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This study proposes a novel framework that couples the general likelihood uncertainty estimation (GLUE) method with a
deterministic forecasting approach to conduct a new uncertainty analysis approach for assessing the energy production of
operational wind turbines installed in the Jhongtun wind farm at Penghu (an island in the middle of Taiwan Strait). The 10-
year measured data of wind speeds and energy output collected on these wind turbines is divided into two 5-year data sets for
the present analysis framework of execution and validation to demonstrate the predictability of the GLUE method. The present
study considers 15 scenario testing cases with various time periods, i.e., twelve months, the strong-wind (October-March)
regime, the weak-wind (April-September) regime, and one year, for the framework to investigate the applicability of the GLUE
method on long-term wind energy forecasting. In the execution framework, the 5-year measured data is used by the GLUE
method to access the uncertainties involved in the deterministic approach (i.e., the shape and scale parameters of the Weibull
wind speed distribution (WWSD), the performance curve, and the capacity factor) with two confidence intervals of 50% and
90%. The framework is then validated by the measured capacity factors in the last 5-year data and compared with the results
of the uncertainty analysis approach by the Monte Carlo (MC) approach to discover the applicability of the new uncertainty
analysis approach. From the simulated results, it is found that the proposed uncertainty analysis approach provides predictions
of confidence intervals that match the measured data better than the MC-based uncertainty analysis approach. Specifically, the
proposed approach can match the measured capacity factors in all the simulated scenarios. Conversely, the MC-based
approach is found to create narrow confidence intervals that cannot completely capture the measured capacity factors,
particularly for the strong-wind, weak-wind, and one-year scenarios. Therefore, this novel uncertainty analysis approach is
proven to be useful in predicting the uncertainties of wind energy production.

1. Introduction

Wind energy has been recognized as a promising alternative
to nonrenewable energy resources. Furthermore, wind
energy is proven to introduce a noteworthy reduction in
greenhouse gases (i.e., CO2) and water consumption, which
reveals the effectiveness of wind energy in preserving envi-

ronmental sustainability [1]. So far, the installation of wind
turbines and wind farms worldwide has reached a total
capacity of 906 GW in 2023 [2]. Such a large amount of
energy is harvested from wind turbines installed in the
atmospheric boundary layer where the flow is highly turbu-
lent, intermittent, energetic, and unstable, which leads to sig-
nificant uncertainties in wind energy production. In this
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aspect, the integration of wind energy into electricity power
systems has a great impact on power system operations, sta-
bility, and planning. The most direct way to tackle this prob-
lem is to improve the accuracy and reliability of wind energy
forecasting. As a result, many studies associated with the
investigation of wind energy forecasting techniques have
been made in many countries during the past two decades
[3–9]. These approaches have been built for various forecast-
ing horizons according to their objectives, i.e., the very
short-term forecasting horizon with a time scale from sec-
onds to minutes for wind turbine control, the short-term
forecasting horizon with a time scale from hours to days
for economic dispatch, the medium-term forecasting hori-
zon with a time scale from days to weeks for maintenance
scheduling, and long-term forecasting horizon with a time
scale from weeks to months or years for wind power plan-
ning, as summarized by Zhang et al. [10].

Summarizing the aforementioned approaches of various
wind energy forecasting technologies in the past two
decades, as shown in Figure 1, the authors have classified
wind energy forecasting approaches into deterministic fore-
casting and uncertainty analysis based on whether uncer-
tainties are quantified or not. The deterministic forecasting
approaches are further divided into two categories:
physics-driven forecasting and data-driven forecasting. In
the physics-driven forecasting approaches, the physical
causes of wind speeds, i.e., pressure and altitude, are consid-
ered. These approaches can be then subdivided into wind
physics and turbine physics approaches. For the wind phys-
ics approaches, the wind speed data can be represented by a
probability density function established based on the mea-
sured wind speed data. Among various distributions, the
Rayleigh or Weibull distributions are often adopted to
describe the wind speed distribution. Basically, the Rayleigh
distribution is a special case of the Weibull distribution with
a constant shape parameter of 2 and a constant location
parameter of 0. As the Rayleigh distribution only consists
of one parameter (the scale parameter), it is relatively more
convenient to use. Nevertheless, the Weibull distribution is
more widely used as it has more flexibility from the inclusion
of the shape parameter to match the wind speed data. On the
other hand, since the fitness of the adopted wind speed prob-
ability density function can significantly influence the accu-
racy of the predicted wind energy, there are various ways
to find the optimal parameter set. For example, AI-Quraan
et al. [11] developed an artificial intelligence technique with
the whale optimization algorithm (WOA) to search for the
optimal parameter set and found that the WOA outperforms
the maximum likelihood and moment methods. Besides the
probability density functions, the wind speed data can be
simulated by numerical weather prediction (NWP) models
such as the Weather Research and Forecasting (WRF)
model. The corresponding wind energy output can be com-
puted in several ways including using the performance
curves of wind turbines or from functions that relate the
measured wind speed and generated energy output [3, 12,
13]. In terms of the turbine physics approaches, the wind
speed is directly given and the corresponding wind energy
output under this wind speed is computed based on the

empirical formula from wind tunnel experiments, which is
conceptually similar to the use of the standard performance
curve of a wind turbine. In contrast to the physics-driven
forecasting approaches, the data-driven forecasting
approaches, including the stochastic and artificial intelli-
gence (AI) approaches, completely utilize the measured data
of wind speeds and energy output to forecast wind energy
output through a predictive function [14]. For the stochastic
approaches, the predictive function is expressed by probabil-
ity theory and stochastic processes, e.g., the Kalman filter
(KF) by Zuluaga et al. [15] and Bayesian multiple kernel
regression by Wang et al. [16]. Nevertheless, the stochastic
approaches are found inappropriate for nonlinear data and
could lead to significant delays [16]. The AI approaches have
recognized robustness and effectiveness in predicting the
wind energy output [14], e.g., the artificial neural network
(ANN) by Tu et al. [5, 6] and the extreme learning machine
(ELM) by Liu et al. [17]. However, the accuracy of wind
energy forecasting based on AI approaches significantly
relies on the training set. Concerning all the aforementioned
deterministic approaches, because of the inevitable uncer-
tainties in the atmosphere that bring natural variations of
wind speeds, the predicted wind energy may not match the
actual one in some circumstances, e.g., in seasons where
the direction or magnitude of winds change frequently [4].
Furthermore, the generated wind energy is found to have
nonlinear and no-stable properties which subsequently
decrease the predictivity of these approaches.

To resolve the aforementioned difficulties of the deter-
ministic approaches, uncertainty analysis approaches are
subsequently proposed based on the aforementioned deter-
ministic forecasting approaches to quantify the uncertainties
in the prediction of wind energy [4]. In the uncertainty anal-
ysis approaches, a distribution of wind energy is provided
instead of a fixed value in the deterministic forecasting
approaches. Currently, there are three main categories of
uncertainty analysis, i.e., the risk index, scenario, and prob-
abilistic forecasting approaches [10]. For a risk index
approach, a risk index is computed to reflect the expected
wind energy forecasting error that is directly related to the
predictability of wind energy forecasting. Different indexes
such as the Meteo-Risk Index (MRI) by Pinson and Karinio-
takis [18] and MaxMin/MaxMinMax by Holmgren et al.
[19] are proposed for quantifying such a risk. From the
viewpoints of the scenario approaches, they consider the
spatiotemporal correlation of the uncertainties at different
look-ahead time points and geographical positions such that
the scenario approaches are suitable for dynamic decision-
making problems [20, 21]. For more details on the risk
index and scenario approaches, the readers are referred to
Zhang et al. [10].

For the probabilistic forecasting approaches in the cate-
gory of uncertainty analysis, the wind energy output is a
probability density function that provides additional infor-
mation on the quantity of the involved uncertainties. Cur-
rently, there are nonparametric and parametric approaches
for building the probability density function [10]. Concern-
ing the nonparametric approaches, no assumption is
required for describing the distribution shape of any
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uncertainty such that the nonparametric approaches are
distribution-free. Various approaches are built to estimate
the wind energy distribution in various ways, such as the
quantile regression method (e.g., the Local Quantile Regres-
sion (LQR) model by Bremnes [22, 23]), the kernel density
estimation (KDE) method (e.g., the KDE method based on
copula method by Bessa et al. [24]), the ensemble forecasting
method that uses massive WRF ensembles (e.g., the
approach that uses the Bayesian Model Averaging (BMA)
to average the predicted results of three AI approaches by
Wang et al. [25] and the approach by Xie et al. [26] that uses
a nonparametric time series forecast model (Infinite Markov
Switching Autoregressive, IMSAR) for wind power genera-
tion and applies the Bayesian inference with a sampling pro-
cedure to quantify the uncertainty based on measured data),
and the AI method (e.g., the nonparametric approach by
Wan et al. [27]). Although no parameters of the distribution
shape are required to be determined, as noted by Zhang et al.
[10], the nonparametric approaches are more computation-
ally expensive than the parametric approaches that will be
introduced in the next paragraph. Hence, based on the
reviews of the deterministic approaches in the second para-
graph and the nonparametric approaches in this paragraph,
the target of this research is to build a parametric approach
based on a physics-driven forecasting approach comprising
both the wind and turbine physics approaches.

For the parametric approaches in the category of proba-
bilistic forecasting, the distribution shapes of parameters
with uncertainties are analytically defined [10]. Based on
the aforementioned objective of the present study (convert
a deterministic forecasting approach (physics-driven fore-
casting approach) to a probabilistic forecasting approach
(parametric approach)), as displayed in Figure 2, the authors
herein classified various parametric approaches into the MC
approaches, GLUE approaches, Bayesian approaches,
stochastic approaches, and AI approaches. In the MC
approaches, the distributions of uncertain factors are
defined, e.g., applying the Weibull distribution for wind
speeds, and massive samplings are created to form the resul-
tant wind energy output distribution. For example, Kwon
[28] considers the uncertainties in the WWSD (i.e., the
shape parameter), ground roughness and performance
curve, etc., and uses the MC method to create a huge number
of simulated values to evaluate the uncertainties of the wind
energy. Mokryani and Siano [29] establish an integrated
approach that comprises the MC method and market-

based optimal power flow to evaluate the impact of wind
turbine integration into the distribution networks within
a market environment. Zhao et al. [30] examine the per-
formance of the probabilistic uncertainty analysis based
on the MC method and chaos least squares support vector
machine algorithm (Chaos-LS-SVM) for predicting confi-
dence levels of wind energy output. The Bayesian
approaches utilize the Bayesian inference method to esti-
mate the parameters of defined distributions of the uncer-
tain factors and then apply the MC method to form the
desired distribution, e.g., Bracale and Falco [31] establish
an advanced Bayesian approach for short-term wind
energy forecasting that includes a mixture of two WWSDs
and a Bayesian interface method to find the parameters of
the two WWSDs. Then, the MC method is used to find
the desired wind energy distribution. Jung et al. [32] pro-
pose a Bayesian approach to predict the parameters of
the distributions of wind speeds under the condition that
there is limited measured wind speed data at the study
site. Thus, the uncertainties in the air density, performance
curve, and wind speeds at the reference site are both con-
sidered. For the stochastic approaches, there are different
researches, e.g., the Self-Exciting Threshold Autoregressive
(SETAR) model by Gallego et al. [33] that is based on
the Regime-Switching Autoregression (RS-AR) nonlinear
time-series model, the Conditional Parametric Autoregres-
sion eXtraneous (CPARX) model by Nielsen [34], and the
neural network by Sideratos and Hatziargyriou [35], the
Autoregression-Generalized Autoregressive with Condi-
tional Heteroscedasticity (AR-GARCH) model [36]. In the
AI approaches, the AI is used again to predict the parameters
for defining the distribution, e.g., the approach that uses a
feedforward neural network to predict wind energy output
by Khosravi et al. [37].

As to the GLUE approaches within the category of the
parametric approaches (as drawn in Figure 2), the uncer-
tainty analysis for wind energy forecasting is conducted by
incorporating the GLUE (generalized likelihood uncertainty
estimation) method. Basically, in the GLUE method, a user-
defined likelihood function is used to quantify the difference
between the simulated and measured data [38], such that the
simulated results with better accuracy can be emphasized.
Thus, it is conceptually a mixture of the MC, AI, and sto-
chastic approaches. The GLUE method has been used in
many fields because of its simplicity for implementation
and its demonstrated capability for uncertainty analysis,
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Figure 1: The classification of the wind energy forecasting approaches by the present study.
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e.g., in the hydrological models [39–41], flood inundation
models [42–45], and rainfall-runoff models [46, 47], to
access the uncertainties of studied problems. Nevertheless,
currently, there is no research using the GLUE method to
conduct the uncertainty analysis of wind energy generation.

To fill this gap, this study proposes a novel uncertainty
analysis approach that couples the GLUE method with a
deterministic forecasting approach to assessing the energy
production of operational wind turbines at Penghu. Col-
lected 10-year wind speed and energy output data of these
wind turbines are utilized for this analysis. For demonstra-
tion, the data is divided into two 5-year data sets for the
framework of execution and validation. The framework
comprises 15 scenario testing cases with various time
periods as twelve months, one strong-wind regime, one
weak-wind regime, and one year to investigate the applica-
bility of the GLUE method on long-term wind energy fore-
casting. For each testing case, the first 5-year data is
utilized to analyze the uncertainties of the Weibull wind
speed distribution parameters, the wind energy production,
and the capacity factor by the GLUE method with two con-
fidence intervals of 50% and 90%. Next, the framework is
evaluated with the measured capacity factors based on the
last 5-year data. To discover the advantages of the GLUE
method, the MC method is selected for comparison because
of its simplicity and applicability to various approaches. The
results of the GLUE-based uncertainty analysis approach are
compared with the results of the MC-based uncertainty
analysis approach, and attention is devoted to the accuracy
of the confidence intervals of wind energy output.

2. Deterministic Approach

2.1. Weibull Wind Speed Distribution (WWSD). In general,
wind energy density per unit area can be estimated using a
probability density distribution fitting to a set of wind speed
data. Considering that the natural distribution of measured
wind speeds often matches a Weibull shape [3], the Weibull
density function comprising two parameters is used to rep-
resent wind energy density:

f V = k
c

V
c

k−1
e− V/c k , 1

where f V is the wind energy density function, V is the
wind speed (m/s), c is the scale parameter highly related to
the mean of the wind speed distribution, and k is the shape
parameter that is usually in a range between 1.5 and 3. The
corresponding cumulative distribution function F V can
be obtained by integrating Equation (1):

F V = 1 − e− V/c k 2

There are various ways to find the scale c and shape k
parameters, i.e., the numerical approaches [48] and the arti-
ficial intelligence approaches [11, 49] with higher accuracy
but heavier computational demands than the numerical
approaches. For simplicity and acceptable accuracy in pre-
dicting the parameters (Chang et al. [7]), the maximum like-
lihood method as in the category of the numerical approach
is used to compute the two parameters through iterations
using the following equations [4]:
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in which subscript i refers to the ith time period and n is the
number of nonzero measured wind speed data. The average
wind speed V at a local site is given by

V = cΓ 1 + 1
k

, 4

where Γ denotes the Gamma function as Γ z = z − 1 .

2.2. Wind Energy Production.Wind energy production is the
process that converts the energy of wind into mechanical
energy and stores the mechanical energy as power energy.
Nevertheless, since there are several types of losses in the
system, the whole mechanical energy cannot be completely
converted into power energy. Currently, for estimating the
energy output from a wind turbine at a specific wind speed,
there are two commonly used approaches. In the first

Monte Carlo approach

Bayesian approach

Stochastic approach
(SETAR, AR-GARCH)

AI approach

Probabilistic forecasting
(parametric approach)

GLUE approach

Deterministic forecasting
(Physics-driven approach)

Figure 2: The illustration of the conversion from deterministic forecasting approaches (physics-driven approaches) to probabilistic
forecasting approaches (parametric approaches).
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approach, the energy output is computed by utilizing the
standard performance curve from the manufacturers which
describes the energy output at various wind speeds under a
standard environment. The other approach estimates the
energy output by the regression methods or artificial neural
networks from the measured data set of wind speeds and
energy output. Nevertheless, although the second approach
can lead to higher accuracy than the first approach, it
requires massive data for the computations. As a result,
the present study adopts the first approach hereinafter to
calculate the energy output of a wind turbine at a specific
wind speed. The corresponding formula for determining
the energy output by a standard performance curve is
given as

P V =

0,
a0 + a1V + a2V

2 + a3V
3 + a4V

4 PR,
PR,
0,

 

V <V I,
V I ≤V < VR,
VR ≤ V <VO,
V ≥VO,

5

where V I, VR, and VO refer to the cut-in wind speed, rated
wind speed (m/s), and cut-out wind speed (m/s), respec-
tively. PR is the rated power which is the maximum energy
output of the wind turbine. a0, a1, a2, a3, and a4 are coef-
ficients that are provided by the corresponding manufac-
turer of the used wind turbine. From Equation (5), when
the wind speed is less than the cut-in wind speed, the fans
of the wind turbine are not rotated such that the subse-
quent energy output is zero. When the wind speed is
greater than the cut-in wind speed, the fans of the wind
turbine are rotated and the energy output is subsequently
produced. Constant energy output (i.e., the maximum
energy output) is produced by the wind turbine under
the condition that the wind speed is between the rated
and cut-off wind speeds. When the wind speed is greater
than the cut-off wind speed, the wind turbine is turned
down to avoid potential permanent damage under such a
violent wind; hence, there is no energy output. The stan-
dard performance curve is displayed in Figure 3 for
illustration.

Combining the WWSD aforementioned in Section 2.1
and the standard performance curve in this subsection, the
energy output (Ew) in a time period Δt can be expressed as

Ew = Δt
V0

V1

P V f V dV , 6

which leads to the form of

Ew = ΔtPR
VR

V1

a4V
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Equation (7) is solved by applying numerical integration.
In practice, the energy output Ew is often divided by the
maximum energy output ER to derive a dimensionless factor
as the capacity factor CF to give a more objective inspection
of the produced energy output [3, 50]. Hence, the produced
energy output is represented by the capacity factor hereinaf-
ter. The capacity factor CF is defined as (Chang et al. [7])

CF =
Ew
ER

8

The formula for computing the capacity factor CF can be
deduced by combining Equations (7) and (8), leading to

CF =
VR

V1

a4V
4 + a3V
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2 + a1V

+ a0
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e− V/c k
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9

Equation (9) cannot be directly integrated. Instead, the
present study adopts the recursive adaptive Simpson quad-
rature to numerically solve Equation (9) to find the capacity
factor CF.

3. Uncertainty Analysis Approaches

3.1. Generalized Likelihood Uncertainty Estimation (GLUE)
Method. The GLUE method is currently one of the main
methods used for uncertainty analysis in hydrology and
water quality simulations [38]. It utilizes the likelihood func-
tion and considers the parameter space and probability dis-
tribution patterns to appropriately describe the involved
physical mechanisms. Under general circumstances, as long
as a model has several parameter combinations and mea-
sured simulation results, the analysis process can be initi-
ated. The first step in performing the uncertainty analysis
by the GLUE method is to decide a representative likelihood
function that measures the difference between the simulated
and measured results. Then, the decided likelihood function
is used to perform a sensitivity analysis of all the involved
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Figure 3: The standard performance curve. The standard
performance curve of the Enercon E44-600KW wind turbine is
used for giving an example.
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parameters. A likelihood value scatterplot of each involved
parameter is conducted to observe where the optimal perfor-
mance occurs. Subsequently, the parameter range for the
parameter is determined. Then, a sufficiently large number
of parameter combinations are created based on these
derived parameter ranges. The simulated values and the cor-
responding likelihood values of these parameter combina-
tions are computed and recorded. For a parameter
combination, the likelihood value is updated when a new
likelihood value is computed due to the use of new data:

Li =w0L0 +w1L1, 10

where Li is the updated likelihood value, L0 refers to the like-
lihood value based on the original data, L1 is the likelihood
value based on the new data, and w0 and w1 are the weights
for the original and new data, respectively. After the likeli-
hood value of each parameter combination is computed
and/or updated, the simulated results are then sorted
according to the simulated value of each parameter combi-
nation. After that, the likelihood values are normalized to
obtain the desired distribution. The confidence intervals
are subsequently derived based on the distribution.

3.2. Monte Carlo (MC) Estimation Method. Monte Carlo
simulation is a method for solving problems via massive ran-
dom samplings to produce a huge number of simulations
that can describe the desired population [51]. Nowadays,
through the use of computers, a lot of samplings and corre-
sponding simulations can proceed to obtain an estimated
answer in a relatively short time. The MC method is cur-
rently being applied in many fields such as physics, chemis-
try, and even social sciences. The basic principle of the MC
method is to define all possible events via the considered
probability density functions and to cumulate the probabil-
ity density functions into cumulative probability functions
from 0 to 1. Through massive simulated data, a link can be
established between random sampling and actual problem
simulation. Then, the most likely result of an actual problem
is conducted. According to the central limit theorem, the
sample average after massive simulation is the unbiased esti-
mation of the population’s average. Also, the confidence
interval can be obtained by statistically analyzing the out-
comes of these simulations.

4. Study Site and Data Background

4.1. Analysis of Wind Speed and Power Data of Wind
Turbines at the Study Site. This study uses measured data
of wind speeds and power output at four Enercon E44-
600KW wind turbines in the Jhongtun wind power station
at Penghu which is an offshore island in the middle of the
Taiwan Strait, as Figure 4(A) depicts. The Jhongtun wind
power station has been operating since 2001. It is the second
median-scale wind power plant in Taiwan and the first wind
power plant located on the offshore island of Taiwan. The
station is set in the Baisha village of Penghu, as Figure 4(B)
displays. The four Enercon E44-600KW wind turbines are
erected by the Taiwan Power Company on the north side

of the village, as depicted in Figure 4(C). The four wind tur-
bines are marked as 1,2, 3, and 4 from east to west in
Figure 4(D). An Enercon E44-600KW wind turbine has a
capacity of 600 kW with 3m/s, 13m/s, and 25m/s for the
cut-in, rated, and cut-off wind speeds, respectively. The
parameters for the standard performance curve in Equation
(5) are given as a0 = −0 2511, a1 = 0 1794, a2 = −0 04818,
a3 = 0 00621, and a4 = −0 00023. Time series of wind speeds
and power output of the four wind turbines have been
recorded in a 10-minute time resolution from 2002 to
2011. Unfortunately, after 2012, the measured data is no lon-
ger available to the public. Nevertheless, this situation will
not influence the quality of the present paper. On the other
hand, despite the measured data of the four wind turbines
can all be adopted for the rest of uncertainty analysis, the
records of the last three wind turbines are not used since
the wind speeds around these three wind turbines are influ-
enced by the first wind turbine (wind turbine #1) in the wind
velocity field of northeast monsoon during the strong-wind
regime (from October to March). Furthermore, the 10min
measured data of wind turbine #1 is shortened to 1-hour
data by averaging the six 10min data within an hour to
increase the computational efficiency. In terms of the pattern
of the wind velocity field, it can be classified as the strong-
wind and weak-wind (from April to September) regimes.
In the strong-wind regime, the wind speeds can be up to
10m/s to 16m/s, whereas the wind speeds are between
5m/s and 10m/s in the weak-wind regime. Therefore, to dis-
cover the capability of the developed uncertainty analysis in
various timespans, the present study has 15 scenario testing
cases, i.e., twelve months, the strong-wind regime, the weak-
wind regime, and one year. The obvious difference in the
weak-wind and strong-wind regimes also leads to the differ-
ence in capacity factors [5], which can be seen in Table 1.
Table 1 lists the monthly capacity factors determined by
the 1-hour time series of each scenario during the 10 years.
Table 1 also displays the estimated monthly capacity factors
by the deterministic approach aforementioned in Section 2
where the measured wind speed data for each year is used
to find the fitted Weibull distribution in each scenario. From
Table 1, the aforementioned two prominent wind regimes
can be inspected within a year in Taiwan. In the strong-
wind regime, the monthly capacity factors are in the range
of 0.509 to 0.793. On the other hand, the monthly capacity
factors in the weak-wind regime are only between 0.188 and
0.373. Besides, it is seen that a larger discrepancy between
the measured and estimated capacity factors is found in
the weak-wind regime (up to 28.2%) than in the strong-
wind regime (up to 8.2%). Such a phenomenon can also
be seen in monthly scenarios. The average error for the sce-
nario with weak wind (months from April to September) is
in a range between 8.8% and 25.13%, and the average error
for the scenario with strong wind (months from October to
March) is between 3.3% and 18.7%. Thus, the above phe-
nomenon indicates the necessity to use uncertainty analysis
approaches to predict the capacity factor of wind turbine #1.

Finally, as aforementioned, there is a fitted Weibull
distribution for each year in each scenario. Consequently,
there are 150 fitted Weibull distributions in the present
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study. Overall, these fitted Weibull distributions can all rea-
sonably represent the distributions of the measured wind
speeds provided that the coefficients of determination (R2)
are all acceptably close to 1. Owing to the space limitations,
the fitted results for all 15 scenario testing cases in 2004 with
an averaged R2 of 0.81 are displayed in Figure 5 for demon-
stration. From this figure, regarding monthly scenarios,
there might exist two peaks in a measured wind speed distri-
bution where the wind speed turns from strong to weak or
weak to strong (i.e., February and October). This can also
be seen in the one-year scenario where a peak for stronger
winds and another peak for weaker winds are observed.

4.2. Uncertainty Analysis of the Wind Energy Production. In
the present study, the prediction of the energy output of
wind turbines through the adopted deterministic approach
involves the determination of wind speeds by the WWSD
and the wind-to-energy conversion through the perfor-
mance curve of the wind turbines. As a result, the uncer-
tainties of the wind energy output, which is represented by
the capacity factor in the present study, are related to the
WWSD and performance curve. Specifically, for the WWSD,
the uncertainties come from the shape parameter k and scale
parameter c, as will be discussed in Subsection 4.2.1. Never-
theless, the uncertainties in selecting the Weibull distribu-
tion instead of other distributions to describe wind speeds

are not considered in the present study since the Weibull
distribution is proven to have the best fitness than the other
distributions. The uncertainties of the WWSD and the per-
formance curve are next discussed in Subsections 4.2.1 and
4.2.2, respectively. The distinctive procedures for imple-
menting the MC and GLUE methods are introduced in Sub-
section 4.2.3 and 4.2.4, respectively.

4.2.1. Uncertainties of the WWSD. As the amount of wind
speed data in the distribution selection process is often very
large, a perfect description for the measured wind speed data
by a probability density distribution is unable to be obtained.
Chang et al. [3] collect wind speed data from 25 weather sta-
tions between 1996 and 1999 and find that the Weibull dis-
tribution coincides with the measured wind speed data with
a high degree of precision. Furthermore, concerning the
wind speed distribution in Taiwan, the Weibull distribution
is again to be the most representative. Hence, this study
selects the Weibull distribution to represent wind speed data,
and the uncertainties in using the Weibull distribution
instead of other distributions are not considered as afore-
mentioned. Nevertheless, the uncertainties of the WWSD
exist due to many factors. First, the anemometer is posi-
tioned behind the wind turbine’s blades such that the wind
turbine’s slipstream or other wind turbines nearby may
cause a draft disturbance. Also, human activities, machine
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0 250 500 750 1,000
Meters
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Figure 4: Locations of the four Enercon E44-600KW wind turbines installed in the Jhongtun wind power station. (A) The location of
Penghu. (B) The location of the Baisha village where the Jhongtun wind power station is located on Penghu. (C) The location of the
Jhongtun wind power station in Baisha village. (D) The locations of the four wind turbines of the Jhongtun wind power station.
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Table 1: The monthly estimated capacity factors based on Chang et al. [3] and measured capacity factors for wind turbine #1 between 2002
and 2011. The error is calculated as |measured-estimated|/measured.

Scenario Variable
Year

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

January

Estimated 0.582 0.766 0.839 0.749 0.785 0.927 0.763 0.790 0.606 0.965

Measured 0.621 0.752 0.822 0.743 0.809 0.941 0.802 0.773 0.661 0.983

Error (%) 6.3% 1.9% 2.1% 0.8% 3.0% 1.5% 4.9% 2.2% 8.3% 1.8%

February

Estimated 0.595 0.526 0.567 0.627 0.680 0.492 0.915 0.462 0.464 0.630

Measured 0.596 0.533 0.567 0.509 0.730 0.512 0.871 0.424 0.479 0.663

Error (%) 0.2% 1.3% 0.0% 23.2% 6.8% 3.9% 5.1% 9.0% 3.1% 5.0%

March

Estimated 0.397 0.526 0.610 0.501 0.510 0.468 0.467 0.498 0.419 0.696

Measured 0.396 0.542 0.661 0.202 0.527 0.454 0.453 0.530 0.449 0.743

Error (%) 0.3% 3.0% 7.7% 148.0% 3.2% 3.1% 3.1% 6.0% 6.7% 6.3%

April

Estimated 0.368 0.362 0.360 0.283 0.347 0.420 0.363 0.472 0.438 0.313

Measured 0.383 0.310 0.356 0.220 0.323 0.500 0.378 0.490 0.426 0.301

Error (%) 3.9% 16.8% 1.1% 28.6% 7.4% 16.0% 4.0% 3.7% 2.8% 4.0%

May

Estimated 0.193 0.359 0.231 0.268 0.373 0.099 0.372 0.262 0.211 0.267

Measured 0.184 0.345 0.217 0.206 0.315 0.099 0.323 0.298 0.229 0.222

Error (%) 4.9% 4.1% 6.5% 30.1% 18.4% 0.0% 15.2% 12.1% 7.9% 20.3%

June

Estimated 0.154 0.357 0.350 0.238 0.148 0.115 0.138 0.217 0.356 0.160

Measured 0.145 0.319 0.145 0.221 0.139 0.129 0.134 0.186 0.266 0.178

Error (%) 6.2% 11.9% 141.4% 7.7% 6.5% 10.9% 3.0% 16.7% 33.8% 10.1%

July

Estimated 0.209 0.129 0.234 0.280 0.347 0.085 0.282 0.112 0.104 0.097

Measured 0.196 0.117 0.204 0.176 0.258 0.091 0.228 0.114 0.115 0.119

Error (%) 6.6% 10.3% 14.7% 59.1% 34.5% 6.6% 23.7% 1.8% 9.6% 18.5%

August

Estimated 0.154 0.132 0.210 0.189 0.122 0.274 0.064 0.236 0.051 0.176

Measured 0.135 0.122 0.113 0.151 0.067 0.259 0.066 0.215 0.060 0.172

Error (%) 14.1% 8.2% 85.8% 25.2% 82.1% 5.8% 3.0% 9.8% 15.0% 2.3%

September

Estimated 0.433 0.347 0.313 0.358 0.534 0.344 0.278 0.310 0.305 0.348

Measured 0.384 0.347 0.337 0.277 0.390 0.354 0.309 0.331 0.298 0.369

Error (%) 12.8% 0.0% 7.1% 29.2% 36.9% 2.8% 10.0% 6.3% 2.3% 5.7%

October

Estimated 0.556 0.670 0.927 0.792 0.737 0.765 0.571 0.759 0.697 0.791

Measured 0.435 0.696 0.945 0.763 0.578 0.846 0.605 0.782 0.737 0.782

Error (%) 27.8% 3.7% 1.9% 3.8% 27.5% 9.6% 5.6% 2.9% 5.4% 1.2%

November

Estimated 0.740 0.766 0.688 0.530 0.569 0.895 0.641 0.631 0.818 0.658

Measured 0.709 0.779 0.725 0.597 0.545 0.913 0.380 0.703 0.820 0.706

Error (%) 4.4% 1.7% 5.1% 11.2% 4.4% 2.0% 68.7% 10.2% 0.2% 6.8%

December

Estimated 0.750 0.820 0.886 0.876 0.887 0.710 0.735 0.727 0.623 0.919

Measured 0.707 0.806 0.890 0.898 0.910 0.701 0.680 0.675 0.330 0.902

Error (%) 6.1% 1.7% 0.4% 2.4% 2.5% 1.3% 8.1% 7.7% 88.8% 1.9%

Strong-wind

Estimated 0.596 0.672 0.747 0.672 0.687 0.693 0.667 0.636 0.590 0.777

Measured 0.576 0.686 0.771 0.621 0.683 0.730 0.631 0.651 0.580 0.799

Error (%) 3.5% 2.0% 3.1% 8.2% 0.6% 5.1% 5.7% 2.3% 1.7% 2.8%

Weak-wind

Estimated 0.261 0.296 0.289 0.279 0.318 0.250 0.278 0.282 0.262 0.242

Measured 0.237 0.259 0.228 0.208 0.248 0.237 0.239 0.271 0.231 0.226

Error (%) 10.1% 14.3% 26.8% 34.1% 28.2% 5.5% 16.3% 4.1% 13.4% 7.1%
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malfunction, or other issues may cause discrepancies
between the measured and actual wind speeds. In the pres-
ent study, the uncertainties of the WWSD are assumed to
be mainly attributed to the uncertainties of the WWSD
parameters which are obtained via measurement of the local
long-term wind speeds, i.e., the shape parameter k and scale
parameter c. In such a way, the aforementioned discrepancy
between the measured and actual wind speeds is reasonably
included in the analysis.

4.2.2. Uncertainties of the Performance Curve. For a given
wind speed, the energy output is obtained by substituting
the wind speed into the performance curve provided by the
wind turbine manufacturer or from the regression analysis
of the measured data. However, these two methodologies
are known to underestimate the monthly capacity factor in
the strong-wind regime and overestimate the monthly
capacity factor in the weak-wind regime [4]. Equivalently
speaking, there is not yet a perfectly accurate method to
determine the energy output. Consequently, the process of
determining the capacity factor has some degree of uncer-
tainty. Also, this process is subject to the limits imposed by
the amplitude of the data, the size of the error in the model
itself, and the errors due to human factors and machine mal-
function. These involved uncertainties are all considered by
accessing the uncertainties of the performance curve.

4.2.3. Procedures for the Uncertainty Analysis by the MC
Method. In the adopted MC method, to consider the uncer-
tainties within the WWSD (as the shape parameter k and
scale parameter c) and the performance curve, for each sce-
nario, a massive number of simulations are conducted via
random sampling from 0 to 1 based on the cumulative den-
sity distributions of these parameters. The sequential proce-
dures for creating a simulation for a specific scenario are
introduced next.

In the first step, the uncertainties of the shape parameter
k and scale parameter c in the WWSD are considered. Spe-
cifically, the uncertainties of the scale parameter c are herein
considered by analyzing the uncertainties of the average
wind speed V . The shape parameter k and average wind
speed are both assumed to be in normal distribution, and
the statistics (i.e., averages and standard deviations) of the
two parameters in the scenario are computed by the 10-
year measured data according to the period of the scenario.
Based on the computed two normal distributions, a shape
parameter k and an average wind speed are randomly sam-
pled. Then, the sampled shape parameter k and average
wind speed are utilized to compute the scale parameter c

through Equation (4). A WWSD f V and its cumulative
density function F V are thus decided based on the shape
parameter k and scale parameter c.

In the second step, a wind speed V is randomly sampled
based on F V . Then, the capacity factor of wind turbine #1
is computed by using the performance curve based on the
sampled wind speed V by Equation (9). To consider the
uncertainties of the performance curve, the present study
assumes that the energy output under a given wind speed
V is a normal distribution. To find this normal distribution,
the measured wind speeds and energy output in the Jhong-
tun wind plant are drawn in Figure 6. As shown in this fig-
ure, under a given wind speed, the distribution of the energy
output is almost symmetrical despite some data being far
away from the performance curve due to manual or
mechanical problems. Hence, the present study assumes that
the energy output is in the normal distribution under a given
wind speed. The uncertainties of the performance curve are
considered by assuming that the energy output on the per-
formance curve is the average value of the normal distribu-
tion. Also, the standard deviation of the distribution is
given as the variance of the measured energy output. For
the variance of the measured energy output, it is assumed
to be a negative-slope straight line between the cut-in and
rated wind speeds and a horizontal line between the rated
and cut-off wind speeds [28]. By analyzing the measured
data in the Jhongtun wind plant, the coefficient of variation
is computed and a regression curve is found (Figure 7(a)).
Correspondingly, the standard deviation of the energy distri-
bution (σP V ) is given as

σP V =
P V × 0 1818 − 0 2823 V −VR / VR −V I , V I ≤ V ≤VR,
P V × 0 1818, VR ≤V ≤ VO,

11

where P V is the computed energy output under a given
wind speed V from the standard performance curve. Thus,
for a sampled wind speed V , the corresponding energy out-
put is computed by the performance curve and then added
by a deviation that is randomly sampled from a normal dis-
tribution with zero mean and a standard deviation of σP V .
Taking the used Enercon E44-600KW wind turbine as an
example, the generated energy output using the normal dis-
tribution together with Equation (11) is displayed in
Figure 7(b). By repeating step 2 many times, the capacity
factor can be computed. Finally, for the considered scenario,
steps 1 and 2 are repeated 100,000 times to produce 100,000
capacity factors that can be used to derive the confidence

Table 1: Continued.

Scenario Variable
Year

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

One-year

Estimated 0.436 0.484 0.501 0.480 0.491 0.463 0.453 0.453 0.431 0.487

Measured 0.406 0.472 0.499 0.414 0.465 0.483 0.435 0.461 0.405 0.512

Error (%) 7.4% 2.5% 0.4% 15.9% 5.6% 4.1% 4.1% 1.7% 6.4% 4.9%
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interval of the capacity factor. The results for all 15 scenarios
are displayed and analyzed in Section 5. The flowchart of the
M-C method is displayed in Figure 8 for illustration.

4.2.4. Procedures for the Uncertainty Analysis by the GLUE
Method. To implement the GLUE method for accessing
the uncertainties of the energy output, the present study
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Figure 5: The 10 fitted Weibull wind speed distributions of the 15 scenario testing cases in 2004 of the Enercon E44-600KW wind turbine in
Jhongtun.
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modifies the formula presented by Nash and Sutcliffe [52] as
the likelihood function since each simulated capacity factor is
a single value [53]:

L = 1 − Xs − Xo
Xo

, 12

where L is the likelihood value, Xs is the simulated value, and
Xo is the measured value. As Equation (12) depicts, this like-
lihood function is 1 minus the corresponding error value. As
a result, the likelihood value has a similar effect as the effi-
ciency coefficient which represents the quality of the simula-
tion result. After determining the likelihood function, the
GLUE method then processes a parameter sensitivity analy-
sis of the three considered parameters (the shape parameter
k, scale parameter c, and performance curve) by using the
likelihood values of all possible parameter combinations to
discover the parameter range of each parameter that can lead
to a simulated result with better accuracy. Although each sce-
nario can have its determined parameter ranges, for the sake
of simplicity, the parameter ranges are decided to have the
best accuracy in all 15 scenarios. Usually, to discern the var-
iation of the likelihood value in the simulation result, a larger
parameter range will be used. Furthermore, to lower the
complexity of using the GLUE method, the parameter range
is defined by two ratios that describe the lower and upper
bounds, respectively. In this way, concerning the shape
parameter k, the parameter sensitivity analysis finds the
optimal parameter range as α1k ~ α2k. Similarly, for the
scale parameter c, the optimal parameter range is defined
as β1c ~ β2c. The uncertainties of the performance curve
are considered by multiplying a computed capacity factor
with an adjusted coefficient γ. The parameter range of the
performance curve is actually the parameter range of this
coefficient as γ1 ~ γ2.

After finding the parameter ranges of the three uncertain
parameters, for each scenario, the GLUE method separates
the measured data into the training set (2002 to 2006) and
the validation set (2007 to 2011) to demonstrate the predict-

ability of the GLUE-based approach. In the training set, for
each year, the GLUE method randomly samples N1 values
of k parameter and N2 values of c parameters from their cor-
responding parameter ranges with the assumption that k
and c are both in uniform distribution. Subsequently, there
are N1 ×N2 distinctive WWSDs and corresponding capacity
factors computed by Equation (9). Next, to include the
uncertainties of the performance curve, N3 values of the
adjusted coefficients are randomly sampled with the same
assumption that the adjusted coefficient is in uniform distri-
bution. The previously computed N1 ×N2 capacity factors
are multiplied by these N3 adjusted coefficients, resulting
in N4 =N1 ×N2 ×N3 parameter combinations and their
corresponding capacity factors. After that, the likelihood
values of these parameter combinations are computed. In
the next step, for each parameter combination, an average
likelihood value over the 5 years in the training stage is cal-
culated by the following equation that is modified from
Equation (10):

Lavg,j =w2002L2002,j +w2003L2003,j +w2004L2004,j +w2005L2005,j

+w2006L2006,j, j ∈ 1⋯N4 ,
13

where subscript j refers to the jth parameter combination.
The weights in Equation (13) (w2002, w2003, w2004, w2005,
and w2006) are all given as 1/5 based on the assumption that
each year is an independent event. The flowchart of the
GLUE method in the training set is displayed in Figure 9
for illustration. In the validation set, as displayed in
Figure 10, the GLUE method also creates N4 parameter
combinations and computes the corresponding capacity fac-
tors by the same means as the training set. The average like-
lihood values from the training stage are directly used as the
likelihood values for these parameter combinations in the
validation stage. These likelihood values are then utilized
as the weights of these parameter combinations. In such a
way, the probability and cumulative density functions of
the capacity factor are established and the confidence inter-
val of the capacity factor for the last 5-year validation set can
be derived. The results of all the scenarios are discussed in
Section 5.

5. Results and Discussion

In the present study, the MC and GLUE methods are used to
establish the confidence intervals of the capacity factor of
wind turbine #1 at the Jhongtun wind power station for
the 15 scenario testing cases. For demonstration, for each
scenario, the 50% and 90% confidence intervals of the two
uncertainty analysis approaches are compared with the mea-
sured capacity factors in 2007-2011 to examine the applica-
bility of the two approaches. Theoretically, when the
established distribution of capacity factor is reasonable, there
should be about two or three measured capacity factors fall-
ing within the 50% confidence interval of the distribution
and about four or five measured capacity factors falling
within the 90% confidence interval. The larger the number

0
0

100

200

300

400

500

600

700

5 10 15 20
Wind speed (m/s)

Po
w

er
 (k

w
)

25 30 35

Figure 6: The measured performance curve of the installed
Enercon E44-600KW wind turbine in Jhongtun.
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of the measured capacity factors falling within the confi-
dence interval is, the more the accuracy of the uncertainty
analysis approach is. The results of the MC-based and
GLUE-based uncertainty analysis approaches are displayed
in subsections 5.1 and 5.2, respectively. The comparison
between the two uncertainty analysis approaches is stated
in subsection 5.3.

5.1. Results of the MC-Based Uncertainty Analysis Approach.
The 50% and 90% confidence intervals of the capacity factor
for all 15 scenarios of the MC-based approach are drawn in
Figure 11. Overall, the MC-based approach can give accept-

ably accurate predictions in all 15 scenario testing cases. Spe-
cifically, in terms of the monthly scenarios, when concerning
the 90% confidence interval, the MC-based approach can
provide quite good predictions in January to May, July,
and October. Particularly, the MC-based approach gives a
satisfactory prediction in October. Nevertheless, in terms
of the 50% confidence interval, the MC-based approach
gives relatively poor predictions in almost all the months
except April, August, October, and November. Specifically,
in March and September, all the measured capacity factors
are out of the 50% confidence interval. Comprehensively
speaking, the MC-based approach provides relatively better
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Figure 7: (a) The coefficient of variation for the Enercon E44-600KW wind turbine in Jhongtun. The blue circle is the computed coefficient
of variation. The black lines are the regressed curve that consists of a negative slope and horizontal line segments. (b) The generated power
curve from the normal distribution with a standard deviation of Equation (11).

Compute scale factor c based on sampled shape factor k and mean wind speed 

Determine a Weibull distribution based on shape factor k and scale factor c

Sum the power output (Equation 8) 

Inner loop through several times

Compute the CF (Equation 9)

Get the distribution of these 100,000 CF

Outer loop for
100,000 times

Sample shape factor k and mean wind speed from their normal distributions

Sample the cumulative probability (between 0 and 1) then find the corresponding wind
speed based on the determined Weibull distribution

Calculate the corresponding power output (Equation 6) and adding a random noise
based on the determined normal distribution of power energy (Equation 12) 

Figure 8: The flowchart of the M-C method for accessing the uncertainty of wind energy output in the present study.

12 International Journal of Energy Research



results in April and October in which the weak/strong winds
are changed into strong/weak winds. In other months, the
accuracy of the MC-based approach on the confidence inter-
vals, particularly for the 50% confidence interval, is relatively
low. In terms of the strong-wind, weak-wind, and one-year
scenarios, it is found that almost every measured capacity
factor is out of the ranges of the 50% and 90% intervals,
especially for the weak-wind and one-year scenarios. Also,
the MC method tends to overestimate the capacity factors
in all three scenarios, which is also seen in monthly scenarios
with strong winds. Concerning the differences among the
three scenarios, the 50% and 90% intervals in the weak-
wind and one-year scenarios are both relatively narrower
than the strong-wind scenario.

The above result indicates that the MC-based uncer-
tainty analysis approach underestimates the uncertainty in

the three scenarios compared to the other monthly scenar-
ios, especially in the weak-wind and one-year scenarios.
Also, the MC-based approach tends to overestimate the
capacity factors in all scenarios. The above phenomenon
may be attributed to the use of the Weibull wind speed dis-
tribution and standard performance curve for wind-to-
power conversion. In the present study, the two-parameter
Weibull distribution is adopted such that the wind speed
distributions in scenarios with more than one significant
wind speed peak cannot be completely considered. Also,
the Weibull wind speed distribution may significantly over-
estimate the capacity factors in the weak-wind periods and
slightly underestimate the capacity factors in the strong-
wind periods, as reported in [4]. Besides, there may still be
unresolved uncertainty in the wind-to-power conversion
by the standard performance curve. Nevertheless, the MC-
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Figure 9: The flowchart in the training set of the GLUE method for accessing the uncertainty of wind energy output in the present study.
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N1 × N2 Weibull distributions for testing
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Weibull distributions for the considered year (2007-2011)

Assign N4 averaged likelihood values from the training set and use the likelihood values as
the weight to constitute the distribution of CF

Figure 10: The flowchart in the validation set of the GLUE method for accessing the uncertainty of wind energy output in the present study.
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Figure 11: The 50% and 90% confidence intervals of the capacity factor (CF) for the MC-based uncertainty analysis approach. The
measured capacity factors during 2007-2011 are drawn for validation.
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based uncertainty analysis approach can still provide an
acceptably accurate estimation of the wind power energy
uncertainties.

5.2. Results of the GLUE-Based Uncertainty
Analysis Approach

5.2.1. Parameter Sensitivity Analysis. For the parameter sen-
sitivity analysis of the GLUE method, the values of the shape
parameter k, scale parameter c, and adjusted coefficient of
the performance curve range from -50% to +50% (α1 = 0 5
and α2 = 1 5), -50% to +50% (β1 = 0 5 and β2 = 1 5), and
-30% to +30% (γ1 = 0 7 and γ2 = 1 3), respectively. Only
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Figure 12: The parameter sensitivity analysis of k, c, and the performance curve in the monthly scenario for January. The trend of the
likelihood values is representative of the scenarios with strong winds (the monthly scenarios from October to March and the strong-
wind scenario).
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the data in the training set (2002 to 2006) is used for this
analysis, and there are 10,000 simulations in each scenario.
It is noted that the computed capacity factor is limited to
be less than or equal to 1 to avoid unrealistic results. The
closer the corresponding likelihood value (by Equation
(12)) is to 1, the better the simulation result is. Based on
the computed likelihood values in all of the 15 scenarios,

the optimal parameter ranges for the three parameters can
be found. Owing to the space limitations, the results of the
strong-wind and weak-wind scenarios are displayed in
Figures 12 and 13, respectively, for showing the observed
trends. The red dots in these figures are the averaged likeli-
hood values used to depict the average trend of the likeli-
hood value.

–50
–0.5

0

0.5

1

–40 –30 –20 –10 0
(%)

2002

L

+10 +20 +30 +40 +50 –50
–0.5

0

0.5

1

–40 –30 –20 –10 0
(%)

+10 +20 +30 +40 +50
–0.5

0

0.5

1

–30 –20 –10 0
(%)

+10 +20 +30

–50
–0.5

0

0.5

1

–40 –30 –20 –10 0
(%)

2003

L

+10 +20 +30 +40 +50 –50
–0.5

0

0.5

1

–40 –30 –20 –10 0
(%)

+10 +20 +30 +40 +50
–0.5

0

0.5

1

–30 –20 –10 0
(%)

+10 +20 +30

–50
–0.5

0

0.5

1 1 1

–40 –30 –20 –10 0
(%)

2004

L

+10 +20 +30 +40 +50 –50
–0.5

0

0.5

–40 –30 –20 –10 0
(%)

+10 +20 +30 +40 +50
–0.5

0

0.5

–30 –20 –10 0
(%)

+10 +20 +30

–50
–0.5

0

0.5

1 1 1

–40 –30 –20 –10 0
(%)

2005

L

+10 +20 +30 +40 +50 –50
–0.5

0

0.5

–40 –30 –20 –10 0
(%)

+10 +20 +30 +40 +50
–0.5

0

0.5

–30 –20 –10 0
(%)

+10 +20 +30

–50
–0.5

0

0.5

1 1 1

–40 –30 –20 –10 0
(%)

2006

L

+10 +20 +30 +40 +50 –50
–0.5

0

0.5

–40 –30 –20 –10 0
(%)

+10 +20 +30 +40 +50
–0.5

0

0.5

–30 –20 –10 0
(%)

+10 +20 +30

k variation c variation Performance curve variation

Figure 13: The parameter sensitivity analysis of k, c, and the performance curve in the monthly scenario for May. The trend of the
likelihood values L is representative of the scenarios with weak winds (the monthly scenarios from April to September and the weak-
wind scenario).

16 International Journal of Energy Research



Generally, concerning the distributions of likelihood
values, for each parameter, the values of likelihood functions
are concentrated to 1 in the strong-wind scenario, which is
also seen in the monthly scenarios with strong wind (Janu-

ary to March and October to December). On the other hand,
the weak-wind scenario and the weak-wind monthly scenar-
ios (April to September) all have wider distributions of the
likelihood values than in the strong-wind scenario and

January February March

April
1.0

May
1.0

June

July August September

October November December

Strong-wind Weak-wind One-year

2007
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

2008 2009
Year

C F

2010 2011 2007
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

2008 2009
Year

C F

2010 2011 2007
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

2008 2009
Year

C F

2010 2011

2007
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

2008 2009
Year

C F

2010 2011 2007
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

2008 2009
Year

C F

2010 2011 2007
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

2008 2009
Year

C F

2010 2011

1.0 1.0

2007
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

2008 2009
Year

C F

2010 2011 2007
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

2008 2009
Year

C F

2010 2011 2007
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

2008 2009
Year

C F

2010 2011

1.0 1.0

2007
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

2008 2009
Year

C F

2010 2011 2007
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

2008 2009
Year

C F

2010 2011 2007
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

2008 2009
Year

C F

2010 2011

1.0 1.0

2007
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

2008 2009
Year

C F

2010 2011 2007
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

2008 2009
Year

C F

2010 2011 2007
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

2008 2009
Year

C F

2010 2011

50% CI
90% CI
Measured CF

Figure 14: The 50% and 90% confidence intervals of the capacity factor (CF) for the GLUE-based uncertainty analysis approach. The
measured capacity factors during 2007-2011 are drawn in the figure as the “Measured CF” for validation.
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monthly with strong wind. As for the one-year scenario, its
pattern of likelihood values lies between the strong-wind
and weak-wind scenarios. Based on these results, to simulta-
neously get high likelihood values in all the scenario testing
cases, the parameter ranges for k, c, and the performance
curve are determined to be -20% to +10%, -30% to +10%,
and -10% to 10%, respectively. Equivalently speaking, α1 =
0 8 and α2 = 1 1 for the parameter range of k, β1 = 0 7 and
β2 = 1 1 for the parameter range of c, and γ1 = 0 9 and γ2
= 1 1 for the parameter range of the adjusted coefficient.
On the other hand, the shape parameter c is found to be
the most sensitive, while the uncertainties of the perfor-
mance curve are almost neglectable. In terms of the uncer-
tainties in different scenarios, the uncertainties in the
weak-wind regime are relatively larger than in the strong-
wind regime.

5.2.2. Uncertainty Analysis. The GLUE method conducts the
uncertainty analysis by using the determined parameter
ranges of the three considered parameters, as discussed in
subsection 5.2.1. The analyzed outcomes of the GLUE
method are displayed in Figure 14.

From the viewpoint of the monthly scenarios, concern-
ing the 90% confidence interval, the GLUE method leads
to accurate results in almost all months except April. As
for the 50% confidence, the GLUE method only fails in
October where only one measured capacity factor is within
the 50% confidence interval. Thus, when simultaneously
concerning the performance on the 50% and 90% confidence
intervals, the accuracy of the GLUE method is quite good
except for April and October. For the strong-wind, weak-
wind, and one-year scenarios, the GLUE method also suc-
cessfully maintains its high accuracy on both the two confi-
dence intervals in which sufficient numbers of the measured

capacity factors fall within the intervals. The reason why the
results in April and October are less accurate is because the
two months fall in either spring or autumn, a time when
both strong/weak winds meet and bring greater fluctuations
in wind speeds. Nevertheless, if the time scale is extended to
6 months for the strong-wind, weak-wind, or even one-year
scenarios, the differences in the annual capacity factors are
small since the homogeneity of the data is increasing.

5.3. Performance Comparison between the MC-Based and
GLUE-Based Approaches. For comparing the two approaches,
for each scenario, the numbers of the measured capacity fac-
tors, as listed in Table 1, that fall within the 50% and 90% con-
fidence intervals are counted and listed in Table 2. The lower
and upper bounds of the capacity factor (denoted as CFlbd
and CFubd , respectively) for the two approaches are also listed
in Table 2 for illustration. Furthermore, a visual comparison
is also conducted by inspecting Figures 11 and 14. Based
on Table 2 and the two figures, both two approaches are
found to provide acceptably accurate estimations of the
wind energy output uncertainties. Nevertheless, the GLUE-
based approach provides results that match the measured
data better than the MC-based approach. When considering
the monthly scenarios, the GLUE-based approach gives
pretty accurate results in almost all months except for April
and October in which the numbers of the measured capac-
ity factors in the 50% or 90% confidence intervals are rela-
tively smaller. Compared to the GLUE-based approach,
the MC-based approach only gives the same accurate results
in April and October. In other months, the 50% and 90%
confidence intervals, particularly for the 50% confidence
intervals, are found to be less consistent with the measured.
Specifically, there is no measured capacity factor falling

Table 2: The number of measured capacity factors within the 50% and 90% confidence intervals of using the MC-based and GLUE-based
approaches for the 15 scenario testing cases.

Scenario
MC-based GLUE-based

CI = 50% CI = 90% CI = 50% CI = 90%
CFlbd CFubd Count CFlbd CFubd Count CFlbd CFubd Count CFlbd CFubd Count

January 0.777 0.911 1 0.533 0.954 4 0.639 0.876 3 0.484 0.993 5

February 0.575 0.777 1 0.361 0.862 4 0.392 0.615 3 0.302 0.910 5

March 0.551 0.651 0 0.448 0.720 4 0.366 0.507 3 0.292 0.681 4

April 0.433 0.528 2 0.350 0.591 4 0.291 0.407 2 0.203 0.474 3

May 0.305 0.437 1 0.193 0.519 4 0.128 0.272 2 0.055 0.364 5

June 0.255 0.407 1 0.158 0.510 3 0.092 0.203 4 0.052 0.345 5

July 0.216 0.369 1 0.112 0.469 4 0.056 0.130 4 0.034 0.277 5

August 0.193 0.311 2 0.107 0.382 3 0.044 0.192 3 0.022 0.258 4

September 0.398 0.509 0 0.320 0.584 3 0.226 0.313 2 0.173 0.371 5

October 0.733 0.863 4 0.587 0.915 5 0.588 0.728 1 0.426 0.808 4

November 0.690 0.835 3 0.517 0.901 3 0.565 0.782 2 0.484 0.918 4

December 0.795 0.902 0 0.676 0.941 3 0.568 0.761 3 0.455 0.938 4

Strong-wind 0.723 0.791 1 0.667 0.826 2 0.538 0.672 3 0.458 0.771 4

Weak-wind 0.356 0.396 0 0.326 0.423 0 0.178 0.259 4 0.133 0.304 5

One-year 0.550 0.580 0 0.526 0.600 0 0.359 0.445 2 0.301 0.500 4
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within the 50% confidence intervals in March and
September.

Regarding the strong-wind scenario, the GLUE-based
approach has 3 and 4 data points within the 50% and 90%
confidence intervals, respectively, which demonstrates the
capability of the GLUE-based approach to grasp the degree
of variations in the capacity factor. For the MC-based
approach, there are only 1 and 2 measured capacity factors
falling within the 50% and 90% confidence intervals, respec-
tively. Hence, compared to the GLUE-based approach, the
variations of capacity factors are relatively underestimated
by the MC-based approach. Also, inspection of Figures 11
and 14 and Table 2 indicates that the confidence intervals
by the MC-based approach are relatively narrower than the
GLUE-based approach. This result means that the MC-
based approach relatively underestimates the degree of
uncertainty. For the weak-wind scenario, almost all
measured capacity factors fell within the 50% and 90% con-
fidence intervals of the GLUE-based approach. The simula-
tion results of the MC-based approach are found to be
distorted given that no measured capacity factor is within
the 50% and 90% confidence intervals. For the one-year sce-
nario, the GLUE-based approach has 2 and 4 measured
capacity factors that fell within the 50% and 90% confidence
intervals, respectively, which is good. The simulation results
of the MC-based approach are found to be distorted again
provided that no measured capacity factor is found to fall
within the two confidence intervals.

In summary, whether using the quantitative method to
calculate the number of measured capacity factors falling
within the confidence intervals or conducting a direct com-
parison through graphs, despite the MC-based and GLUE-
based approaches are both considered to be accurate
enough, the simulation results of the GLUE-based approach
are relatively superior to the MC-based approach. The for-
mer produces relatively better simulation results in each
simulated scenario. Also, in some scenarios in which the
MC-based approach estimates distorted results, the GLUE-
based approach is still able to grasp the measured capacity
factor. In light of this, the simulation results of the GLUE-
based approach meet the actual uncertainties of the capacity
factor better than the MC-based approach in the selected
wind power station. This result is mainly attributed to the
fact that the GLUE method has verification procedures
whereas the MC method does not. In the GLUE method,
the likelihood value that measures the difference between
the simulated and measured data is used as the weight such
that better-simulated results can be efficiently selected and
emphasized. For the MC method, it may lead to results that
are less consistent with the measured data, which is due to
the use of the WWSD and unresolved uncertainty in the
wind-to-power conversion. The adopted WWSD cannot
completely represent the wind speed distributions in scenar-
ios with more than one wind speed peak (e.g., one-year sce-
nario). Also, the WWSD may significantly overestimate the
capacity factors in weak-wind periods and slightly underes-
timate the capacity factors in strong-wind periods, as found
by [4]. Finally, there may be unresolved uncertainties in the
wind-to-power conversion by the standard performance

curve. On the other hand, when the steps of simulations
are lengthened, the MC method is not only time-
consuming but also inefficient. In contrast, in the GLUE
method, other events can directly use the previous results
and effectively obtain an appropriate amount of data. Thus,
the GLUE method is more effective to be implemented than
the MC method.

6. Conclusions

This study combines the GLUE method with a deterministic
forecasting approach to propose a novel uncertainty analysis
approach for wind energy forecasting. The 10-year measured
wind speed and energy output data of operational wind tur-
bines in the Jhongtun wind farm at Penghu located in the
middle of the Taiwan Strait is collected and divided into
two 5-year data sets for the framework of execution and val-
idation to demonstrate the GLUE method. To thoroughly
discover the performance of the proposed uncertainty anal-
ysis approach in forecasting long-term wind energy output,
there are 15 scenarios testing cases with various time periods
(twelve months, the strong-wind regime, the weak-wind
regime, and one year) in the framework. In the execution
framework, the uncertainties in the wind speed distribution,
performance curve, and capacity factors are accessed by the
GLUE method. Next, the framework is validated by compar-
ing the 50% and 90% confidence intervals of the wind energy
output with the measured capacity factors in the last 5-year
data. Besides, the proposed framework is compared with the
results of the uncertainty analysis approach by the MC
method. Based on the results, some conclusions are given
as follows.

First, it is found that both the two uncertainty analysis
approaches can give acceptably accurate predictions of 50%
and 90% confidence intervals. Nevertheless, both 50% and
90% confidence intervals of the proposed uncertainty analy-
sis approach are found to be more consistent with the
measured capacity factors than the MC-based uncertainty
analysis approach in all the considered scenarios. Specifi-
cally, the MC-based approach even has some undesired dis-
tortion in the weak-wind and one-year scenarios whereas the
proposed approach still behaves well. On the other hand,
concerning the performance of the proposed approach in
various scenarios, the results reveal that the accuracy in
April and October is relatively less than those in the other
months because of relatively greater wind speed fluctuations
in these two months. Overall, the proposed uncertainty anal-
ysis approach is demonstrated to provide relatively better
simulation results than the MC-based approach, indicating
that the GLUE method is relatively more efficient in con-
ducting the uncertainty analysis of wind energy data and
their distribution.
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