Chatzi, “Virtual
fatigue diagnostics of wake-affected wind turbine via Gaussian
process regression,” Renewable Energy, vol. 170, pp. 539–561,
2021.

[25] D. Xu, P. F. Liu, and Z. P. Chen, “Damage mode identification
and singular signal detection of composite wind turbine
blade using acoustic emission,” Composite Structures, vol. 255,
article 112954, 2021.

[26] K. Helsgaun, “General k-opt submoves for the Lin-Kernighan
TSP heuristic,” Mathematical Programming Computation,
vol. 1, no. 2-3, pp. 119–163, 2009.

[27] A. G. H. Kek, R. L. Cheu, and C. Q. Meng, “Distance-con-
strained capacitated vehicle routing problems with flexible
assignment of start and end depots,” Mathematical and Com-
puter Modelling, vol. 47, no. 1-2, pp. 140–152, 2008.

[28] K. Helsgaun, “An extension of the Lin-Kernighan-Helsgaun
TSP Solver for Constrained Traveling Salesman and Vehicle
Routing Problems,” Dept People Technol, Roskilde Univ,
Roskilde, Denmark, Tech Rep, 2017.

[29] R. T. Palomaki, N. T. Rose, V. D. M. Bossche, T. J. Sherman,
and S. F. J. De Wekker, “Wind estimation in the lower

13International Journal of Energy Research



atmosphere using multirotor aircraft,” Journal of Atmospheric
and Oceanic Technology, vol. 34, no. 5, pp. 1183–1191, 2017.

[30] Y. Zeng, J. Xu, and R. Zhang, “Energy minimization for
wireless communication with rotary-wing UAV,” IEEE
Transactions on Wireless Communications, vol. 18, no. 4,
pp. 2329–2345, 2019.

[31] G. D. A. R. S. Bramwell and D. Balmford, Bramwell’s Helicop-
ter Dynamics, American Institute of Aeronautics & Astronau-
tics (AIAA), Reston, VA, USA, 2nd edition, 2001.

[32] A. Filippone, Flight Performance of Fixed and Rotary Wing
Aircraft, American Institute of Aeronautics & Astronautics
(AIAA), Reston, VA, USA, 2006.

[33] W. Wang, W. P. Wang, and J. W. Wang, “Algorithm for find-
ing the smallest circle containing all points in a given point
set,” Journal of Software, vol. 11, no. 9, pp. 1237–1240, 2000.

[34] Y. K. Son, S. Y. Lee, and S. K. Sul, “DC power system for fishing
boat,” in Proceedings of the 2018 IEEE International Confer-
ence on Power Electronics, Drives and Energy Systems (PEDES),
pp. 1–6, Chennai, India, 2018.

14 International Journal of Energy Research


	Saving Energy and High-Efficient Inspection to Offshore Wind Farm by the Comprehensive-Assisted Drone
	1. Introduction
	1.1. Motivation and Contributions
	1.2. Relative Research Work and Their Experiences

	2. System Models and Methods
	2.1. System Models
	2.1.1. The UAV Computation System Model Assisted by MEC Server
	2.1.2. The UAV Flight Model

	2.2. Formulation of Problem
	2.3. Solution of Problem
	2.3.1. Minimizing the UAV Detection Time in One Wind Turbine
	2.3.2. Minimizing Flight Power Consumption of the UAV
	2.3.3. Minimizing the Total UAV Traveling Distance in Inspecting the Offshore Wind Farm
	2.3.4. Minimizing the BBS Traveling Time in Inspecting the Offshore Wind Farm

	2.4. Algorithm Design
	2.4.1. Algorithm&ebsp;1: MOA


	3. Results and Discussion
	3.1. Discussion of Proposition 4 and Proposition 5
	3.2. The Result Comparison of Schemes under Different Data Amounts
	3.3. Comparing the Results of the Different Schemes under Different Average Wind Conditions
	3.4. The Optimized Inspection Routes

	4. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments



